

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Introduction

What's On The CD-ROM

About the Authors

Part I—Basics Of Client/Server Development With
Visual Basic 6

Chapter 1—An Introduction To Client/Server
And Networks

A History Of Files

What The Heck Is Client/Server?

Designing The Client/Server System

Network Topologies And Architectures

Network Protocols

Network Operating Systems

Where To Go From Here

Chapter 2—Relational Database Management
Systems

Relational Databases Vs. Relational Database
Management Systems

Considerations In Selecting An RDBMS

A Survey Of Available RDBMSs

Database Organization

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Database Design

Data Definition Language

Data Control Language

Where To Go From Here

Chapter 3—An Introduction To SQL Data
Manipulation Language

What Is SQL?

A Note About ODBC

Data Manipulation Language (DML)

Where To Go From Here

Chapter 4—Visual Basic 6 Data Access
Visual Basic Data Access Trends

What’s Behind Door Number One?

So…What Flavor Tastes Best?

Where To Go From Here

Part II—Visual Basic 6 Database Programming

Chapter 5—Data Access Objects (DAO)
DAO Object Models

DAO Objects

The Data Control

Where To Go From Here

Chapter 6—Remote Data Objects (RDO)
What Is RDO?

Overview Of Remote Data Objects

Exploring Remote Data Objects

The Remote Data Control

Bonus: The RDO Ad Hoc Report Writer

Where To Go From Here

Chapter 7—Introducing ADO And OLE DB
Microsoft Data Access Components

ADO Overview

Using ADO Objects

The Active Data Control

Where To Go From Here

Chapter 8—Converting To ADO
ADO Compared To DAO And RDO

Converting The Application

Where To Go From Here

Chapter 9—Advanced ADO Client/Server
Techniques

The Data View Window

Using The DataEnvironment Object

Using The DataReport Object

Command And Recordset Hierarchies

Other Data Access Tools In Visual Basic 6

Where To Go From Here

Chapter 10—Creating Business Objects With
Visual Basic 6

Introducing The Business Object

The Business Object

Relocating The Business Object

Where To Go From Here

Chapter 11—Visual Basic 6 Advanced Database
Topics

Data Validation

Keeping Common Data In Memory

Stored Procedures And Triggers

Generating Primary Keys

Result Set Size

The Nature Of Transactions

Where To Go From Here

Part III—Visual Basic 6 And The Internet

Chapter 12—The ABCs Of XML
Regaining Context With XML

Leveraging The MS XML API

Describing Your Data: The DTD

Building An XML Application

Where To Go From Here

Chapter 13—Serving Up The Web
Serving With Distinction: A History Of CGI

The Problem With Scripting

Beyond The Canon

Linking Events

Getting Browser Capabilities

Where To Go From Here

Chapter 14—The Dynamic Client
The Role Of The Client

The Dynamic HTML Application

Exploring The Internet Explorer Object Model

Building Tables

Understanding Input

Where To Go From Here

Chapter 15—Power Tools
Image Handling

Doing It With Style

Maintaining A Dialog Box

Accessing ActiveX And Applets

The Future Of Internet Programming…

Summary

Bibliography

Part IV—Appendixes

Appendix A—Creating The Sample Database

Appendix B—Differences Between Jet SQL And
ANSI SQL

Appendix C—ODBC Functions

Index

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Table of Contents

Introduction

I have a confession to make. As recently as a year ago, Visual Basic was not
my preferred tool to develop client/server applications. I have been developing
database applications for two decades and have used many languages and
tools. While I will never claim to know it all, I have a good sense for what
works in the real world and what doesn’t work. As far as client/server
development is concerned, Visual Basic 5 seemed to me to be right on the
edge as far as being a viable tool for large applications. Visual Basic 6 has
changed my attitude.

The client/server developer needs a development tool, not a language. The tool
needs to be robust, needs to support a myriad of different backends (data
sources) and needs to be able to produce a variety of different types of
applications from single-user desktop solutions to multi-tiered applications
deployed on the Internet. Visual Basic 6 is a superb tool adaptable to those
types of projects and more.

VB 6 is not best of breed in all categories. Weaknesses remain in areas such as
object-orientation and data modeling. The tools that are there sometimes lack a
little in how well they are integrated. Even still, VB6 is today’s best choice for
rapid application development of data driven applications in a client/server
environment.

In this book, my co-author Kurt Cagle and I have gleaned what works and
what doesn’t from months of work with VB6 betas using a variety of backends
and application platforms. Between us, we have almost four decades of
real-world experience. We have put together a book that is neither a rehash of
the Help files nor a pie-in-the-sky Microsoft marketing brochure. We have
assembled a guide to the development of client/server applications that will
scale as you need and that will comfortably accommodate the rapid changes in

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

technology. We have kept our eye to the target audience, the experienced
Visual Basic developer, while acknowledging that “experienced” means many
different things in many different environments. We do not insult the reader’s
intelligence with blow-by-blow details of using the Application Wizard, for
instance. But, we also do not assume that the reader has previously built
large-scale, multi-tiered, client/server systems. In fact, very few VB
developers have built such applications. So, we lay the groundwork as we
incrementally build the core knowledge from chapter to chapter.

Chapters 1 through 3 concentrate on the environment within which the Visual
Basic client/server application will be running. We discuss the whys and
therefores of client/server in terms of the network and the database. We
discuss and summarize network issues and database platform issues. We show
you how to intelligently design a database and how to use SQL.

In Chapter 4, we cover the gamut of Visual Basic 6 database access
techniques, including DAO, RDO, ODBC, VBSQL, and ADO. We offer
specific advice on when to use what as well as our opinions on the relative
merits (and de-merits) of each approach. Chapters 5 and 6 cover development
using DAO and RDO respectively. While most developers will eventually
move to ADO, both DAO and RDO will be around for some time to come.

Chapter 7 introduces ADO and OLE DB. We then show you how to use these
new tools, taking the time to compare and contrast with the more familiar
DAO and RDO models. In Chapter 8 we guide you through the conversion of
existing DAO and RDO projects to ADO. We use as scenarios example
projects built in Chapters 5 and 6 and provide detailed step-by-step guidance.
Again, we provide this guidance in a real-mode manner, resorting to
brute-force techniques when such techniques work best.

Chapter 9 gets into more advanced and efficient techniques using ADO and
OLE DB. We show you some of the newer tools with detailed examples. We
discuss the DataEnvironment object, the DataRepeater object, the Format
object, and so on. We make no bones where things are a little rough around the
edges, showing you how to get around the flaws in hierarchical data
presentations and similar gotchas.

Chapter 10 is where we start hammering away at solid object-oriented
development techniques instead of just paying lip service to them. We detail
the advantages and disadvantages of different approaches to object-oriented
development using classes. We discuss the efficiencies and inefficiencies in
different binding techniques. From there, we develop business objects from
classes that act as data providers to different objects, optimizing each for the
circumstances under which they are deployed. We show you critical gotchas
when moving the local business object to a remote platform and, frankly, show
you how to plain make it work.

Chapter 11 takes advantage of the knowledge assembled in the first ten
chapters to explore advanced database techniques, including the creation and
use of stored procedures and triggers. We deliberately placed this chapter at
this point in the book both because these techniques help to solidify the
traditional client/server application and because the techniques are absolutely

critical to the success of Web-based applications, which we discuss in the
remainder of the book. Because so much is said about stored procedures and
triggers, and because so few shops actually make effective use of them, we
explore unusual uses of them both in terms of data validation and in the
creation of a self-referencing data dictionary.

And that brings us to the last third of the book: VB6 and the Internet. While
client/server applications are, by definition, network applications, the Internet
is the mother of all networks. The Internet connects 79 million people in the
United States alone. With servers in excess of 10 million and Web pages in
excess of 300 million, the Internet only continues to accelerate its growth.

The astonishing thing is each of those 79 million plus people are all connected
to one another and to many millions more around the globe, each one
redefining what we mean by client/server programming. As cable modems and
DSL lines begin to replace 28Kbps and 56Kbps analog modems, the number
of people and uses for the Internet will jump astronomically as will the
expectations of users.

Client/server programming is all about getting data to and from the user.
Visual Basic 6 dramatically redefines the boundaries between client and
server, between data and user, offering a combination of one of the best RAD
development environments on the planet with all the power of Active Server
Pages and Dynamic HTML. In essence, with Visual Basic 6 you can create
sophisticated Web applications targeted to the widest possible audience using
the same tools that you have already mastered for other client/server
development.

The final four chapters of this book focus on this new technology, with an
in-depth look at Internet Information Services applications and Dynamic
HTML applications. Additionally, one of the hottest topics in data
communications, Extensible Markup Language (also known as XML), is
explored in detail, showing how you can take advantage of this new data
standard in your own programs. Finally, this book looks at several useful
technologies for the Internet-savvy database engineer, including remote
component servers, client- and server-side scriptlets, data persistence, and
more.

There is no right way or wrong way to use this book. (Well, using it as a door
stop or as something to raise your monitor probably isn’t the best use we could
imagine.) The experienced client/server developer may skim or skip over the
first three chapters. Those readers new to client/server may wish to spend extra
time on those chapters. Those readers that are making a commitment to ADO
should at least read Chapters 7 and 9 before skipping ahead to the fun stuff
(Web development). Those looking to check out the viability of Web-based
development may well want to skip ahead to Chapter 12 before coming back
to other portions of the book. We have tried to include at the front of each
chapter some keywords to highlight topics to be covered and have tried to
include at the end of each chapter some suggestions for where you may want
to go next.

Also be sure to check out the code samples on the enclosed CD-ROM. Several

people checked each piece of code. Although we have strived to make sure
that every application works properly, the nature of the material is such that it
was not possible to test on every single combination of platforms. As an
example, you may need to make minor alterations in SQL syntax depending on
what database you are connected to. Please pay particular attention to the fact
that you will need to do some setup on your own system. Many of the
examples use an ODBC data source—after creating the database (we have
included the SQL statements to do so on the CD-ROM), you will need to set
up the ODBC data source in the Control Panel. The paths to the data in some
of the examples may need to be changed to reflect your paths. Also, pay
particular attention to the fact that some samples connect to server
applications. Since these sever applications need to be registered (see Chapter
10 in particular), you will need to compile them, go to the References dialog
box, and reselect the references. Otherwise, you will get mysterious error
messages. For the Internet chapters, please note that many of the examples
were done using Internet Explorer version 5. You may wish to download that
from the Microsoft Web site. We would have included it on the CD-ROM but
it was in beta as this book was going to press and a more current release will
surely be posted before you read this.

You can use Access for most of the examples from this book if you want to
experiment at home or otherwise do not have access to a relational database.
You can also download trial versions of a number of different good single-user
database engines. Sybase SQL Anywhere (renamed Sybase Adaptive Server
Anywhere as this book was going to press) is an easy-to-set-up and use
product available from www.sybase.com/products/anywhere/index.html for a
free 60-day trial.

If you like the book, please buy a couple dozen more. You can give them to
your kids, your spouse, your mother (she will be impressed and thankful) and
your boss (he or she will also be impressed and will give you a raise). Coriolis
always invites comments, suggestions, criticisms, and so on. Visit their Web
page at www.coriolis.com to find contact information or to check out any
updates to the book.

Thank you,

Michael MacDonald (mikemacd@tiac.net)
Kurt Cagle (cagle@olywa.net)

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1576102823/www.sybase.com/products/anywhere/index.html
http://www.itknowledge.com/reference/standard/1576102823/www.coriolis.com
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Table of Contents

What’s On The CD-ROM
The enclosed CD-ROM contains all of the source code examples from this
book, plus many bonus examples. You will find them organized by chapter.
Please remember to make any changes needed to reflect your own
environment. See the readme file on the CD-ROM for more information.

Also included on the CD-ROM is a collection of utilities that I believe you
will find helpful. Please note that this book was written while Visual Basic 6
was being beta tested; therefore some of these utilities may have been updated
to take advantage of VB6 after the book went to press.

• Advantageware VB Advantage—A design-time add-in that gives you
the power to quickly and easily customize your design environment with
a broad range of powerful tools. (Trial version)

• Apex Software: True DBGrid Pro, True DBInput, True DBList Pro,
True DBWizard—Enhanced controls to help speed up your coding.

• Bokler Software Hashcypher—An ActiveX control that allows you to
easily provide robust data encryption using the Secure Hash Algorithm
(SHA-1). (Trial version)

• Caladonia Systems Code Print Pro— Allows you to generate
formatted, professional documentation that spans multiple projects or
specific sets of routines. (Trial version)

• Catalyst Socket Tools—A collection of TCP/IP networking
components and libraries for Windows that assist you in developing
Internet and intranet applications. (Trial version)

• CoffeeCup HTML Editor—A top-rated, WYSIWYG HTML editor
with many new and cool features to create and deploy web pages with
“attitude.” (Trial version)

• DeltaPoint QuickSite—The most productive way to create, manage,

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

and sell through your Web site. (Trial version)

• Suprasoft Crystal Reports Crystal Design Component—A custom
component that encapsulates the previewing of Crystal Reports reports
inside of an easy-to-use control. This is an efficient and productive
building block to create a unique and customized preview application or
front end for your software. (Limited version)

Requirements:
• Minimum of 486 or equivalent processor

• 16MB RAM

• Windows 95/98/NT

• Visual Basic 6

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Table of Contents

About the Authors
Author of seven books and dozens of magazine articles, Michael MacDonald
has nearly 20 years of experience in software development covering all major
platforms. An independent consultant specializing in client/server and
databases, Michael is also an instructor in the client/server certificate program
for Worcester Polytechnic Institute and a courseware developer.

Kurt Cagle is an Internet developer and multimedia specialist with 18 years of
experience in the field, concentrating on client-side and interface issues. He is
the author of 3 books and more than 50 magazine articles on many aspects of
the computer revolution, and has done work for Microsoft, AT&T,
RealNetworks, Starwave, and many other major computer and
technology-related corporations.

Acknowledgements

This is the area where I always get to thank everyone who so much as returned
a phone call. But, there were some very special people behind this book. I am
especially indebted and grateful to the publisher itself, Coriolis Group Books,
for allowing the extra time to produce a book that was solid instead of a book
that was early to market. It says a lot about the integrity of an organization that
puts quality ahead of profits. I want to thank the Acquisitions Editor for this
project, Stephanie Wall, for giving me the opportunity to do this book and for
a lot of cheeriness and professionalism. Toni Zuccarini was the project editor,
which is a job that does not get near enough thanks or recognition. Toni
coordinated a myriad of details with grace and aplomb. John Lueders was the
technical editor and painfully (to me as well as to him I am sure) reviewed
every line of code in the book and on the CD-ROM, offering advice and
criticisms, and did it well. Kristine Simmons was the copy editor for the
project. Copy editors are those people who review manuscripts for clarity and

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

grammatical correctness. Kris offered many fine suggestions and untangled
sentences and thoughts far better than I ever could have. I have worked with
many copy editors and (I mean this in all sincerity) Kris is probably the best. I
have to acknowledge the contributions of my co-author, Kurt Cagle, who
stepped up to bat to handle Chapters 12 through 15 and really did a fantastic
job. There are many people who go into the creation of a book who work
behind the scenes without much in the way of recognition: Alan Pratt is the
Technology Director and keeps, well, technical things moving between
Coriolis and authors; Robert Clarfield coordinates a blizzard of details in
getting that CD-ROM into the back of this book; Wendy Littley is the
Production Coordinator and is in charge of getting the text laid out, getting
proofs, coordinating among a zillion people, and so on; Tony Stock designed
the cover of this book (and you thought I did that myself!) invisibly but
professionally; and there are many others. To all of them—thanks.

I need a vacation!

Dedication

As always, to my family—my wife, Patricia, and my children, Amanda and
Peter—who are the ones that

truly make the sacrifices when I work past midnight. Also, to some very
special colleagues who it has been my

privilege to work with for more than a decade, including Larry Altrich, Steve
Remmes, and Randy Vance.

And finally, to a person who took a neophyte under his wing almost 20 years
ago, Dr. Thomas Gross.

—Michael MacDonald

To my parents, who taught me that humor and compassion will defeat
arrogance

and stupidity every time.

—Kurt Cagle

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Part I
Basics Of Client/Server Development

With Visual Basic 6

Chapter 1
An Introduction To Client/Server And
Networks
Key Topics:

• How we arrived at the relational data model

• Distributed computing

• The definition of client/server

• 2-tiered, 3-tiered, and n-tiered architectures

• The Microsoft Services model

• COM/DCOM and the Component model

• Application partitioning

• Network topologies and architectures

The migration to client/server development has its roots in the nature of
networks, which excel in the sharing of data and devices and the cooperative
processing of multiple clients, but are hampered by problems endemic to the
limited amount of data that can be transmitted at the same time. Client/server
solutions seek to maximize the strengths of networks while limiting their
weaknesses.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

In this chapter, I introduce the underpinnings of client/server and how it
evolved from the distributed data model of the 1970s and 1980s to the
multi-tiered model of today. For some readers, this material is old hat; skim it
or move on to the next chapter. For others, however, the material provides
real-world background upon which to set in context the remainder of the book.
The material is as applicable to development with any language as it is to
development with Visual Basic (VB).

Organizationally, this chapter is far ranging in the topics covered. I discuss the
evolution of file formats and how they led to the relational model of today and
the object model of tomorrow, as well as how these files evolved to support
the distributed data format that was a direct ancestor of client/server today. I
define basic and advanced client/server architectures, and I conclude with a
review of the network topologies and architectures upon which client/server is
based.

A History Of Files

Since the inception of the computer, there have really been only three file
types: sequential, navigational, and relational. We are now seeing the
introduction of a fourth type, the object model, along with relational/object
hybrids. Concomitant with this evolution has been a shift of responsibility
from the application to the database. For instance, in the sequential model, the
application was responsible for the location of any given record as well as for
the enforcement of all business rules. In the following sections, I review the
evolution of files; in other sections of the chapter, I point out how this
evolution mirrors the move to client/server development.

Sequential Model

Sequential files consist of fixed-length records, each of which typically
contains fixed-length fields. The 80-column cards of old were essentially
sequential files as were (and are) files stored on magnetic tape. A variation on
the sequential model, text files, evolved when computer languages evolved to
the point where they could use a character (such as a carriage return) as a
record delimiter instead of depending on the end of a record being in a fixed
location. Files such as AUTOEXEC.BAT and CONFIG.SYS are text files.

Visual Basic supports both forms of sequential files, using the Open keyword
to open the file, Close to close the file, and a variety of keywords to read from
and write to the file depending on the nature of the file’s use. I review these in
Chapter 4.

The key advantages of the sequential file model are simplicity of programming
file access and the speed with which an entire file can be processed. On the
other hand, it is not possible with sequential files to locate any one record
without first reading all other records before it. For instance, to pull up John
Smith’s customer record, it is necessary for the program to read the first record
in the file and determine whether it is the correct one. If it is not, the program
must read the next record and so on until the desired customer is found. As a
result, the sequential file model also does not support any type of ad hoc

reporting capabilities.

The application program is responsible for all file I/O, for all record searches
and updates, and for all data integrity measures (such as ensuring that an order
has a valid customer).

Some improvements were realized by using random access techniques. In
theory, if your application knew that John Smith’s record was the 318th record
in the file, the program could move directly to that record without reading the
first 317 records. The caveat, of course, is that the application was then
responsible for creating and maintaining some sort of index into the file—not
an easy piece of logic to code. Programming languages had to evolve to
support this as Visual Basic does when files are opened in Random mode.
Random access requires that every record be fixed length. A variation is
Binary mode where, instead of accessing a record by specifying its record
number, the program uses a byte offset from the beginning of the file.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Navigational Model

The navigational file model—sometimes called the hierarchical model—was a
major improvement. The term stems from the fact that it was usually necessary
to “navigate” to a desired record by first accessing other records. Often, the
details of this navigation were hidden from the developer so that the database
did the dirty work of locating a specific record. Common examples were
dBase and Btrieve files. On the mainframe, the navigation model was
implemented with Virtual Sequential Access Method (VSAM).

Visual Basic supports the navigational model in two ways. Using a file opened
in random access mode, you can manually maintain some sort of hashing
algorithm to navigate from record to record. Often, this method is
implemented in a manner similar to what C programmers know as linked lists.
A linked list essentially maintains a series of pointers into a structure or file
allowing navigation by (for example) account number or customer name.
Visual Basic also allows connection to navigational databases via the
Microsoft Jet engine. Although the interface provided is SQL, the underlying
file is still accessed navigationally. Microsoft refers to this as Indexed
Sequential Access Method (ISAM).

Relational Model

The relational model organizes data into related tables. A table is a
two-dimensional grid of columns and rows where each row is a record and
each column is a field in that record. Each table has a unique identifier, called
a primary key, which allows the retrieval of any one row without referring to
any other row. An example of a primary key might be customer number.
Tables are related by common information. An Orders table would be related
to a Customer table via a common customer number column: Each table has
a column containing customer number. The relationship is enforced via a
foreign key. The foreign key is a special type of index on the database that

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

enforces a business rule such as “no order may exist without a valid customer
number.” This enforcement is called referential integrity. The database
typically sports other methods of maintaining data integrity, such as restricting
the value of gender to male or female. These enforced rules are called
constraints.

There are a number of vendors of relational database management systems
(RDBMSs), including Oracle, Informix, Sybase, Microsoft, IBM, and so on.
All of the RDBMS engines use SQL as a language for accessing and
manipulating data.

The majority of this book is devoted to using Visual Basic in an environment
with an RDBMS such as Oracle, including techniques for maximizing
performance of the database as well as maximizing developer productivity.
The next two chapters introduce RDBMSs and the use of SQL.

Distributed Computing

To understand the move toward client/server, it is necessary to digress briefly
to the problems inherent in the centralized processing models of the
mainframes of the 1960s and 1970s. All data, along with the application
programs written to manipulate that data, resided within the confines of a
centralized computer. For a company with a single office in Boston or
Chicago, this arrangement was fine. However, for a company with offices
around the country or around the globe, this created practical problems: If the
home office (and the computer system) was in Chicago, office workers in
Boston and Los Angeles had no practical access to data relevant to their
operations.

The concept of the Distributed Computing Environment (DCE) sought to
mitigate this problem by moving data closer to users on multiple machines.
This solution had the added benefit of spreading processing loads to multiple
machines. On the other hand, it was difficult to update information that was
spread over multiple computers. It was also difficult to merge the data back
together for reporting.

As networked computers evolved, so did the proliferation of DCE. Networks
were (and are) a natural platform on which to distribute data. Contrary to
popular belief, networks have been around almost as long as computers. In
1964, the United States government contracted with the Rand Corporation to
design a network that could continue communicating even if a portion of the
network was destroyed in a disaster. The result, ARPANET, came online in
1968 and eventually evolved to what is known today as the Internet.

Networks stretched the definition of DCE by adding the concept of sharing
resources, such as printers and other expensive hardware. As the expense of
networks decreased and capabilities increased throughout the late 1980s, the
network exploded into prominence in corporate America.

With the increased use of networks, sharing data on file servers was a natural
happenstance. This development, however, revealed the weakness of
networks: The bottleneck on nearly any network was and is the low
bandwidth—the amount of data that can be moved over the cabling. As an

example, a “high-speed” Ethernet network can theoretically move data at
100Mbps (megabits per second). In reality, the “wire” (the network cabling) is
shared by many users, so even though the theoretical throughput sounds high,
it dwindles as more users are added to the network. Worse, the wire can only
send one piece of data at a time. Therefore, as more users are added, the
potential for two users attempting to send data at the same time increases.
When this happens, a data collision results. Any time there is a collision, the
data has to be retransmitted. Thus, as network utilization increases,
performance degrades very rapidly. Client/server solutions seek to take
performance issues into account by minimizing the amount of data being
moved.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

What The Heck Is Client/Server?

Client/server is a term much bandied, sometimes by people who don’t have a
clue about what it means. In fact, many industry pundits will stand on a
podium and tell you that there is no single definition of client/server.
Nonsense.

Client/server computing simply means that two (or more) processes run
independently in a cooperative manner. The simplest and most common
example is the classic two-tiered database application shown in Figure 1.1.
Here we see a client program communicating with a database engine running
on a remote server, and the two are connected via a network. The client is
responsible for providing an interface to the user. Typically, the client will
create an SQL request for data and send that request to the database. The
database then evaluates the request, fulfills it, and sends the data back to the
client.

Figure 1.1 In a two-tiered, client/server application, the client requests
records from the database server, which processes the request and returns only
those records that meet the criterion.

Contrast this setup with just a shared file on a server. (I discuss this concept
further in Chapter 2 where I define the term RDBMS engine. With a shared
file, there is no separate process—program—running. The file, perhaps an
Access database, is merely shared by multiple users.) Let’s assume that we
have 10,000 customers for whom we store information. We want to find all
customers who live in California. Suppose 50 customers are from the Golden
State. With a shared file, the program has to read the entire file and determine

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-01.jpg',418,251)
javascript:displayWindow('images/01-01.jpg',418,251)

which customers are from the state of California. To do that, all 10,000 records
are sent from the server to the client. The user is going to wait a very long time
for a response.

In a client/server environment, the client creates a SQL statement such as
Select * From Customer Where State = ‘CA’. The request is sent to the
database server. The server then evaluates the request and finds the 50 records
before sending any data back to the client. Because only 50 records are sent to
the client (instead of 10,000), network traffic is reduced dramatically.

The simplistic model that I have just illustrated works fairly well when the
number of simultaneous users—such as in a departmental application—is not
too high. However, it begins to sag when we try to scale (grow) it to the
enterprise level. In the sections that follow, I address this issue as well.

Multitiered Architectures

With the terms two-tiered, three-tiered, or even n-tiered architectures, we are
referring to the number of layers of communications that make up an
application. Each term represents a division of duties. If you write an
application program that communicates with a database server, you construct a
two-tiered application. The database is primarily responsible for returning data
to the client. The client is primarily responsible for providing the user interface
and the business logic. This structure was shown in Figure 1.1.

There are a number of problems with this approach.

Although a goal of client/server is to minimize network traffic, the fact
remains that if you add enough users, the network will still be crushed. For
instance, the database itself can support only so many active, simultaneous
connections before it begins to sag performance-wise, simply due to a lack of
resources (memory and so on). Also, you tend to reach a point where the
network traffic still becomes too high. If your multiuser FoxPro system could
support 5 or 10 users, the two-tiered client/server equivalent could probably
support 50 or 100 (because the client/server approach puts much less strain on
network resources than does the shared-file approach used in a FoxPro
application). Beyond those 50 to 100 users, however, the network still can’t
handle the amount of data being moved around.

Other complications come from the sheer complexity of maintaining that many
clients. Assume you do manage to get 1,000 users on your client/server
application. Each time the application needs to be maintained, all 1,000 PCs
must be updated. That is a Herculean task for which no good administrative
tools exist. Further, today’s graphic-heavy environments and intensive
computations require ever bigger and faster PCs, creating an endless cycle of
expensive PC upgrades and replacements. Therefore, the obvious answer is to
offload as much processing as possible to an application server. In this
scenario, the client application is mainly concerned with presenting a user
interface and does as little business logic as possible. The business logic is
moved to a server that performs business-oriented processing. The application
server manages connections to the database and performs all data requests of
the database. The database also performs a limited amount of logic by

enforcing business rules on the server. This three-tiered model is illustrated in
Figure 1.2.

Figure 1.2 In this three-tiered system, the client connects to the application
server, which in turn connects to the database server.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/01-02.jpg',466,454)
javascript:displayWindow('images/01-02.jpg',466,454)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

A more familiar example of a three-tiered application might be what you see
on the Internet. Visit a site such as www.amazon.com (an online bookstore)
and search for books with “Visual Basic” in their titles. Your PC is the client
in this model with the Web browser containing the user interface. It connects
to a Web server at Amazon’s site. The Web server’s main job is to create
Hypertext Markup Language (HTML) pages to be sent to the Web browser on
the client. Extensions on the Web server perform some business logic and
interact with a database server. The Web server sends a request to the database
server asking for all titles that match your search criterion. The database server
processes the request and sends the result back to the Web server. The Web
server then formats the result set into an HTML page and sends that back to
the client for presentation within the Web browser.

Beyond overcoming practical limitations imposed by the two-tiered design, a
multi-tiered design offers other advantages that exploit the location and nature
of each physical tier. Figure 1.3 shows a group of PCs networked together with
the application server on the same ring. Notice that the client PCs can
communicate with the application server, but only the application server
communicates with the database server. This arrangement has the effect of
reducing a certain amount of data traffic on the network because the database
server isn’t even on the network. Thus, PCs on the network that are not part of
the client/server application itself suffer minimal impact on network
performance.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/standard/1576102823/ch01/www.amazon.com
javascript:displayWindow('images/01-03.jpg',446,517)

Figure 1.3 A three-tiered configuration with the client computers
communicating with the application server via the network.

The Services Model

Visual Basic supports an approach to client/server in three-tiered and n-tiered
designs known as partitioning. The application is broken into three key service
areas, which typically partition the application into three discrete tiers.
Together, these tiers are known as the services model:

• User services—Essentially the way the application interacts with the
user.

• Business services—The processing necessary to accomplish business
goals, such as editing a customer record or decrementing inventory
levels.

• Data services—The maintenance of the database itself, such as
updating tables, transaction management, and concurrency support (row
and table locking).

Each of these areas is encapsulated into a tier of the client/server system. The
client handles the user interface, the application server handles the business
logic, and the database server performs data-handling chores. I expand upon
these concepts throughout the book.

The Component Model

With Visual Basic, the component model extends into the client/server
environment. Consider the word “component.” Visual Basic supports the
creation and use of objects developed with Visual Basic, Visual C++, and
many other development tools by independent teams of developers. These
objects have functionality embedded in them that can be used repeatedly in
many different projects. As such, the objects become components in what is
called component-based development. Rather than re-create a routine to
calculate the sum of all line orders on an invoice, for example, we create one
routine as an object that we can then use almost as a building block in other
applications. Consider, as a simple example, the Common Dialog control that
you add to your application when you need a File Open or Printer Setup
dialog; rather than re-create it yourself every time you need that functionality,
you have a prebuilt component that you can reuse from project to project.

When we look at a client/server model as a group of services (user, business,
and data), then each service is a collection of assembled components.

Assume you use Visual Basic 6 to build an ActiveX object called custUpdate.
The object is nongraphical, consisting only of code that updates customer
records. Encapsulated within this object is logic that enforces business rules
such as “a customer may not exceed $500 in credit” and “a customer must
have a date of birth less than today’s date.”

Your custUpdate object is a component that can be deployed at the client
level with no special coding because of the benefits of Microsoft’s Component
Object Model (COM) technology. Any tool, platform, or object that supports

javascript:displayWindow('images/01-03.jpg',446,517)

COM automatically “knows” how to communicate with the object and can
take advantage of its methods and properties.

More On Business Services

Client and data services tend to be easy to define, but the definition of the
term “business services” can be somewhat muddled. For efficiency of design
and practicality of deployment, anything that is not a client service or a data
service is usually lumped into the business services bucket.

The user interface clearly belongs on the individual user PC. This includes
forms, controls, screen navigation, and so on. Anything that performs
physical data retrieval or maintenance—that is, the database
engine—belongs in the data services area. Other items that can be shared by
multiple clients (or the data services partition) then become a part of the
business services partition.

An object deployed to handle multiple print chores (reports, pagination, and
so on) is not, strictly speaking, a business service. However, it is not a good
candidate to be deployed on each client nor should it be placed on the
database server. The most convenient place to put it is on the application
server as part of the business services partition.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Distributed Component Object Model (DCOM) technology extends this
concept by allowing a component to be placed anywhere on a network. Any
other object can communicate with it without knowing or caring where it is on
the network. Assume you have a client/server application that uses the Internet
as its network. Your Visual Basic application can invoke methods of
custUpdate (without any change in coding) regardless of whether it is located
on your computer or on a server on the other side of the world.

You can take advantage of DCOM by deploying all your business logic on an
application server. Instead of having a custUpdate object on every client in
the network, the object is located only at the server. The object operates
independently of any client and independently of the database server. Should a
business rule change (perhaps you will allow a customer credit of up to $1,000
instead of $500), you have only one place to make the change and that change
is instantly made available and enforced for all clients.

By placing all your business logic on an application server, you have
effectively partitioned the business services from the user services (and from
the data services).

The Thin Client

One of the buzzwords of the day is “thin client” (okay, that’s two words). In
the two-tiered client/server model, all of the user services and all of the
business services are located on the client, whereas the database server handles
the data services. This arrangement places a strain on the client because the
programs tend to be big and slow and contribute to the need to continually
upgrade PCs across an organization. Unfortunately, as we (client/server
developers) write programs that are increasingly graphical in nature, we
contribute to this bloat.

By moving the business services to an application server, the client need do

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

little more than present forms, menus, and the like to the user. All of a sudden,
we are actually taking some of the strain off the client and fewer resources
(such as memory, disk space, and CPU) are needed. The direction we are
heading, then, is towards a thin client.

Visual Basic 5 introduced the capability to create applications that actually run
within a Web browser. No form or menu runs on the client; it is housed in the
browser. The browser then becomes the user interface. If the user wants to
access a client/server order entry system, he or she launches Internet Explorer
(or Netscape Communicator). If he or she wants to access the accounting
client/server application, he or she launches Internet Explorer. If the PC is
powerful enough to run Internet Explorer, it is powerful enough to run any of
the client/server applications. This method is how you implement a thin client.
It means that the application is truly network independent. If the network
supports TCP/IP, it supports your application. It also means that your
application is operating system independent. If the client has a Web browser
that supports active clients, it can run your application. Your Visual Basic
application system is portable over multiple operating systems.

Lest I sound like a walking billboard advertisement for Microsoft, let me be
the first to say that the technology is not perfect. Can you do everything I just
said in the preceding paragraph? Yes, sort of. You may be constrained by
network limitations. (The Internet, for instance, has been known to get bogged
down from time to time and that is beyond your control.) The range of
database connectivity options and methodologies (a major subject in this book)
is confusing to say the least. As the technology matures, it is probably wise to
tread lightly and test carefully. Still, it is an exciting trend, and it will
ultimately simplify development enormously.

Designing The Client/Server System

One of the keys to implementing Microsoft’s DCOM in a client/server
environment is proper identification of both service requirements and their
logical location in the physical implementation. Put in simpler terms, what
does the application have to do and where should it be done? Part of the
process of ferreting out this information is traditional system analysis, part is
the application of well-defined object-oriented principals, and the final part is
the somewhat less clear process of properly partitioning the results.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Systems Analysis

Assume that we are building a traditional order entry system. The first step is
to gather detailed requirements from users. We can use a number of
well-established, formal methodologies (on which whole books have been
written). Those experienced in the field often use a somewhat less formal
approach. In this day and age of rapid application development (RAD), many
companies turn to joint application development (JAD) brainstorming
sessions. In these JAD meetings, users and technicians meet to hammer out
first the functionality of a system and, normally, the data elements to be
captured. The latter form the basis for the database design, which I review in
Chapter 2. For instance, in an order entry system, typical functions will include
the following:

• Add, update, and delete customer.

• Add, update, and delete order.

It is useful to compare the functions to the database design in order to verify
that each database entity has at least one occurrence of add, update, and delete
(to ensure that there is a mechanism to add a customer).

It is often helpful to bring senior management to at least the initial JAD
meeting to clarify the organization’s goals. It is not uncommon to encounter a
sizable disjoint between what senior management sees as the organization’s
philosophy and what the rank and file sees. Management can provide a
mission statement from which all functionality is derived: “Sell widgets
worldwide.”

The mission statement then can be viewed as the highest-level function of the
organization. That function can be decomposed into smaller units that define
how the overall mission is accomplished (see Figure 1.4).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 1.4 The beginning of a simplified functional decomposition.

Each function is decomposed further until an atomic-level function statement
is achieved. A function that has been decomposed to the atomic level generally
provides one and only one output. An example of an output is a report or a
table being updated. (In practical terms, you may then opt to combine two
functions to make the application more functional. For instance, it is common
to maintain order headers and associated line items on the same form.)

As you can see, you are not defining how the application will accomplish a
task. Instead, at this stage, you are merely concerned with what the task is.

Because of space constraints in this book, I cannot explain all of the ins and
outs of the different approaches to systems analysis and design. I spend a good
40 hours teaching these skills to students in what is still a compressed format.
However, I end up stressing that the whole process of systems design comes
down to practicing common sense. Decomposing functionality is particularly
troublesome to my students who invariably are looking for the one right
answer. I have to tell them that there is no one right answer. If the decomposed
functions accomplish the goals of the system, then it is correct. In general,
there is a one-to-one correspondence between an atomic-level function and a
“program” (such as a Visual Basic form or report).

Once application functionality has been defined, you are ready to think in
terms of how to make it happen. There are two aspects to this: defining the
data that needs to be captured and a description of how the data will be
manipulated. (In Chapter 2, I discuss how to design a database.)

Encapsulating Functionality

Another source of confusion is the concept of encapsulating functionality. All
that this intimidating word (encapsulation) means is embedding functionality
into another object such that its behavior is exposed but its integrity is
protected. Okay, maybe that is not so easy to understand. Consider the
database server. When you send an SQL statement to the server asking it to
update the address of a customer, you are not doing the actual update, the
server is. The database engine edits your SQL statement for validity, ensures
that the customer number is valid, verifies the state or province and postal
code, then performs the physical update. It places an entry in the transaction
log and informs your program whether the update was successful. You cannot
access the underlying data or functionality directly; it is encapsulated within
the database server itself.

In designing your system, you seek to do the same thing—encapsulate your

javascript:displayWindow('images/01-04.jpg',420,515)
javascript:displayWindow('images/01-04.jpg',420,515)

application logic. If you need to perform customer maintenance, you seek to
isolate the data and logic. Isolating the data allows you to guarantee the
integrity of the data. For instance, in updating a customer’s address, you might
want to validate the state or province code as well as the postal code.
Therefore, you could embed that logic into an object. By embedding the data
in that object, you force all requests to update the data through the object’s
methods. This embedding is a recurring theme throughout this book, and I
expand upon this concept in the following section.

Partitioning The Application

Hand in hand with encapsulating functionality, partitioning the application
allows you to reuse objects and locate those objects at their proper place in a
multi-tiered client/server application.

In partitioning an application using Microsoft’s DCOM, you break each
function into three discrete sets of services: user, business, and data. This
partitioning can be seen in Figure 1.5. The client interface is localized to the
client computer under user services. The logic to process a customer record
and an associated address record is localized to the middle tier under business
services. The database server handles data services.

Figure 1.5 An application broken into three tiers of services.

To build such an application, you need to create two (or more) Visual Basic
applications. The client services portion is actually rather simple, needing only
to provide an interface to the user and the knowledge of how to communicate
with the business services tier. The business services portion is a separate
program running remotely (from the client) to which multiple clients connect.
Visual Basic provides a rich set of tools to build these portions. However, the
hard work has already been done for you.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/01-05.jpg',446,438)
javascript:displayWindow('images/01-05.jpg',446,438)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Distributed COM

When you build an ActiveX component and then use it in a VB project, COM
provides a proxy and a stub for each side of the connection between your
application and the component. A proxy is an object provided by COM that
runs in the same memory space as the user. It packages together parameters
and acts as a bridge between the two objects. If your application is
communicating with an ActiveX component, the proxy runs in the memory
space of your application. It collects arguments to be passed to the ActiveX
control’s methods and properties and communicates with the component’s
stub. The stub, on the other hand, runs in the address space of the receiving
object, unpackages the parameters received from the proxy, and passes them to
the component. This communication works both ways, as shown in Figure 1.6.

Figure 1.6 COM and DCOM automatically provide proxy and stub services,
allowing two objects to communicate with one another with little to no
intervention on the part of the developer.

The workings of DCOM are almost identical. The application houses a remote
automation proxy, which communicates with the component’s remote
automation stub. DCOM also adds network transport services in a manner that
is invisible to the application, making the location of the component on the
network irrelevant to the client. This provides for tremendous flexibility in
design.

Visual Basic (Enterprise Edition) provides tools to register components. I
review step-by-step in Chapter 10 the entire procedure for implementing the
DCOM.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/01-06.jpg',436,190)
javascript:displayWindow('images/01-06.jpg',436,190)

In the remainder of this chapter, I review some of the key concepts of the
underlying network architecture. Although the client/server developer does not
need to be a network engineer, it is helpful to understand the basics of the
physical model upon which the application is based.

Network Topologies And Architectures

The backbone of any client/server system is the network on which it is
installed. It is the network that moves data from the server to the user. The
network might be a 10Mbps Ethernet or it might be the Internet itself.
Although network design is well beyond the scope of this book, the Visual
Basic client/server developer should have a grasp of how his or her data is
moved in order to properly model the application.

The expression network topology refers to how the network is physically laid
out. In contrast, the expression network architecture refers to how the network
is implemented on that topology. In the following sections, I briefly discuss
the more common topologies and architectures.

Peer-To-Peer Networks

A peer-to-peer network is one in which the computers are connected to one
another directly in series. Each PC typically contains a LAN adapter or
Network Interface Card (NIC) with two jacks. Typically, these jacks accept
RJ-11 pins (similar to the connectors on your phone cord). A line is run from
one computer to the next serially. Although it is simple to set up, such a
network is typically slow because data passes through each computer. It is
vulnerable to any individual workstation being powered down or crashing, and
because the network has no server, there are minimal security constraints. A
Windows 95 or Windows 98 network is a peer-to-peer network.

Star Networks

The star network topology implies a network where all computers are
connected to a hub (a hub is a box similar to a telephone switchboard
containing minimal intelligence). Multiple hubs are connected to one another.
Star networks are simple to maintain but offer minimal security constraints. If
a hub goes down, the entire network goes down.

Ring Networks

In a ring network, all computers are connected via a continuous cable. A
multiplexing unit monitors the network, allowing only one packet to circle the
network at a time. The packet is continually sent from computer to computer.
Each computer examines the packet to see if it is addressed to that workstation.
If a computer needs to send information, it waits for the packet and attaches a
“request” to transmit. The multiplexing unit gives permission to each
workstation in turn in a procedure that is akin to a parliament (giving each
“member” a turn to speak but also allowing for higher priority speeches such
as error messages). If the packet is accidentally destroyed, the multiplexer
recreates it.

IBM’s Token Ring architecture runs on a ring technology. It has the advantage
of being very reliable, but because of the extra overhead of packet monitoring,
it is somewhat expensive to maintain and does not scale to a large number of
users.

Bus Networks

The bus topology connects computers in a single line of cable. Although each
computer is typically connected to a hub, the internal wiring of the hub still
connects each computer serially. When a workstation wants to send a packet of
information, it “listens” for the line to be clear through a process known as
electronic sensing. Only one packet can travel on the network at a time, and if
two computers happen to transmit at the same time, a packet collision occurs.
Each workstation listens for such collisions and, when they are detected, waits
a random amount of time and then resends the packet.

The most common implementation of bus technology is Ethernet. Although
fairly simple and inexpensive to install and maintain, the network is vulnerable
to any breaks in the cable. Further, as more users are added to the network,
performance can degrade drastically. Still, Ethernet is by far the most common
architecture. To maintain satisfactory performance, network engineers break a
large Ethernet network into smaller LANs connected via bridges.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Network Protocols

In the 1980s, when we logged onto a bulletin board, we said the two computers
were “shaking hands”—agreeing on how to communicate with one another.
Today, we more accurately refer to this process as agreeing to a protocol. A
protocol is a low-level language with which two or more computers
communicate. Imagine you send a 2MB file to a friend across the company or
across the globe. The file is broken into packets. Each packet has various
pieces of information in it:

• Destination address—The computer to which the packet is being sent.

• Usually a “from” address—The computer or person from which the
file was sent.

• Checksum—A mechanism by which the receiving computer can
verify the integrity of the data being sent.

• Sequence number—A number that enables the receiving computer to
reassemble all the packets into one file and to tell the sending computer
which packets to resend in the event of transmission errors.

• Data—The actual data being sent.

A number of protocols are commonly used in organizations today. Most are
based on the Open System Interconnection (OSI) Reference Model, which
defines standard network layers of communications. An in-depth discussion of
these protocols is beyond the scope of this book. However, protocols that
adhere to this standard can generally intercommunicate with relatively
inexpensive translation hardware. In general, you can think of a network
protocol as similar to an agreement at the United Nations to speak in one
certain language that everyone understands.

The most common protocol in use is TCP/IP, the language of the Internet. The
TCP (Transport Control Protocol) portion refers to how a packet moves from

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

application to application. The IP (Internet Protocol) refers to how data is
moved from computer to computer. Although it is used on the Internet, TCP is
widely implemented on various internal networks within organizations.

An in-depth discussion of protocols is beyond the scope of this book. For now,
understand that different networks employ different protocols and often
employ more than one protocol simultaneously. IPX/SPX is the native
protocol of NetWare networks. IBM LAN Manager’s native protocol is
NetBIOS. Other protocols that you may run into range from NetBEUI
(Microsoft Windows NT) to AppleTalk (Apple Macintosh).

Network Operating Systems

Like the individual client PC, the network server runs an operating system,
usually called the Network Operating System (NOS). It is the NOS that is
responsible for network traffic, security, shared services (such as print and file
services), and group services (such as email and calendar functions). The
choice of NOS can have a dramatic impact both on performance and on
productivity. Throughout this section, I deliberately mix consideration of NOS
with the database server’s operating system. Strictly speaking, the database
platform’s operating system is independent of the network’s NOS. However,
the considerations for one are often the same as for the other. Further, I
strongly urge every organization to minimize the number of different
components. If you are going to use Novell NetWare as your network
operating system, I highly recommend that you consider it for your database
server as well.

The network itself consists of one or more servers, each providing one or more
services. For instance, a given computer may be responsible for both email and
print services. The best choice for overall NOS may not be the best choice for
your database server’s operating system.

In evaluating what NOS to use, you need to ask a few questions:

• What NOS does my organization currently use? Often, it is best to
stay with what you have. A large-scale client/server migration
introduces a lot of change as it is; it may not be the best time to also
introduce a new network operating system.

• What expertise does my organization have on staff? NOS skills are
often hard to find. If your staff’s skills lie in the area of Windows NT,
you might not want to even consider a Unix or NetWare platform unless
you are confident that you can hire people with the necessary skill sets.

• What is the overall load on my network? Some NOSs lend themselves
to certain types of environments better than others. When you consider
the database server, for instance, Oracle presents a prettier face on
Windows NT than it does on Unix. However, the Unix platform under
many conditions will outperform the equivalent NT environment.

• How many resources can I dedicate to administering my network
environment? For organizations that cannot afford a great deal of
devoted resources, the highly graphical nature of the administrative
tools in Windows NT may more than offset the tedious command-line

interface of a Unix platform.

In the following sections, I review the more common network operating
systems that you are likely to encounter.

Novell NetWare

Once the king of the hill, NetWare has seen its market share steadily decline
relative to the Microsoft Windows NT juggernaut in the past few years.
Whether the declining market share is deserved is a subject for conjecture.

NetWare is known as a dedicated operating system, meaning that the server
can run no programs other than the operating system itself. Other programs
you want to run must actually be part of the operating system. You accomplish
this arrangement by compiling the other program (email or database are
examples) into a NetWare Loadable Module (NLM). When the NOS loads,
any NLMs load as well and become part of the operating system itself. There
is a clear advantage to this system in that, because the NLMs are part of the
operating system, they run much faster than they otherwise might. They can
take advantage of operating system services (such as file I/O) without going
through intermediate drivers and link libraries. On the other hand, if the
application crashes or is otherwise poorly behaved, the operating system will
also crash (because the application and the operating system are one and the
same).

A few years ago, Novell sought to expand its presence in the workplace with
the acquisition of Quattro Pro and WordPerfect. Many in the industry believe
this was a serious tactical blunder, removing Novell’s focus from the network
arena, where it had always been the market leader, and allowing competitors,
particularly Microsoft, to make inroads. Novell eventually sold those products
to Corel, but by then, the damage had been done. Regardless, NetWare has a
large presence in the corporate arena and a strong suite of tools. An ironic side
benefit of NetWare’s market erosion is a relative abundance of talent to
support the product set.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

IBM LAN Manager

Once upon a time, IBM and Microsoft codeveloped LAN Manager. Unlike
NetWare, LAN Manager is not a dedicated operating system. It can run other
programs independent of the operating system. Coupled with OS/2 and various
DB2 tools, it forms a strong platform for shops with IBM mainframes. Never a
large player in the network arena, IBM nevertheless remains a healthy
company with a wide variety of tools. OS/2 itself has been unfairly maligned
for its lack of software products because it is capable of running a large subset
of Windows applications. Arguably, it is a more stable platform than some
Windows platforms (although probably not as stable as Windows NT itself).

Banyan Vines

Banyan’s product has never garnered as large a market share as it probably
should have, always operating in the shadow of other players in the
marketplace. Like Novell NetWare, Vines is a dedicated operating system.
Although it is a solid platform for file services, I am not aware of any major
database products that run on it.

Windows NT

The Microsoft juggernaut seems to roll on with Windows NT. The operating
system was developed to replace Microsoft LAN Manager, which was jointly
developed with IBM in the 1980s. Like Windows itself, NT did not enjoy
widespread acceptance for several years. NT version 3.51 seemed to have been
the right answer for organizations that began to embrace it as a viable network
platform. NT version 4 is a robust operating system, although arguably not as
powerful or scalable as Novell NetWare 4.x. In particular, the word among
network professionals is that Windows NT 4 seems to hit a wall at about 1,100
users. Likewise, its directory services are weak in comparison to Novell

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

NetWare’s. However, NT 5 (in beta as of this writing) seems to answer many
of these complaints.

Windows NT is a nondedicated server, meaning that other programs can run
along with the NOS itself. Microsoft traded some resource intensiveness
(Windows NT really needs more memory and CPU speed than most other
NOSs to run comfortably) against a high degree of stability. The operating
system spends a fair amount of CPU cycles enforcing integrity of operations.
For instance, it does not permit any program to directly address any hardware,
and it also prevents applications from writing to memory outside of their own
address spaces. Windows NT sports a solid set of graphical, if somewhat
complicated, tuning devices to maximize performance.

Reportedly, Windows NT represented 50 percent of all network server licenses
as of February 1998.

Where To Go From Here

This chapter has been a high-level overview of the nature and evolution of
client/server, an introduction to Visual Basic’s role in the network, and a
review of the underlying network architectures. The next two chapters deal
specifically with the database server portion of the network, whereas most of
the remainder of the book deals with Visual Basic’s role in the creation of
two-tiered and three-tiered client/server applications.

The heart and soul of client/server are, in fact, the database and database
access techniques. Therefore, if you are unfamiliar with database design, you
will want to read Chapter 2. If you are not familiar with SQL usage for
retrieving and updating the database, you will want to read Chapter 3.

Experienced database developers may want to skim Chapters 2 and 3 and
begin with Chapter 4, which is a high-level overview of Visual Basic and data
access. Many of the following chapters concentrate on specific techniques, and
Chapter 4 attempts to steer the developer to which of those techniques, such as
DAO, RDO, or ADO, is appropriate for his or her situation.

Many fine books are devoted to small subsets of the subjects discussed in this
chapter. My recommendation if you do seek out these texts is to find ones
written in the past few years to ensure that the most modern approaches are
reviewed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 2
Relational Database Management
Systems
Key Topics:

• Relational databases vs. RDBMSs

• How a relational database is organized

• Database integrity constraints

• Database design

• Data Definition Language

• Data Control Language

In this chapter, I guide you through the essentials of what is the heart and soul
of any client/server system: the database. Although a Visual Basic program
can run against almost any back-end database, it is the Relational Database
Management System (RDBMS) that brings the “server” to client/server. When
training students or corporate clients in client/server development techniques, I
stress that properly designing a database is 80 percent of the battle in
constructing and deploying a successful client/server application. With a
well-designed database, you have a good chance of deploying a successful
client/server application. On the other hand, if the database is poorly designed,
all the development skills in the world cannot create a robust, reliable
client/server application. Therefore, no skill is more important in client/server
development than properly designing a database.

A properly designed database accomplishes three essential things for the
client/server developer:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Through a properly normalized data schema, complete with
intelligently designed integrity constraints, the database can assume
much of the burden of validating basic business rules, such as requiring
that an order have a valid customer.

• By using the referential integrity tools made available by the database,
you minimize or eliminate altogether the chances of data corruption
problems.

• By moving data update, retrieval, and validation processing to the
server, you enhance application performance by minimizing network
traffic and by moving some of the intensive processing from the client
to the server (which, presumably, is a high-end machine optimized for
the load).

A Note About Object-Oriented Databases

New to the database scene in the past couple of years is the emergence of
object-oriented databases (OODs). An OOD does not store its data
referentially; instead, it employs object-oriented techniques to store and
access data as discrete objects. The technology is, as yet, immature and sales
are a tiny percentage of the overall database market. None of the major
database vendors offers a true object-oriented database, and it will be years,
if ever, before the OOD encroaches upon the more tried and true RDBMS.

Some vendors, most notably Oracle and Informix, have introduced
object-oriented extensions to their relational products. These are referred to
as hybrid databases. With a hybrid database, you can define certain columns
as containing objects and employ extensions to the database that
“understand” how to manipulate those objects. For instance, Informix and
third parties market Data Blades, which make it possible to store and
manipulate specific types of objects in a relational table. One vendor sells a
Data Blade that enables a table to store facial images and then search by
those images.

Unfortunately, hybrids tend to be slow in indexing and accessing the objects
that they store.

Recently, Sybase and IBM have both announced object-oriented extensions
to their database products.

In the following pages, I overview some of the popular relational databases,
discuss the theory of relational database design, and conclude with an
overview of SQL statements, which implement intelligent database design.

Relational Databases Vs. Relational Database
Management Systems

Before embarking on a survey of available relational database products, it is
important to draw a distinction between relational databases and relational
database management systems. The latter implies an engine that is running
independent of any client program.

Any database that organizes data in related tables and that can enforce those
relationships via referential integrity can lay claim to being a relational
database. The database engine manages the data and enforces the integrity
constraints. If there is no engine, the responsibility falls on the application
program to perform those roles.

Consider a Microsoft Access database that I call “demo”. It is unquestionably
a relational database. However, assume I put the database file on a server and
then access it from multiple client programs. You will see that there are
actually two files: demo.mdb is the actual database file (MDB stands for
Microsoft database file), and demo.ldb is a file used to manage record locking
(the LDB is for lock database file).

Now, suppose you want to see all the customers from California. Your
application generates an SQL statement that looks something like:

SELECT * FROM CUSTOMER WHERE STATE = 'CA'

Assume there are 50 customers from California on a table of 5,000 customers.
All 5,000 records are returned to your application, and the application itself
then reads through those records to find the 50 that you need. The application
receives 100 times as much data as required. It is easy to imagine how this
activity bogs down network performance, especially if 10, 50, or 500 client
programs all make the same types of requests.

This inefficient data processing occurs because the Access database is just a
file with no engine to process the data request.

Contrast this example with one involving an RDBMS, such as Oracle or
Microsoft SQL Server, which are true database engines. In this scenario, the
SQL request is sent to the RDBMS, which processes the request on the server.
The server sends back to your application only the 50 records that are required.
Network traffic is reduced by 99 percent.

The moral? A wolf in sheep’s clothing is still a wolf. A database might be
relational (such as Microsoft Access) or present an SQL front end (such as
dBase), but if it is not a relational database engine, it is not an appropriate
choice for client/server development.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Considerations In Selecting An RDBMS

As shown with the simple Microsoft Access illustration, your choice of
RDBMS can have a dramatic impact on both the performance and the
maintainability of your application. Choosing the RDBMS is then a critical
decision point in your overall client/server strategy.

It is easy to jump to the conclusion that—assuming money, hardware, and so
on are not an issue—you should simply purchase the most powerful engine on
the market. Unfortunately, things are seldom that clear-cut. The marketing
hype that passes for serious advertising from the various database vendors
doesn’t lend much light to the discussion either. Open any database magazine
and you can see ads from Sybase and Oracle both proclaiming how each
clobbers the other in side-by-side comparisons. Visit either vendor’s Web site,
and the same guidance is presented in more detail. In truth, the claims of all
the vendors can probably be substantiated; it is the assumptions each makes
about operating environments that renders one more powerful than the other in
one test versus another. In any case, the most powerful engine may also be the
most difficult to administer or it may simply be overkill for your organization.

In the following pages, I provide some general considerations in selecting an
RDBMS for your client/server environment. These considerations include:

• Network operating system

• Typical database usage

• Number of users and volume of data

• Database administration

• Database cost

• Vendor stability and reputation

Of necessity, it is not possible to reach any definitive conclusions because the

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

proper choice is highly dependent on each organization’s needs and
environment. Further, although I have, in fact, used most of the products that I
discuss in the next section (“A Survey Of Available RDBMSs”), I have not
used all of them, and any specific recommendations are likely to be somewhat
subjective.

Of course, your organization may have already deployed an RDBMS that is
serving you quite well. In that case, get a cup of coffee and then move on to
the next section.

Network Operating System

Perhaps the first consideration in choosing a database is the network operating
system (NOS) upon which it is to run. Few vendors support all server
operating systems, so if you are constrained to choosing from vendors whose
product runs on, say, OS/2, the field of viable candidates is automatically
reduced.

It is possible, of course, to run a different operating system for your database
server than you do for other portions of your network (and many organizations
do just that). However, my recommendation is to always keep the environment
as simple as possible. That recommendation includes avoiding running
multiple operating systems across the network if possible.

Along the same lines, you may have other environments with which you need
to integrate. If you need to run your client/server applications with mainframe
data, you might want to consider products that make this easier. IBM’s DB2
running on OS/2 is a popular choice for shops with this need. XDB Systems
also markets a capable database product that can run against DB2, IMS, and
VSAM data on the mainframe.

An additional consideration with your NOS arises with the subject of multiple
processors. Increasingly, high-end servers come configured with two, four, and
even eight processors. However, if the NOS is incapable of using the
processors, the database cannot use the processors. For instance, Novel
NetWare 3.1x runs quite comfortably on an Intel-based machine running dual
processors; it simply ignores the second CPU. NetWare 4.x does take
advantage of the additional processors. Assuming your NOS supports multiple
processors, your database may not (or you might need to tell the database to
use those processors).

Typical Database Usage

In general, database applications tend to fall into two categories: transaction
processing and decision support.

An online transaction processing (OLTP) system, such as an order-entry
application or a banking system, is typically transaction oriented. Often, larger
systems may need to process many transactions per second (TPS).

On the other hand, a decision support system (DSS) is typically a large
database upon which sits all or a large subset of corporate data, which people
analyze to make informed management decisions. The system may have many

thousands or millions of detail records that are queried and summarized but are
not typically updated. Executive information systems (EIS) and data
warehouses are examples of these types of applications. Either way, the needs
are quite a bit different than those for an OLTP system.

If you have a busy OLTP system, you might want to consider such factors as
how a given database performs record locking. Sybase, for instance, uses what
is called page-level locking—all records on a database page are locked when
an update is to occur. Oracle, on the other hand, performs row-level
locking—only those rows that are to be updated get locked. The record locking
has implications if several users are trying to update different records on the
same page. With the Sybase product, the users have to wait until the first user
has released the lock on that page. Microsoft SQL Server 6.0 performs
page-level locking, whereas SQL Server 6.5 does pseudo row-level locking:
The rows immediately before and after the row to be updated are also locked.
SQL Server 7.0 performs true row-level locking.

On the other hand, the nature of your data may be such that a page contains
few rows, which makes the issue of row-level versus page-level locking less
important.

If you are planning a DSS, you should consider how well the database handles
very large volumes of data. Most of the major vendors support some sort of
variation on massively parallel processing (MPP), where a long-running query
is executed in multiple threads to better handle the intensive querying and to
speed up processing.

Determining which database will best handle your needs for an OLTP or a
DSS is not an easy undertaking. My recommendation is to talk to peers who
have used the products in environments similar to your own. In addition, check
out the computer press for its independent benchmarking results. Lastly,
consider searching the Internet (but avoid the vendor’s own biased claims).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Number Of Users And Volume Of Data

Considering both the number of users and the volume of data actually goes
hand-in-hand with the prior discussion of database usage patterns. If you have
two users who need access to only a few thousand records, by all means,
consider a product such as Microsoft Access. If, on the other hand, you have
many thousands of simultaneous users chasing terabytes of data, you need to
examine the beefier databases such as Oracle, Sybase, Informix, Microsoft
SQL Server, and DB2.

If your needs are greater than what Access can satisfy but are perhaps less than
what a database such as Oracle warrants, you might want to consider Sybase
SQL Anywhere. My experiences with this product are that it can satisfy the
needs of up to 50 users in a moderately heavy OLTP environment. For low
volumes of data, you may be able to push the number of users to 100. For
moderately sized databases, it is a viable platform for a DSS but does not offer
the tools that an Oracle or Sybase SQL Server offers for massively parallel
processing.

Database Administration

My own subjective experience is that Oracle’s database engine is probably the
most powerful in a high-transaction environment. However, this power comes
at the expense of more complicated administration. To squeeze the best
performance out of a complex database product such as Oracle, the database
administrator (DBA) needs to monitor and refine a variety of operating
parameters, such as defining the frequency of checkpoints, partitioning the
data, and so on. (The particulars of database administration vary from database
to database and are beyond the scope of this book.) How much administration
is required also depends on the nature of the applications that the database
supports in your own organization.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Although the good news is that most of the vendors (including Oracle) are
simplifying administration, a poorly configured database yields poor
performance. Consider Microsoft SQL Server running on a Windows NT
server with 1GB of RAM. By default, SQL Server uses only the first 16MB of
RAM. A low-end RDBMS product that uses most or all available memory
performs much better than a high-end RDBMS that has not been configured to
take advantage of the available resources.

About Database Administration

In talking to two seemingly identical organizations about their experiences
with the “Brand X” RDBMS, you are likely to encounter two wildly different
reports on how well the database performs. As is true in so much else in life,
the database is only as good as its weakest link, and often, that weak link may
well be the DBA. Under most processing loads, a properly configured
environment should yield good performance with any of the major RDBMS
engines.

The environment includes:

• The server—The computer on which the database is running should
be a high-end machine loaded with plenty of memory and disk space
and possibly multiple processors. Don’t skimp on this critical piece of
the RDBMS performance puzzle. Similarly, use common sense when
configuring the database server. The RDBMS should normally be the
only software running on the server other than the operating system. Use
common sense when configuring the computer. For instance, spreading
the database over two 10GB disk drives yields better performance than
over one 20GB hard drive (because you have two heads reading and
writing data, which requires less head movement).

• The network—Data can only be sent to and received from the
RDBMS as fast as the network is capable of moving it. If you are
running a 10MB Ethernet network, consider moving to a switched
100MB Ethernet architecture. Your capacity will increase at least
tenfold. If the network is bogged down by too many users, performance
can degrade rapidly as a result of escalating packet collisions. (Refer to
my discussion of network architectures in Chapter 1.) Consider splitting
the network into smaller LANs connected via bridges. Place the
database server on that LAN where it will receive the most use (thus
minimizing traffic that has to traverse the bridges).

• The service model—This can be a critical source of performance
degradation, creating the illusion that the fault is with the RDBMS. I
discuss the service model in Chapter 1, but for purposes of this
discussion, placing the proper type of processing at the proper place on
the network can mean the difference between good performance and
poor performance.

• The database design—A poorly designed database can not only cause
potential data integrity problems, but it can also yield horrific
performance problems. The overuse and underuse of indexes both cause
undesirable results. An over-normalized design might force the database
to join together too many tables. An under-normalized design might

require the database to work too hard to locate the desired data or force
it to read through too many records to return the desired result set.

• The application data logic—The application (or user) can easily
throttle performance with poorly phrased queries that do not, for
instance, correctly specify table joins. Consider a department table that
has 50 rows and an employee table that has 500 rows. A list of
employees showing their departments should, of course, produce 500
records. If the tables are not properly joined, you might end up with
25,000 records instead! Now, consider a program that allows the
selection of an employee for maintenance. Inexperienced developers
invariably seek to present a drop-down list box containing all 500
employees. That means that each time the user wants to see one
employee, the database must return 500—hardly the purpose of
client/server. Worse, what if the company has 5,000 employees? You
can see where performance would, again, rapidly degrade through no
fault of the RDBMS.

• The RDBMS—The RDBMS itself can easily be so badly maintained
as to produce unbearable results when even minimal performance tuning
might yield improvements on the order of a 90 percent reduction in
response time. Study the tuning manual that comes with each database.
Periodically reorganize the database—a task that is similar to
defragmenting your hard drive. Ensure that the database is allowed to
use all of the resources (memory, disk, and so on) available. Update the
system statistics frequently (system tables maintained by the database
that give the query optimizer information about the types and volumes
of data that is stored on the tables).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Database Cost

Although I personally hate to see the cost of an RDBMS become a major
consideration, the reality is that some shops do have to live within certain
monetary constraints. A database engine such as Oracle might run into a
licensing fee of many thousands of dollars, whereas a product such as SQL
Anywhere might cost only several hundred dollars. It should be noted than
many vendors will wheel and deal on price negotiations.

Be careful when comparing prices. A visit to Oracle’s Web site shows you that
the licensing fee to run the RDBMS on a single server is $1,450 (at the time of
this writing). The fine print near the bottom of the page reveals that this is for
five concurrent users. Most organizations running Oracle have somewhat more
than five users.

When factoring costs, you need to consider the number of servers upon which
the database is to run, the maximum number of concurrent users, the
maintenance fee, and quite possibly a separate telephone support fee. The
maintenance fee is often 12 to 18 percent of the licensing fee annually.
Telephone support can easily run into thousands of dollars per year.

A final consideration in database cost is the so-called cost-of-ownership term
so often bandied about when discussing PCs. Above and beyond licensing,
maintenance, and support costs, you might want to consider that the hardware
requirements of the different RDBMS products differ (ignore the stated
minimum requirements and concentrate on the recommended configuration) as
do the internal support costs. A talented DBA can tremendously enhance the
performance of the RDBMS (while commanding a salary that would make the
corporate CEO blush).

Vendor Stability And Reputation

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

You might want to consider the financial stability of the RDBMS vendor. As
of this writing, Sybase was posting large losses and laying off 10 percent of
the company’s employees. There were also questions regarding Informix’s
financial results. Such news may be of concern in terms of a company’s
long-term viability (will they be in business five years from now?), the
organization’s ability to develop and improve the product, and its ability to
support the product. (Please note that although Sybase’s woes cannot be
construed as good news for any customers, I personally do not predict an
organization that large will go under. The Sybase product set is excellent and
the company continues to boast a top-notch technical development staff across
a diverse product line.)

A Survey Of Available RDBMSs

In the following section, I briefly mention some of the more popular RDBMSs
available, including:

• Microsoft Access

• Sybase SQL Anywhere

• Sybase Adaptive Server Enterprise (System 11)

• Oracle

• Informix

• Microsoft SQL Server

• IBM DB2

• XDB

Microsoft Access

As discussed earlier in this chapter, Microsoft Access is not truly an RDBMS.
However, it is a popular development back end and offers some fairly
sophisticated features, such as true database replication. On the other hand, it
does not offer a complete SQL implementation (see Appendix B for a
comparison of Jet SQL to ANSI SQL), and because it is not truly client/server,
its performance pales against even the least expensive of the true client/server
database engines. Nevertheless, because it is popular and because Visual Basic
offers easy support for Access, I use it in examples throughout the book.

Access Version 8 is bundled with Microsoft Office 98 Professional and is
available as a standalone product. However, you can use Visual Basic to write
to and read from Access databases even if you don’t own Access itself.

For more information on Microsoft Access, visit the Microsoft Web site at
www.microsoft.com/access/.

Sybase SQL Anywhere

Sybase SQL Anywhere was formerly known as Watcom SQL. (The product
was renamed when Sybase acquired Powersoft Corporation, which owned
Watcom.) Because it is both inexpensive and widely bundled with various
development tools, it is a popular RDBMS. The product is sophisticated in its

http://www.itknowledge.com/reference/standard/1576102823/ch02/www.microsoft.com/access/

implementation, has a complete implementation of SQL (I discuss the ANSI
SQL standard in Chapter 3), and offers full support for Transact-SQL. (T-SQL
is a dialect of SQL used by Sybase SQL Server and Microsoft’s SQL Server
6.5.) The product requires almost no administration but does not scale to the
enterprise level.

The current version of SQL Anywhere (as of this writing) is 5.5. It runs as
either a server or a standalone (single-user) RDBMS on Windows 95,
Windows NT, Windows 3.x, OS/2, MS-DOS, and NetWare.

For more information, visit Sybase’s Web site at www.sybase.com.

Sybase Adaptive Server Enterprise

Sybase Adaptive Server Enterprise (System 11) runs on Windows NT and on
various Unix platforms. Adaptive Server is an enterprise-level server offering
robust performance under a variety of configurations.

Despite the popular misconception that the relational database was pioneered
by IBM, it was actually Sybase that was first to market in the late 1970s. For
many years, Sybase was number two in sales (behind Oracle), but a reputation
for customer service woes and a couple of years of poor financial results led to
the company falling behind Informix in database sales volume. Still, Sybase’s
database server products are powerful, and the company enjoys a large
installed base of users.

Like its little brother, SQL Anywhere, Sybase Adaptive Server uses a dialect
of SQL known as T-SQL. Throughout various sections of the book, I present
examples using T-SQL.

Sybase has joined the move toward hybrid databases with the addition of Data
Stores to store and manipulate objects.

For more information, visit the Sybase Web site at www.sybase.com.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1576102823/ch02/www.sybase.com
http://www.itknowledge.com/reference/standard/1576102823/ch02/www.sybase.com
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Oracle

Oracle Version 8 runs on a wide variety of platforms, including OS/2,
NetWare, Windows NT, and Unix (including Sun Solaris, IBM’s AIX,
HP-UX, and SCO). A personal edition of Oracle runs on Windows 95/98.

Oracle has long enjoyed a reputation as the most powerful database on the
market with advanced features optimizing large volume data processing,
distributed data management, Web connectivity, and robust OLTP. Still, the
gap in processing capabilities between Oracle and its competitors has eroded
and perhaps disappeared under certain circumstances. Although Oracle was
once considered a pricey product, competition has driven the costs down.
Oracle has been the number one vendor for many years.

Whereas the two Sybase products offer extensions to SQL known as T-SQL,
Oracle uses a robust dialect known as PL/SQL. As with T-SQL, I also present
samples in this book using PL/SQL.

For more information, visit the Oracle Web site at www.oracle.com.

Informix

For years, Informix was a distant runner-up in terms of sales to the two giants,
Sybase and Oracle. In recent years, the Informix product line has grown in
sales until it is now solidly entrenched as the number two vendor of RDBMSs.

The Informix products scale well from the department to the enterprise level
and offer well-integrated Web connectivity options.

Informix sells versions of its enterprise server that run on most types of Unix
and on Windows NT.

For more information, visit the Informix site at www.infor-mix.com.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/standard/1576102823/ch02/www.oracle.com
http://www.itknowledge.com/reference/standard/1576102823/ch02/www.infor-mix.com

Microsoft SQL Server

Microsoft SQL Server was originally jointly developed with Sybase SQL
Server (now Sybase Adaptive Server Enterprise). SQL Server 6.0 was the first
large-scale departure from its Sybase roots. Version 6.5 saw major
performance boosts and Version 7 looks even better.

Unlike the other database offerings, MS SQL Server runs on Windows NT
only. Although that obviously might be limiting, it also offers some
advantages. Historically, the RDBMS engine has had to be written with a
separate layer to interact with the operating system, perform its own thread
management, and so on. Because MS SQL Server is written to run on only one
operating system, it can be more closely integrated with the operating system.

SQL Server has been rapidly gaining in popularity, although it probably has
yet to achieve parity in performance with the most powerful of the products
listed here. That performance issue might not be a consideration for your
organization if you are not attempting to connect several thousand users or
manage several terabytes of data.

Like the Sybase products, SQL Server uses Transact-SQL, although Microsoft
has begun moving in its own direction and away from the Sybase standard.
SQL Server probably offers the easiest-to-use administrative tools.

For more information, visit the Microsoft Web site at www.microsoft.
com/sql/.

IBM DB2

IBM’s relational database, DB2, runs on a wide variety of platforms, including
most types of Unix, Windows NT, OS/2, and Windows 95/98, as well as VAX
VMS and IBM MVS and VSE. Although in the past its network-level database
products have not fared well in comparison to the products of other vendors,
its latest version has tested well on Windows NT.

DB2 is of particular interest to those organizations that need a high degree of
compatibility or interoperability with their mainframe database.

For more information, visit the IBM Web site at www.ibm.com.

XDB

XDB Systems offers a well-done RDBMS that offers a high degree of
compatibility with IBM’s DB2 and, like DB2 on the network, would be of
interest to shops also running a mainframe. By itself, XDB is a capable
RDBMS. In addition, it has extensions that enable the querying of DB2 and
IMS databases and VSAM files on the mainframe (though VSAM files cannot
be updated). My own experiences with XDB have been positive, although I
feel it is probably not as powerful as the very top-end RDBMSs.

I am no longer nervous about the company’s long-term prospects because it
has announced its acquisition by Micro Focus, makers of COBOL tools for the
network. This is a logical pairing because Micro Focus tools have always

http://www.itknowledge.com/reference/standard/1576102823/ch02/www.microsoft. com/sql/
http://www.itknowledge.com/reference/standard/1576102823/ch02/www.microsoft. com/sql/
http://www.itknowledge.com/reference/standard/1576102823/ch02/www.ibm.com

integrated well with XDB. The choice of XDB is appropriate for shops
interested in leveraging legacy COBOL applications by migrating them to a
client/server environment.

For more information, visit XDB’s site at www.xdb.com.

Other Relational Databases

Space precludes the listing of all RDBMS vendors, even though I have
attempted to cover most of the major vendors. Any listing or failure to list a
given product should not, of course, be construed as a positive or negative
comment about a product.

Besides RDBMSs, other relational databases such as Lotus Approach might be
logical alternatives to Microsoft Access. Additionally, although not organized
relationally, front ends or ODBC drivers (I discuss ODBC in Chapter 3) allow
the access of other file formats in a relational manner. These formats and
products include Btrieve, dBase, FoxPro, Paradox, and so on. Any of these
may be suitable for smaller-scale development efforts.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1576102823/ch02/www.xdb.com
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Database Organization

A relational database, unlike sequential files, organizes all of its data in a
single file. Figure 2.1 illustrates a nonrelational and a relational design of a
database with customers and orders. Both cases have four indexes: two on the
customer data and two on the orders data. The nonrelational approach
illustrates how you might build the database with dBase files: There are a total
of six files with no true logical association between them. For instance,
nothing stops me from opening the ORDERS.DBF file and adding an order
even if no valid customer is associated with that order. Even worse, nothing
stops me from exiting to DOS and typing “DEL CUSTOMER.DBF”. After
doing so, I have two indexes serving no purpose and a whole lot of orders for
which I have no clue about the customers.

Figure 2.1 Nonrelational databases are typically a collection of un-associated
files. Relational databases contain all of their tables and indexes inside a single
file.

On the right side of Figure 2.1 is a single file managed by an RDBMS, such as
Microsoft SQL Server, containing the two files and four indexes. These files
are actually stored as tables. Tables and indexes are both stored as objects
within the database.

Tables

A database table is organized into rows and columns much like a spreadsheet.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-01.jpg',386,340)
javascript:displayWindow('images/02-01.jpg',386,340)

The columns correspond to fields in a sequential file. The rows correspond to
records. Figure 2.2 illustrates this with a simple implementation of a
Customer table. Cust_No represents a column, whereas John Smith
represents a row in a two-dimensional grid.

Figure 2.2 A relational database table is organized into columns and rows.

Every row in a table must be able to be uniquely identified. In other words,
there must exist something on each row in a table that is different from any
other row on that table. This aspect that makes a row unique is called a
primary key. On the Customer table, the Cust_No column is the primary key;
there can be one and only one customer 101, one and only one customer 102,
and so on.

A Note About Primary Keys

Technically, the RDBMS does not require you to ensure that each table has a
primary key. However, not having one defeats the whole purpose of
relational database design for reasons that will become apparent as we
continue our discussion.

A primary key is actually implemented as what is known as a unique index
by the RDBMS. A table may actually have multiple unique indexes. (In
addition to an employee number, you may also have a Social Security
number, which is also unique.) However, there can be only one primary key
on a table.

The primary key may actually be more than one column on the table. You
can, for instance, have an inventory table where the combination of the part
number and date purchased columns together form the primary key. Such a
key is known as a compound key.

It is customary but not required that the primary key columns be the first
columns on the table.

With a single table, the relational model offers no particular advantage over a
sequential file. However, you can expand upon the example to include another
table: Orders. Again, the table is organized into rows and columns as shown
in Figure 2.3. Notice the column containing the customer number. You can
begin to see where the “relational” in relational databases comes in. The power
of the database is achieved when rows and columns on tables are logically
constrained by values stored on other tables; in this case, the Cust_No value
stored on the Orders table must exist within the Customer table.

Figure 2.3 The second table, Orders, is related to the first table, Customer,

javascript:displayWindow('images/02-02.jpg',468,256)
javascript:displayWindow('images/02-02.jpg',468,256)
javascript:displayWindow('images/02-03.jpg',435,245)
javascript:displayWindow('images/02-03.jpg',435,245)

via the common column Cust_No.

Table Relationships

The RDBMS enforces the rule that the customer number on the order must
already exist on the Customer table through the use of referential integrity.
Specifically, you can create a foreign key on the Orders table that states that
the Cust_No column must relate to a key on the Customer table. In general,
the foreign key specifies that the values of a column (or columns) on a
dependent table must exist uniquely on a master table. The Orders table is
dependent on the Customer table because values on it must already exist in
the master table. Sometimes this relationship is called child-parent.

Figure 2.4 shows the relationship between the Customer table and the Orders
table with the foreign key.

Figure 2.4 The Customer and Orders tables with primary keys and a foreign
key enforcing their relationship.

TIP
Foreign Keys And Primary Keys
The foreign key on a child table is dependent on a key on the parent table. In
other words, the value stored in a foreign key column on a child table—such
as the Cust_No column on Orders—must exist on the parent table, in this
case, the Cust_No column on the Customer table.

Some databases require that the foreign key relate to the primary key of
another table. Others only require that the related key on the parent table be a
unique index. Remember that a primary key is itself a unique index.

If the related key on the parent table is, itself, a compound key, then the
foreign key must also be a compound key. The foreign key must be the same
number of columns as the related key on the parent table and each of those
columns must be the same data type.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/02-04.jpg',486,453)
javascript:displayWindow('images/02-04.jpg',486,453)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Database Integrity

When designing a database, it is important to remember that the foreign key is
always defined as a constraint on the child or dependent table and that table is
always part of a one-to-many relationship. I cover the details of this concept
under “Database Design” later in this chapter. However, for now, you should
understand that related tables are always related in a one-to-many manner. For
example, an examination of Figure 2.4 reveals that for any one customer, there
might be many orders. However, for any one order, there can only be one
customer. Wherever a one-to-many relationship exists, the table that is the
“many” end of the relationship is always the child table and there should
always be a foreign key defined to enforce that relationship. I review how to
create foreign keys on the database in “Data Definition Language” later in this
chapter.

I described a foreign key as constraining the values that a certain column can
contain on a table. This is but one type of constraint that the database can
enforce. A foreign key enforces referential integrity. Although databases differ
in their capabilities, in general, integrity constraints can be placed in three
categories:

• Referential integrity—Enforces relationships between two tables.

• Domain integrity—Enforces values that can occur in any column
across an entire table.

• User integrity—Enforces values that can occur in a column based
upon values on the same row.

Domain integrity and user integrity can be enforced using a variety of
constraint types:

• The primary key, as mentioned earlier, enforces the requirement that a
value uniquely identify a row on a table. This is an example of domain
integrity.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• A unique key requires that any value in a given row be unique within
that column. For instance, a Social Security number might be defined as
unique. A primary key is implemented as a unique key.

• A check constraint validates the contents of a column on a row at
either the domain or the user level. A row may be defined as Not Null,
meaning that the column is not allowed to be null. (Null is the absence
of any value at all and is not the same as an empty string. I discuss null
more thoroughly in Chapter 3.) You can also employ a check constraint,
which validates that a column’s values are absolutely restricted. For
instance, you can create a check constraint that requires salary to be
greater than zero. Because this rule applies to any row on the table, it is
also a domain integrity constraint. On the other hand, you might define a
check constraint, such as date of hire must be greater than date of birth
(to avoid problems with child labor laws, of course), that is dependent
on another column on the same row. This is an example of a user
integrity constraint.

I show the syntax for creating each type of constraint later in this chapter.

Data Types

Relational databases define each column to be a certain data type. Although a
number is really just a number regardless of what database is storing it, the
RDBMS vendors tend to differ somewhat in what they call those types. For
instance, what Oracle calls number Sybase and Microsoft call numeric.

Data types tend to fall into four categories:

• Character data

• Numeric data

• Date data

• Binary data

Character Data

Character data types can hold any alphanumeric values. These values are
usually referred to as strings or string literals. Even if the string happens to
contain a number, you cannot perform arithmetic operations on it.

The two main types of character data types are CHAR and VAR-CHAR.

A CHAR data type is a fixed-length field defined as follows:

Cust_LName CHAR (21)

If Cust_LName holds the value ‘Jones’, it right-pads the field with 16 spaces
to fill up the field. Fortunately, most RDBMSs do not require you to account
for this when searching for values. Typically, the database automatically trims
the longer of two search conditions:

SELECT * FROM Customer
WHERE Cust_LName = 'Jones'

In this example, the database automatically takes into account that the search
term ‘Jones’ is shorter than Cust_LName.

The VARCHAR data type (called VARCHAR2 by Oracle), as its name
implies, is a variable-length data type and looks like the following:

Cust_LName VARCHAR (21)

TIP
CHAR Vs. VARCHAR
There is some debate about which is the better data type to use. Certainly, the
CHAR data type can waste a lot of space in a database. This was an
important decision when disk space cost many dollars per megabyte.
However, disk space is cheap now and the database has to work harder to
find columns where variable-length data is used. It is difficult to say what the
performance is exactly, but I would speculate that the average database takes
a 10 percent performance hit if it employs all variable-length character types.

My recommendation is to use fixed-length CHAR data types for all but the
biggest columns (such as a column to record comments). If you do end up
using some VARCHARs, put those columns at the end of each row where
the performance penalty is minimized.

In this case, the column holds up to 21 characters, but if the name ‘Jones’ is
stored, it is only 5 characters long.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Numeric Data

Unlike character data, numeric data can take many forms and vary more from
RDBMS to RDBMS than other data types. In general, you will run into the
following data types (refer to your vendor’s documentation for any specifics or
differences in implementation):

• NUMERIC (S, P)—S stands for scope and P stands for precision.
Scope refers to how many digits the number is allowed to hold, and
precision refers to how many of those numbers are to the right of the
decimal place, as in the following example:

 Ord_Amount NUMERIC (11,2)

In this example, the largest number that can be stored is 999,999,999.99.
Even if your number has no digits to the right of the decimal place, you
can use only nine to the left of the decimal point. Thus, a column
defined as NUMERIC (4,4) can be no larger than 0.9999.

• INTEGER is a data type that holds a whole number from –32,768 to
+32,767. An UNSIGNED INTEGER is capable of holding positive
whole numbers from 0 to 65,536.

• LONG numbers can be any whole number of approximately negative
2.1 billion to positive 2.1 billion. As with the INTEGER data type, your
database may also support an unsigned variation, UNSIGNED LONG,
which holds a positive whole number of 0 to approximately 4.2 billion.

• FLOATING POINT, SINGLE, SINGLE PRECISION, DOUBLE,
and DOUBLE PRECISION are all variations on floating-point
numbers. A floating-point number can handle either real numbers or
irrational numbers (as well as whole numbers, of course). A real number
is any number that can be represented in a fixed number of decimal

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

places, such as 1.25. An irrational number cannot be represented in a
fixed number of decimal points. An example is 1/3, which is .333333…
(to infinity). The database stores these numbers in scientific format.
Single precision numbers (SINGLE or SINGLE PRECISION,
depending on your database) are usually 4 bytes long. Double precision
numbers are usually 8 bytes long, effectively making them able to
handle a much larger range of numbers.

Number Storage On The Database

Although you and I represent numbers decimally—that is, using what is
called base 10—computers store numbers in binary format using base 2. If a
number is stored in 2 bytes, there are a total of 16 bits with possible values of
0 or 1. Therefore, the largest possible number of values that can be
represented without some sort of encoding algorithm is 216 or 65,536. With
signed numbers, one bit is reserved for the mantissa to indicate a negative or
positive number, reducing the potential number of values to 215. Thus, a
signed integer field stored in 2 bytes has a range of –32,768 to + 32,767.
Even in an 8-byte field, there can only be 264 possible values.

Computers use what is the known as the IEEE format to store floating-point
numbers in scientific format to get around this limitation. Although this does
not allow the storage of an infinite range of numbers, it does allow the
computer to approximate very large and very small numbers with a high
degree of accuracy.

Scientific formats for numbers consist of three parts: the root, the letter E,
and the exponent: 144.34267E+4. In this example, the exponent +4 indicates
that the decimal point should be moved four places to the right: 1443426.7.
An exponent of –4 would indicate that the decimal point should be moved
four places to the left, yielding the number .014434267. The DOUBLE data
type generally supports an exponent of plus or minus 308, which
accommodates the storage of a very large or very small number in a compact
manner.

Date Data

Dates are encoded on the database as numbers and are, therefore, limited in
their range. Oracle’s DATE data type, for instance, has a range of 1 January,
4714 BC to 1 January, 4712 AD. The major RDBMSs are generally Year 2000
compliant. However, you should consider that your front-end development
language might not support the same range of dates. Visual Basic, for instance,
has a range of 1 January, 100 to 31 December, 9999.

Inputting dates into the database can sometimes be a chore. The format of the
date that the database expects is usually a startup option (that is, it is specified
as an optional parameter when starting the database engine on the server).
Usually, you can override this setting in an individual session by using the
SET command. Oracle’s default date format is:

INSERT INTO…

VALUES ('18-Dec-98')

Sybase, on the other hand, allows dates to be entered as either ‘1998-12-18’
(December 18, 1998) or ‘1998/12/18’. To alter the default format, you can
specify SET OPTION Date_Order ‘DMY’, which then causes dates to be
interpreted in day, month, and year order.

Should You Store Objects In The Database?

Assume you are building a database for a legal firm handling many legal
documents, such as contracts and wills. You might want to store those
documents on the database where it is easy to associate them with specific
clients. The down side, of course, is that it makes each row on the database
very large, which could impact performance.

An alternative is to simply store a string with the path and name of the
document, such as “\DOCUMENTS\CONTRACTS\J819980347.DOC”. The
down side of this approach, however, is that there is no longer any integrity
constraint preventing that document from being moved from the
\DOCUMENTS\CONTRACTS directory or even from being deleted.

The choice depends on your needs, and you need to carefully evaluate the
pros and cons of either approach. However, if you do decide to store the
object directly in the database, make it the last column on your table where it
will have the least impact on performance.

Binary Data

Generally, the only time you will need to store binary data is when you want to
embed objects such as bitmaps or word processing documents into the
database. You accomplish such a task with the BLOB (Binary Large Object)
data type. Although some RDBMSs are adding object-oriented extensions to
automatically handle these objects (refer to “A Note About Object-Oriented
Databases” earlier in this chapter), you generally need to plan in advance how
you will display and manipulate this type of data.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Database Design

The key to a solid client/server application is a solid database design. Two
approaches have a considerable amount of overlap. Entity-relationship
modeling seeks to identify entities, provide a unique identifier for each,
determine relationships between those entities, provide a method for enforcing
those relationships, and then assign attributes to those entities. This approach
provides a logical design of the database where entities map to tables and
attributes map to columns. The other approach is database normalization. This
approach seeks to take an existing design and validate it against a number of
design guideline “rules” to eliminate processing anomalies. You accomplish
this task by reassigning columns to existing or new tables.

Although entire books are written on the theory and practice of database
design, I provide an overview of the essentials in the next few pages.

Entity-Relationship Modeling

With entity-relationship modeling, you seek to identify those entities that
represent a business and eventually map them into a physical database design.
Figure 2.5 shows a graphical representation of the process.

Figure 2.5 Summary of the entity-relationship modeling process.

Let’s assume that we are modeling a simple college. The first thing to do is

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/02-05.jpg',216,693)
javascript:displayWindow('images/02-05.jpg',216,693)

identify the business entities. An entity is something physical with a unique
identifier. If we were modeling a mail-order company, typical entities would
be Customers, Orders, Items, and so on. For our example, we have Students
and Courses. Because an entity must be uniquely identifiable, we assign a
primary key to each one and draw them on a piece of paper, as shown in
Figure 2.6.

Figure 2.6 Step 1 of the modeling process.

Next, for each pair of entities, we determine whether there is a relationship
between the two. In this case, Students and Courses are indeed related.
Therefore, we draw a line to represent that relationship, as shown in Figure
2.7. In our mail-order company, we would have determined that Customers are
related to Orders (because customers place orders) and that Orders are related
to Items (because items appear on orders) but that Customers are not related to
Items. It might be helpful to place some wording on the drawing to describe
how the two entities are related.

Figure 2.7 Step 2 of the modeling process.

The next step is to determine the nature of the relationship. To do this, you
need to ask yourself two questions for each related pair of entities: For each
occurrence of the first entity, how many occurrences might there be of the
second entity? In addition, for each occurrence of the second entity, how many
occurrences might there be of the first entity? Using our example, for each
occurrence of Students, how many occurrences of Courses might there be? If
there can be only one occurrence of Courses per occurrence of Students, draw
a single arrowhead next to the Courses entity. If there can be more than one,
draw two arrowheads. If there can be zero occurrences of Courses for each
occurrence of Students, also draw a 0 on the line just before the arrowheads. In
our example, a student can take zero, one, or more than one course. For any
given occurrence of Courses, how many occurrences of Students might there
be? For purposes of this exercise, we will assume that it can be one or many
but not zero. The result is shown in Figure 2.8. When you have double arrows
at each end, the relationship is called a many-to-many relationship. The 0
drawn at the Courses end of the relationship is called a conditional
relationship.

Figure 2.8 Step 3 of the modeling process identifies the nature of the
relationship between the two entities.

You are not permitted to have many-to-many relationships in a referential
relationship. Therefore, you need to resolve this problem by creating a logical
entity called an assignment entity or a relationship entity. Instead of relating
the students and courses to each other, relate them each to the new entity,
which we call Student_Courses. Because every entity must have a primary

javascript:displayWindow('images/02-06.jpg',418,128)
javascript:displayWindow('images/02-06.jpg',418,128)
javascript:displayWindow('images/02-07.jpg',438,137)
javascript:displayWindow('images/02-07.jpg',438,137)
javascript:displayWindow('images/02-08.jpg',451,122)
javascript:displayWindow('images/02-08.jpg',451,122)

key, we assign one to the Student_Courses entity. Whenever you create a
relationship entity, its primary key is always a combination of the primary
keys of the two other entities—in this case, Stud_ID and Course_ID. A
primary key that consists of more than one item is called a compound key. The
relationship entity always has a one-to-many relationship with both of the
original entities, and the new entity is always at the many end of the
relationship (it is, therefore, the child entity). The revised diagram is shown in
Figure 2.9.

Figure 2.9 Step 4 of the modeling process resolves any many-to-many
relationships by creating relationship entities.

Next, you need to assign foreign keys to enforce the relationships between the
tables. Remember that a foreign key means that for each occurrence of a child
entity, there must be a corresponding value in the parent entity. In
entity-relationship modeling, the foreign key of the child table always
corresponds to the primary key of the parent table. Also, remember that
wherever a one-to-many relationship occurs, there is a foreign key
relationship. Figure 2.10 shows two foreign keys in the Student_Courses
entity. The Stud_ID that appears in the Student_Courses entity is a foreign key
referencing the Students entity.

Figure 2.10 Step 5 of the modeling process assigns foreign keys to enforce
referential integrity rules.

The last step is to assign attributes, which are things that describe the entities.
The attributes always include the primary key and any foreign keys.
Sometimes, there is room to assign attributes on the same drawing as the
relationship diagram, but typically, it is done on a separate piece of paper
using a matrix as shown in Figure 2.11.

Figure 2.11 Step 6 of the modeling process assigns attributes to each of the
entities.

With the output of the entity-relationship modeling process, you have the
information that you need to create a physical database design from the logical
one (as represented by the final model). Entities become tables, attributes
become columns, and primary and foreign keys are identified. However, you

javascript:displayWindow('images/02-09.jpg',480,306)
javascript:displayWindow('images/02-09.jpg',480,306)
javascript:displayWindow('images/02-10.jpg',468,298)
javascript:displayWindow('images/02-10.jpg',468,298)
javascript:displayWindow('images/02-11.jpg',494,469)
javascript:displayWindow('images/02-11.jpg',494,469)

should first validate your database design by normalizing it. This process is
described in the next section.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Database Normalization

There is a lot of overlap between the entity-relationship modeling process
discussed in the last section and the database normalization process discussed
in this section. It is quite conceivable that you can properly design a database
using either approach alone. However, I don’t recommend it because each
approach has advantages that the other doesn’t. The entity-relationship
modeling process is particularly well suited for identifying database integrity
constraints, although it offers little help to ensure that attributes are assigned to
the proper entities. Database normalization seeks to do just this—verify
attribute assignment by the application of standardized “rules.”

We do this by comparing our design to a series of normal forms. We say that
our database is fully normalized when it is in third normal form. Each normal
form seeks to eliminate data redundancy and to insert, update, and delete
anomalies. In terms of database operations, an anomaly is an action that either
produces an undesirable effect or prevents us from performing a desired action
in the database. I discuss these anomalies throughout this section.

For purposes of illustration, I use a simplified order-entry system. The
order-entry system has the following pieces of information to be stored in the
database:

ORDERS
Ord_No
Ord_Date
Cust_No
Cust_Name
Cust_Address
Cust_City
Cust_State

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Cust_Postal_Code
Item_No
Item_Desc
Item_Qty
Item_Price

Further, I make the assumptions that a customer can place any number of
orders, that any given order has only one customer, and that an order can be
placed for any number of items. (In other words, a customer can call and
purchase a number of different items all on the same order.) However, any one
item can appear on the order only once.

To begin, we need to assign a primary key to our present design. We will call
the primary key Ord_No.

First Normal Form

First normal form, sometimes abbreviated as FNF or 1NF, states that there can
be no repeating groups of data. A repeating group of data is an item that can
appear more than once in a row of data. For instance, because an order can be
placed for multiple items, the columns Item_No, Item_Desc, and so on form a
repeating group. The insert and update anomalies here are intuitively obvious:
With our present design, there is no way for a customer to order more than one
item.

To resolve a first normal form violation, you must move the repeating group to
a new table. The primary key of the new table is a combination of the primary
key of the first table (in this case, Ord_No) and a key that uniquely identifies
the repeating group (in this case, Item_No). Our revised design looks like the
following:

ORDERS ORDER_ITEMS
Ord_No (PK) Ord_No (PK)
Ord_Date Item_No (PK)
Cust_No Item_Desc
Cust_Name Item_Qty
Cust_Address Item_Price
Cust_City
Cust_State
Cust_Postal_Code

Unfortunately, we cannot stop here because we have some anomalies. First, we
have an update anomaly in that we cannot add an item to the database unless
there is an order for that item (because the item number and item description
are not recorded until there is a row in the ORDER_ITEMS table). Second is
an update anomaly: If an item’s description changes, it must be updated on
every single order for that item. Third is a delete anomaly: If an order is
deleted, the item’s description is deleted as well.

Therefore, we need to move on to second normal form.

Second Normal Form

Second normal form, usually abbreviated as SNF or 2NF, states that we can
have no partial-key dependencies. A partial-key dependency is a column that is
dependent on only part of the primary key. To determine whether we have any
second normal form violations, we examine all tables with compound keys (in
this case, the ORDER_ITEMS table). An examination of the table shows that
Item_Desc is dependent on Item_No in the primary key but not on Ord_No.
In other words, an item’s description changes if the Item_No is different but
not if the Ord_No is different.

To resolve this problem, we move the partial-key dependencies to another
table whose primary key is the partial key from the original table (in this case,
Item_No). Our new design looks like the following:

ORDERS ORDER_ITEMS ITEMS
Ord_No (PK) Ord_No (PK) Item_No (PK)
Ord_Date Item_No (PK) Item_Desc
Cust_No Item_Qty
Cust_Name Item_Price
Cust_Address
Cust_City
Cust_State
Cust_Postal_Code

This resolves our insert anomaly from the first normal form because we can
now insert a new item into the database even if there are no orders for it. It also
resolves our update anomaly because we now have only one row to update if
an item’s description changes. Finally, we have resolved our delete anomaly
because deleting an order no longer deletes the associated items.

However, we still have anomalies. We have an insert anomaly in that we can’t
add a customer to the database unless that customer places an order. We have
an update anomaly in that if we need to change the customer’s name or city,
we have to update every order that customer has placed. We have a delete
anomaly in that if we delete an order, we also delete the customer.

To resolve this, we move on to third normal form.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Third Normal Form

Third normal form, usually abbreviated TNF or 3NF, states that there can be no non-key
(or intra-data) dependencies. In other words, every column must be dependent on the
primary key and not on another column that is not the primary key. In our example,
customer name, address, city, and postal code are all dependent on the customer number
and not the order number.

To resolve this, we have to move the non-key dependencies to a new table whose primary
key is that non-key column on which the columns were dependent (in other words, the
Cust_No column). We also leave that non-key column in the original table.

Our new design now looks like the following:

ORDERS ORDER_ITEMS ITEMS CUSTOMERS
Ord_No (PK) Ord_No (PK) Item_No (PK) Cust_No (PK)
Ord_Date Item_No (PK) Item_Desc Cust_Name
Cust_No Item_Qty Cust_Address
 Item_Price Cust_City
 Cust_State
 Cust_Postal_Code

We are now in third normal form.

Normally, you can stop at third normal form and conclude that your database is fully
normalized. There are actually other normal forms: Boyce-Code normal form, fourth
normal form, and fifth normal form. These normal forms are used for rare circumstances,
such as resolving circular references, and nearly always indicate a totally inappropriate
data model. In my 15 years of working with relational databases, I have never needed to
consider anything beyond third normal form.

Sometimes, you need to step back and examine the design with a critical eye toward
performance. If you see that you are going to end up having to join too many tables, you

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

might want to consider selectively denormalizing back to second or first normal form. My
recommendation is to build the database in third normal form, load it with some sample
data, and then run some benchmark tests against it to see if you have any performance
bottlenecks. If you do, examine those bottlenecks and decide if they warrant
denormalization.

Database Design Summary

Database design is part science, part art, and part experience. I provided you with two tools
that, although either will work alone, I urge you to use in tandem to double-check your
design. A lot of the design work is simply common sense, and you may well find that as
you put together a database design, it is already in first, second, or third normal form.
However, go through the steps of both entity-relationship modeling and database
normalization anyway to confirm your design assumptions. Then, compare the design to
the output of your system, the reports and screens. Make sure that you have identified the
correct data elements and that you have not introduced a performance nightmare.
Regarding the former, if you find that you have missed data elements that need to be
captured and stored, add them into the design and repeat the entity-relationship modeling
and the database normalization processes. If you find that you need to join four or five
tables frequently, especially in the online environment, consider denormalizing your
database.

Once the database design is in place, it is time to create the database, which is the subject
of the next section.

Data Definition Language

Data Definition Language (DDL) is one of three parts of SQL. I discuss Data Control
Language (DCL) later in this chapter and Data Manipulation Language (DML) in the next
chapter.

DDL is the language we use to create and modify objects in the database. Objects are
tables, indexes, keys, and so on.

Before proceeding, it is important to understand the concept of ownership. When you log
in to the database, you have a user ID. If you create a table, your user ID is considered the
owner of that table. Every object’s name consists of two parts—the owner name followed
by the table name:

Mike.EMPLOYEE

In this example, Mike is the user ID that created the table EMPLOYEE. If you issue any
kind of SQL statement against an object such as a table and omit the owner name, the
database assumes your ID is the owner. Thus, if you perform a SELECT against the
EMPLOYEE table without prefixing it with the owner, and your ID is Jane, SQL
translates your statement to:

SELECT...
FROM Jane.EMPLOYEE

If there is no Jane.EMPLOYEE or if you do not have permission to access the table, SQL
returns an error message similar to “object not found.”

DDL consists of three statements: CREATE, ALTER, and DROP. For purposes of this
discussion, the next three sections deal with using these statements to work with tables.
Following that, I discuss other database objects such as indexes and keys.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

CREATE TABLE

The CREATE TABLE statement has the syntax:

CREATE TABLE TABLE_NAME
(col_name DATATYPE [NOT NULL],
 col_name ...)

Following CREATE TABLE, specify the name of the table. Inside
parentheses, list the columns separated by commas. After each column name,
list the data type and, optionally, NOT NULL if the column is not allowed to
have a null value.

The syntax to create the EMPLOYEE table that I use throughout the
remainder of this book is as follows:

CREATE TABLE EMPLOYEE
(Emp_No SMALLINT NOT NULL,
 Emp_LName VARCHAR (21) NOT NULL,
 Emp_FName VARCHAR (15),
 Emp_SSN CHAR (9),
 Emp_DOB DATE,
 Emp_Hire_Date DATE NOT NULL,
 Emp_Term_Date DATE,
 Emp_Salary NUMERIC (9,2),
 Emp_Dept_No SMALLINT,
 Emp_Mgr_ID SMALLINT,
 Emp_Gender CHAR (1),
 Emp_Health_Ins CHAR (1),
 Emp_Dental_Ins CHAR (1),
 Emp_Comments VARCHAR (255))

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

TIP
About The Tables
Throughout this book, I use a series of tables, including the EMPLOYEE
table here. Appendix A contains the syntax to create all of these tables along
with primary keys, foreign keys, and so on. Because there are small
differences between different databases, the CD-ROM contains these
statements in RDBMS-specific directories. For instance, the Oracle
CREATE statements are in the directory \SAMPDATA\ORACLE. If your
database is not included, it is highly likely that one of the supplied syntax
variations will work just fine. Otherwise, the modifications should be simple.
Additionally, the CD-ROM includes the INSERT statements needed to
create the data.

You can optionally specify various table constraints such as primary keys at
the same time you create the table. The following syntax is for Sybase SQL
Anywhere, but if you change the line Emp_Salary NUMERIC (9,2) to read
Emp_Salary NUMBER (9,2), it will work with Oracle as well:

CREATE TABLE EMPLOYEE
(Emp_No SMALLINT NOT NULL,
 Emp_LName VARCHAR (21) NOT NUll,
 Emp_FName VARCHAR (15),
 Emp_SSN CHAR (9),
 Emp_DOB DATE,
 Emp_Hire_Date DATE NOT NULL,
 Emp_Term_Date DATE,
 Emp_Salary NUMERIC (9,2),
 Emp_Dept_No SMALLINT,
 Emp_Mgr_ID SMALLINT,
 Emp_Gender CHAR (1),
 Emp_Health_Ins CHAR (1),
 Emp_Dental_Ins CHAR (1),
 Emp_Comments VARCHAR (255),
CONSTRAINT Pk_Emp_Id PRIMARY KEY (Emp_No),
CONSTRAINT Fk_Emp_Dept FOREIGN KEY (Emp_Dept_No)
 REFERENCES DEPARTMENT (Dept_No))

This syntax presupposes that the table DEPARTMENT already exists. If it
doesn’t, you need to create that table first. When you create tables and add
constraints with the same code, figuring out which table needs to be built first
can get complicated. I recommend that you create all your tables first and then
add the constraints later with ALTER statements.

ALTER TABLE

The ALTER TABLE command changes a table’s structure in some way.
Exactly what you can change and when you can change it is somewhat
dependent on the exact RDBMS. However, you can generally add a column at
any time using the following syntax:

ALTER TABLE EMPLOYEE
ADD Emp_Maiden CHAR (21) NOT NULL

This example adds a column named Emp_Maiden with a data type of CHAR
(21). It is specified NOT NULL. The column is always added to the end of the
table. You cannot, unfortunately, delete a column.

You can add constraints to a table using syntax similar to the following:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Pk_Emp_Id PRIMARY KEY (Emp_No)

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Fk_Emp_Dept FOREIGN KEY (Emp_Dept_No)
REFERENCES DEPARTMENT (Dept_No)

This example adds a primary key to the EMPLOYEE table and a foreign key
that references the Dept_No column in the DEPARTMENT table. Note that
many databases assume the primary key when you don’t specify the column
name on the parent table. In other words, the following statement causes SQL
to assume that the primary key of the DEPARTMENT table is being
referenced:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Fk_Emp_Dept FOREIGN KEY (Emp_Dept_No)
REFERENCES DEPARTMENT

Some databases allow you to modify the definition of an existing column as
long as the currently stored data in that column does not violate the new
column definition. For instance, you can specify a column as NOT NULL
even if it was not originally defined that way, as long as there are no null
values already stored in the column:

ALTER TABLE EMPLOYEE
MODIFY Emp_Gender NOT NULL

DROP TABLE

The DROP TABLE command deletes a table and all of its data from the
database. Also dropped are all integrity constraints and permissions (I discuss
permissions under “Data Control Languages” later in this chapter). The syntax
is:

DROP TABLE EMPLOYEE

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Indexes

The database allows you to add indexes on one or more columns of any table. The
indexes may be unique, meaning that the index does not permit duplicate, or non-unique,
values. You can also use a unique index as a constraint to restrict the values in a column
on a table. For instance, you might want to add a unique index on the Social Security
number of an employee table.

The syntax to create an index is as follows:

CREATE [UNIQUE] INDEX INDEX_NAME ON TABLE_NAME
 (col_name, col_name …)

The TABLE_NAME must be any valid table name. The col_name must be a valid
column on that table. If more than one is listed, the column names must be
comma-delimited. The following examples add a unique index on the Emp_SSN column
and a non-unique index on the Emp_LName and Emp_FName columns:

CREATE UNIQUE INDEX IDX_SSN ON EMPLOYEE (Emp_SSN)

CREATE INDEX IDX_NAME ON EMPLOYEE (Emp_LName, Emp_FName)

Most databases allow you to create one clustered index per table. With a clustered index,
the rows are arranged in the same order as the index, which speeds up retrieval. Because
the syntax for creating clustered indexes varies greatly from database to database, check
your RDBMS documentation.

You will want to use indexes judiciously. They can speed up database operations
tremendously when you often access data in a certain manner. For instance, if you need
to list employees in last name, first name order, an index tremendously speeds up
retrieval time. On the other hand, indexes need to be maintained. If you update a table on
the database, you must update all the indexes on that table as well. Thus, you want to

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

only use indexes where they are needed.

TIP
Indexes And The Query Optimizer
All of the RDBMSs have a built-in query optimizer. When you issue a query against the
database, the optimizer attempts to determine the most efficient way of fulfilling the
request. If indexes are available, it attempts to use them. However, if a column has only
three or four discrete values (for example, the Emp_Gender column has only two values:
F and M) it is actually more expensive to use the index than to ignore it. Fortunately,
most modern query optimizers usually see this and don’t use the index. Even so, you
should consider the nature of the data in the columns that you are thinking about
indexing.

Integrity Constraints

In the previous discussion of CREATE TABLE and ALTER TABLE, I presented some
sample syntax on creating primary key and foreign key constraints. Different RDBMSs
have some variance in how to create these constraints, and most allow you to create
constraints in a variety of different manners. The syntax that I presented is fairly generic
and works on most RDBMSs. For other options, consult your RDBMS documentation.

A couple of notes are in order. Consider the following statements, which add three
constraints to the EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Pk_Emp_Id PRIMARY KEY (Emp_No)

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Fk_Emp_Dept FOREIGN KEY (Emp_Dept_No)
REFERENCES DEPARTMENT (Dept_No)

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Ch_Gender CHECK (Emp_Gender IN ('M','F')

The first example adds a primary key constraint to the table, forcing the Emp_No column
to be a unique identifier for the table. The second adds a foreign key constraint, requiring
that the value stored in Emp_Dept_No be a valid value in the Dept_No column on the
DEPARTMENT table. Because the Emp_Dept_No column was not defined as NOT
NULL, the column may also contain null values. (This is an example of a conditional
foreign key constraint; it actually says that if the value is not null, it must be a valid value
from the parent table.)

The third example is an example of a check constraint, which is not supported by all
RDBMSs. A check constraint restricts the values of the columns by providing an SQL
function. In this case, it specifies that gender must be ‘M’ or ‘F’. The constraint could
also reference another column on the same row, as in the following example:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT Ch_Hire_Date CHECK (Emp_Hire_Date > Emp_DOB)

This example requires that hire date be greater than date of birth. You cannot use an SQL
select in a check constraint. When a check constraint references another column on the
same row, it is called a user integrity constraint. When it provides an absolute check

(such as being only ‘M’ or ‘F’ without regard for other columns on the row), it is called a
domain integrity constraint.

Generally, you do not need to provide a constraint name. If you do not, the database
generates one. My recommendation is that you do provide a name so that any messages
from the database are meaningful. For instance, if you attempt to set Emp_Gender =
‘X’, the database responds with a message similar to “Update Failed - Integrity
Constraint: CH_GENDER”.

If you elect not to name the constraint, you should also omit the CONSTRAINT
keyword, as in the following example:

ALTER TABLE EMPLOYEE
ADD CHECK (Emp_Gender IN ('M','F'))

Views

A view is an SQL SELECT permanently stored on the database. A view can be
convenient for your users because it helps them avoid typing complicated queries. It can
also be used to show a user a portion of the table without revealing the entire underlying
table. The following example creates a view on the EMPLOYEE table that allows users
to see information such as name but not salary:

CREATE VIEW EMPNOSAL AS
SELECT Emp_No, Emp_LName, Emp_FName, Emp_Dept_No, Emp_Mgr_ID
FROM EMPLOYEE

To use the view, select from it as though it were a table:

SELECT *
FROM EMPNOSAL
ORDER BY Emp_LName, Emp_FName

A view is not a copy of the data—just a stored query. Also note that most databases allow
you to update through a view, as in the following example:

UPDATE EMPNOSAL
SET Emp_Dept_No = 200
WHERE Emp_No = 100

In the example, the employee’s department number was updated (I discuss the syntax for
the UPDATE command in Chapter 3). Because the view EMPNOSAL does not contain
the Emp_Salary column, the user can’t update salary information.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Triggers And Stored Procedures

A trigger is a small program that is stored on the database and defined to run
automatically as a result of a database action, such as an insert or update of a
certain table. The program consists of SQL statements plus RDBMS-specific
extensions. For instance, a trigger written for an Oracle database is created
using PL/SQL.

A stored procedure is similar to a trigger except that it runs when called by a
trigger, another stored procedure, or your program.

The advantage of triggers and stored procedures is that they can move a good
deal of business logic onto the server. For example, you might want the ZIP
code to be validated every time an address is updated. This is an ideal
candidate for a trigger that is tied to the address table and defined to run any
time a row is updated or inserted. Implementing this rule as a trigger both
reduces network traffic and relieves the client program of the burden of
performing this edit.

Because each RDBMS uses different SQL dialects, the syntax for triggers and
stored procedures is highly variable. Nevertheless, later in the book I introduce
some examples to show how triggers and stored procedures are used by your
Visual Basic programs.

Data Control Language

Data Control Language (DCL) consists of two commands that control who has
access to what objects on the database. By definition, the database
administrator (DBA) has authorization to all objects. Beyond that, if you want
to give another user access to an object that you created, you must specifically
grant him or her permission.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The two commands used are GRANT and REVOKE. For a user to have
access to the database, he or she must first be granted connect privileges:

GRANT CONNECT TO user_ID IDENTIFIED BY password

This syntax creates a new user and password. Assuming the user ID is Jane, to
alter the password, use the following syntax:

GRANT CONNECT TO Jane IDENTIFIED BY new_password

To grant access to individual objects (such as a table), you have to grant a
comma-delimited list of permissions to a comma-delimited list of users on one
table at a time:

GRANT SELECT, UPDATE, DELETE
ON EMPLOYEE
TO Tom, Dick, AND Harry

To grant all permissions, use GRANT ALL PERMISSIONS. To grant
permissions to all users, specify PUBLIC instead of a user list:

GRANT SELECT
ON DEPARTMENT
TO PUBLIC

You can selectively revoke permissions, but you cannot revoke access from
yourself. The syntax to revoke privileges is similar to the following:

REVOKE UPDATE, DELETE
ON EMPLOYEE
FROM Dick, Harry

In this example, we have taken away update and delete privileges from users
Dick and Harry. Their select privileges remain.

Most databases allow you to create groups and assign users to groups. You can
then grant permissions to and revoke permissions from the groups. This
technique helps simplify administration.

Where To Go From Here

This chapter covered the theory of relational databases from their history
through the theory of database design to actually implementing that design.
From here, you will want to read the next chapter, “An Introduction To SQL
Data Manipulation Language.” Data Manipulation Language (DML) is where
you will spend most of your SQL time, so it is a critical concept to learn. Also,
you might want to look at Appendix A, where I provide the syntax used to
create the sample databases in this book as well as the syntax for the
constraints. In Appendix B, I discuss the key differences between Jet SQL and
ANSI SQL, which is a concern both for developers using Access databases
and VB developers using Microsoft Jet in conjunction with DAO.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 3
An Introduction To SQL Data
Manipulation Language
Key Topics:

• The definition and purpose of SQL

• Data Manipulation Language

• Scalar and aggregate functions

• Grouping data and the HAVING clause

• Joining tables, including self-joins

• SQL subqueries

• Performance considerations in tuning an SQL statement

In Chapter 2, I discussed the concept of the relational database, mentioning at
the same time that SQL is used to access and manipulate the database. I also
discussed the theory of relational database design and showed you the SQL
syntax used to implement that design.

In this chapter, I guide you through the essential concepts of using Structured
Query Language (SQL) to access and manipulate your database. I need to
stress again that SQL is not a database nor does it necessarily imply the
existence of a back-end relational database engine. All RDBMSs use SQL as
an interface (to extract data or to create tables, for example), but other,
non-relational data models such as dBase may offer SQL as an access
language. Further, although a product such as Microsoft Access is a fully
relational database, it is not a separate database engine; the application
program is responsible both for creating the data request and for creating the

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

query result. (I expanded upon this in Chapter 2 when I defined the term
RDBMS.)

What Is SQL?

The American National Standards Institute (ANSI) defines various computer
industry standards. We are all familiar with the ANSI character set, for
instance, which defines each character to be 1-byte long with the decimal
value 65 representing the letter A. SQL-92 is an ANSI definition of what
features must be supported in a full implementation of SQL. For example, the
language needs to support the SELECT statement and the SUM function. If a
vendor’s database product is in full compliance with these standards, it is
ANSI-92 compliant. All of the major relational database products, such as
Oracle and Microsoft SQL Server, are 100 percent ANSI-92 compliant.
(Microsoft Access uses Jet SQL. Although Jet SQL is close, it is not ANSI-92
compliant. I discuss the differences in Appendix B.) Additionally, most
vendors add extensions (additional features) implemented as what are
commonly called dialects of SQL. Oracle uses PL/SQL, whereas Sybase and
Microsoft use Transact-SQL (usually called T-SQL). Microsoft has been
moving away from the Sybase model of T-SQL. Mostly, the dialects are close
enough in syntax that moving from one to the other is relatively easy.

When application programs access a relational database, they create SQL
statements and send them to the RDBMS. The RDBMS processes the
statements and sends the results back to the application program. Each
RDBMS exposes its functionality via an Application Programming Interface
(API). To shelter the developer from the intricacies of learning different APIs
for each RDBMS, three categories of drivers were developed to interface with
Visual Basic:

• VBSQL—A Visual-Basic-specific set of drivers that allow “native”
interface to Microsoft SQL Server.

• ODBC (Open Database Connectivity)—An API that applications can
address to further expose the underlying functionality of a wide variety
of databases. The many variations on how this is done is the subject of
much of this book. Appendix C overviews the implementation of
ODBC.

• OLE DB—A new, still evolving, API that exposes the underlying
functionality of a wide variety of databases in an object-oriented
manner. OLE DB also allows the joining of disparate data sources.

A Note About ODBC

ODBC is itself an API that application programs can use to gain access to a
variety of database back ends using standard SQL. Visual Basic provides
varying levels of intermediate drivers (such as Microsoft Jet) that shelter you
from the need to write API calls. The back end might be an RDBMS, such as
Oracle, or it might be an Indexed Sequential Access Method (ISAM) file, such
as a FoxPro database. In theory, the developer can write code to access
virtually any back-end database while being shielded from the complexities of
the different access methods. This shielding is accomplished by providing a

single API, which communicates with ODBC drivers written for each of the
different back-end databases. Figure 3.1 illustrates this communication
process.

Figure 3.1 Client programs communicate with the ODBC API, which in turn
communicates with the individual database-specific drivers. These drivers
interact with the back-end databases.

In reality, not all ODBC drivers are created equal. There are actually three
levels of ODBC compliance: Level 0, sometimes called Minimum ODBC, is a
set of minimal functionalities that must be supplied by an ODBC driver,
including the ability to perform basic SQL SELECTs and so on. Level 1,
sometimes called Core ODBC, is a more thorough implementation of SQL,
including statements such as ALTER TABLE as well as more advanced
SELECT functionality, such as the MAX and MIN functions. Level 2, or
Extended ODBC, is an implementation of SQL that is at least ANSI-92
compliant, including outer joins, cursor-positioned UPDATEs, and so on. The
exact definition of each of these compliance levels is discussed in Appendix C.

It is not always easy to determine the level of conformance of a given ODBC
driver, and performances of the drivers vary from vendor to vendor. Microsoft
builds a variety of drivers for both Microsoft and non-Microsoft back-end
database products. Intersolv also markets a wide variety of drivers that you can
use in your programs. Finally, some vendors create drivers for their own
database products; the most notable example is the very well implemented
Level 2-compliant Sybase SQL Anywhere database.

For technical information about ODBC standards and driver development,
refer to Appendix C in this book, as well as to the ODBC 3.0 Programmer’s
Reference And SDK Guide available from Microsoft Press.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/03-01.jpg',402,273)
javascript:displayWindow('images/03-01.jpg',402,273)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Data Manipulation Language (DML)

Most client/server developers will spend the majority of their time using
DML—that portion of SQL used to manipulate the actual data stored in SQL
tables. There are only four DML commands: INSERT, UPDATE, DELETE,
and SELECT. Of these four statements, most developers will spend most of
their time coding SQL SELECT statements. In the sections that follow, I
discuss the use of each of these statements. In Chapter 2, I discussed Data
Control Language (DCL) and Data Definition Language (DDL).

SELECT

The SELECT statement is used to retrieve rows from the database. The basic
syntax of the SELECT statement is:

SELECT [DISTINCT] column-list| *
FROM table-lisT
[WHERE condition1 AND condition2…]
[GROUP BY column-list
 [HAVING condition1 AND condition2…]]
[ORDER BY column-list]

All clauses except FROM are optional.

Use the SELECT clause to list those columns that are to appear in the result
set. Each column name must be separated by a comma. To select all columns,
you can use the asterisk instead of listing each column separately. Use the
FROM clause to list the tables that contain the columns being referenced. For
more than one table, separate the table names with commas.

The following example selects three columns from the EMPLOYEE table:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

SELECT EMP_ID, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE

The next example selects all the columns from the EMPLOYEE table:

SELECT *
FROM EMPLOYEE

Derived Columns

SQL allows you to “select” columns that are not part of the database by
creating derived columns. These columns might be string literals, system
functions, or the results of operations on table columns.

TIP
About The Examples
Except where specifically noted, all of the examples in this chapter use the
sample data provided on the CD-ROM. See Appendix A for details on
loading this information into your database.

The following SELECT creates a derived column that is the result of
multiplying EMP_SALARY by 1.08:

SELECT EMP_SALARY * 1.08
FROM EMPLOYEE

The next example creates a derived column that is actually a string literal:

SELECT EMP_FNAME, EMP_LNAME, 'IS AN EMPLOYEE'
FROM EMPLOYEE

As shown in the following result set, the string literal is returned for every
row:

EMP_FNAME EMP_LNAME 'IS AN EMPLOYEE'
--------- --------- ----------------
ANN CALLAHAN IS AN EMPLOYEE
BOB JOHNSON IS AN EMPLOYEE
CAROL DEMORA IS AN EMPLOYEE

Some system functions are not truly related to any data at all. For instance,
SYSDATE returns the current date and time from the database server. Even
still, the SELECT statement must have a FROM clause. Some RDBMSs
provide a “dummy” table from which to select such non-data-related functions:

SELECT SYSDATE
FROM DUAL

This example is from Oracle, which provides a table named DUAL with a
single row so that you can select against system-level functions. If you select
SYSDATE from the EMPLOYEE table, and if the table has 100 rows, you
get a result set of 100 lines of the current date and time.

If your database does not provide a dummy table, you can easily create one:

CREATE TABLE DUMMY
(DUM_COL CHAR(10))

INSERT INTO DUMMY VALUES ('DUMMY')

SELECT SYSDATE
FROM DUMMY

When the result set is displayed, the column headings default to the column
names. You can rename a column heading using the AS keyword:

SELECT EMP_NO AS 'EMPLOYEE NUMBER'
FROM EMPLOYEE

Some databases allow you to omit the AS keyword. If the new column name
contains a space, you must surround the column name with double quotes.
Some databases require that you use double quotes all the time (regardless of
whether there is a space in the name).

The WHERE Clause

The WHERE clause is used to restrict the rows returned in the result set by
specifying search conditions. For specifying more than one search condition,
use the AND keyword. The following SELECT returns all rows in the
EMPLOYEE table where gender is female and where salary is greater than
50,000:

SELECT *
FROM EMPLOYEE
WHERE EMP_GENDER = 'F'
AND EMP_SALARY > 50000

The WHERE clause allows Boolean logic to determine which rows are to be
returned. NOT negates the search condition:

WHERE NOT EMP_GENDER = 'F'

OR allows for the selection of rows based upon multiple criteria:

WHERE EMP_GENDER = 'F'
 OR EMP_SALARY > 50000

Use NOT to negate a search condition:

WHERE NOT (EMP_SALARY > 50000 AND EMP_GENDER = 'F')

Use parentheses to perform algebraic evaluations of search conditions. The
following WHERE clause specifies that the result set should include females
who make more than $50,000 as well as those employees who make more than

$75,000 (regardless of gender):

WHERE (EMP_GENDER = 'F' AND EMP_SALARY > 50000)
 OR EMP_SALARY > 75000

You may use a scalar function in a WHERE clause but not an aggregate
function. I discuss SQL functions later in this chapter, but for now, understand
that a scalar function is one that operates on a single value at a time (such as
returning the length of a last name), whereas an aggregate function operates on
a range of values (such as returning the sum of all salaries). The following
example returns rows where the length of the last name is greater than five:

WHERE LENGTH(EMP_LNAME) > 5

A column used in the WHERE clause does not have to appear in the
SELECT statement, as shown in the following example:

SELECT EMP_ID, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE
WHERE EMP_GENDER = 'F'

You can perform wild-card searches using the LIKE keyword. To do so, use
the underscore (_) character to represent a single character and the percent sign
(%) to represent any number of characters. The following statement searches
for all last names beginning with the letter B:

WHERE EMP_LNAME LIKE 'B%'

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The next example locates all those rows where the last names have the letter B in the
second position and the letter D in the fourth position:

WHERE EMP_LNAME LIKE '_B_D%'

The WHERE clause also supports the use of the BETWEEN and IN modifiers. With
BETWEEN, you can specify an inclusive range of values as in the following example,
which returns rows where the salary is from $50,000 to $60,000:

WHERE EMP_SALARY BETWEEN 50000 AND 60000

The IN keyword allows you to search a list of discrete values. You separate each value
with commas and place the entire list inside parentheses. If the values are strings, they
must be in single quotes:

WHERE EMP_LNAME IN ('BROWN', 'SMITH', 'JOHNSON')

TIP
About Databases And Case Sensitivity
When dealing with character data (strings), the database is case sensitive just as Visual
Basic is case sensitive when comparing two strings. Later in this chapter, I will introduce
case conversion functions to help deal with this problem.

Though the SQL code samples in this book have all keywords in uppercase, databases are
generally not case sensitive with column names unless you surround the column names
with double quotes.

Testing for the existence of null values requires special functions. Because any operation
involving null is automatically null (I discuss this fully later in this chapter), SQL
provides the IS NULL and IS NOT NULL functions. The following statement locates
rows where YEARS is null:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

WHERE YEARS IS NULL

Joining Tables

When you select data from more than one table, you need to tell SQL how the tables are
related. You do this with the WHERE clause. Consider the DEPARTMENT and
EMPLOYEE tables (see Appendix A for how the tables are defined). If I want to
produce a list of departments and all the employees in each of those departments, I need
to relate the EMPLOYEE table to the DEPARTMENT table. Each row on the
EMPLOYEE table has an EMP_DEPT_NO column, and the DEPARTMENT table
has a DEPT_NO column. Therefore, given a row in the DEPARTMENT table, I want to
list all rows in the EMPLOYEE table where DEPT_NO is equal to EMP_DEPT_NO.
This forms a join condition:

SELECT DEPT_NO, DEPT_NAME,
 EMP_NO, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE, DEPARTMENT
WHERE DEPT_NO = EMP_DEPT_NO

Although I did not do so, many developers use common column names between tables.
Whereas I used EMP_DEPT_NO in the EMPLOYEE table to store the department
number, others might have simply used DEPT_NO. Obviously then, the two tables both
have a column with the same name (DEPT_NO). There is nothing wrong with this at all.
However, if an SQL query references a column name that appears in more than one table
in the query, you have to qualify the column name with the table name to avoid
ambiguity:

SELECT DEPARTMENT.DEPT_NO, DEPT_NAME,
 EMP_NO, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO

This example shows how to qualify the column names where ambiguity exists. The
example assumes, of course, that the two column names are identical.

Table Aliasing

Typing in all those table names can be tiring, especially when qualifying column
names. SQL allows you to alias table names in the FROM clause:

FROM EMPLOYEE EMP, DEPARTMENT DEP

Once you have aliased a column, you use the alias instead of the table name elsewhere
in the query:

SELECT EMP.EMP_NO, DEP.DEPT_NO

Aliasing also has implications in correlated subqueries and self-joins, both of which I
discuss later in this chapter. Aliased names are often referred to as correlation names,
particularly when dealing with subqueries.

You can join together more than two tables. If in the previous example I want to add the
location name (from the LOCATION table), I have to join that table to one of the other
two tables. The DEPARTMENT table has a column DEPT_LOC_ID that corresponds
to the LOC_ID column in the LOCATION table. Therefore, my query might look like
this:

SELECT DEPT_NO, DEPT_NAME,
 LOC_NAME, EMP_NO, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE, DEPARTMENT, LOCATION
WHERE DEPT_NO = EMP_DEPT_NO
 AND DEPT_LOC_ID = LOC_ID

Sample output based on the above query is shown here:

DEPT_NO DEPT_NAME LOC_NAME EMP_NO EMP_FNAME EMP_LNAME
------- --------- -------- ------ --------- ---------
100 ACCOUNTING NORTHEAST 133 MAUREEN PODANSKI
100 ACCOUNTING NORTHEAST 101 ANN CALLAHAN
100 ACCOUNTING NORTHEAST 105 EUNICE BROWN
100 ACCOUNTING NORTHEAST 113 MICHAEL ANDERSON

Self-Joins

A confusing concept for many developers is that you can join a table to itself. Consider
the EMPLOYEE table: One of the columns is EMP_MGR_ID, which represents the
manager of the employee. If you select the contents of the EMPLOYEE table, you will
see that employee number 126’s (David Madison) manager is employee 110 (John
Smith). Assume I want a list of all employees and the names of their managers. In Figure
3.2, you can see where I need to join a column from one row (EMP_MGR_ID) with a
column in another row (EMP_NO). Essentially, I need to “pretend” that there are two
copies of the EMPLOYEE table.

Figure 3.2 To find the name of David Madison’s manager, I need to reference the
EMP_MGR_ID column on David’s row and use it to find John Smith’s row.

The query that I put together uses two aliases for the EMPLOYEE table. I use the first
alias (EMP) to find the employee information and the second (MGR) to find the
manager information:

SELECT EMP.EMP_NO AS 'EMP NO',
 EMP.EMP_FNAME AS 'EMP FIRST',
 EMP.EMP_LNAME AS 'EMP LAST',
 MGR.EMP_NO AS 'MGR ID',
 MGR.EMP_FNAME AS 'MGR FIRST',
 MGR.EMP_LNAME AS 'MGR LAST'
FROM EMPLOYEE EMP, EMPLOYEE MGR
WHERE EMP.EMP_MGR_ID = MGR.EMP_NO

javascript:displayWindow('images/03-02.jpg',446,233)
javascript:displayWindow('images/03-02.jpg',446,233)

ORDER BY EMP.EMP_LNAME, EMP.EMP_FNAME

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The join is on the EMP_NO column from the MGR copy of the EMPLOYEE table to
the EMP_MGR_ID column of the EMP copy of the table. Sample output based on the
query is presented here. Note that Ann Callahan has no manager:

EMP NO EMP FIRST EMP LAST MGR ID MGR FIRST MGR LAST
------ --------- -------- ------ --------- --------
111 KATHRYN AMES 119 URSULA SMITHSONIAN
113 MICHAEL ANDERSON 101 ANN CALLAHAN
106 FRANK BENSON 110 JOHN SMITH
105 EUNICE BROWN 101 ANN CALLAHAN
101 ANN CALLAHAN 101 ANN CALLAHAN

Self-joins are not terribly difficult once you get used to the idea of joining a table to
itself; they can often be useful to find information in one row that is related to
information in another row in the same table.

The ORDER BY Clause

You can ask the database to sort your result set by using the ORDER BY clause. Specify
the column or columns by which you want to sort your result set. If ordering by more
than one column, separate the column names with commas. The default sort sequence is
ascending. If you want to sort in descending order, specify the DESC option. The
following query lists employees and their salaries sorted by department number. Within
each department number, the employees are sorted by salary in descending order:

SELECT EMP_DEPT_NO, EMP_FNAME, EMP_LNAME, EMP_SALARY
FROM EMPLOYEE
ORDER BY EMP_DEPT_NO, EMP_SALARY DESC

Sample output based on the query is presented here:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

EMP_DEPT EMP_FNAME EMP_LNAME EMP_SALARY
-------- --------- --------- ----------
100 ANN CALLAHAN 127500.00
100 MICHAEL ANDERSON 72563.34
100 ROSE DANIELS 67572.42
100 EUNICE BROWN 61426.08
100 CHARLES GERRFON 53496.87
100 WINIFRED VANCE 37712.10
100 MAUREEN PODANSKI 34591.90
100 GEORGE DE NORVA 21313.97
200 DAVID MADISON 77492.47
200 HENRIETTA KEOUGH 72789.20
200 BRIAN JOHNSON 72750.62

The columns that you order by do not have to appear in the SELECT list, although it
makes no sense not to include them. (How would the reader know that data was sorted by
department if you did not display the department?)

You can order positionally by specifying the column number instead of the column name,
as shown in this example:

ORDER BY 1, 4 DESC

However, it is likely that the next ANSI SQL standard will remove this option as part of
the SQL definition. You may, therefore, be better off ordering by the column names
themselves. If you have renamed the columns (see the discussion of SELECT earlier in
this chapter), you can order by the “new” column name as shown:

SELECT EMP_FNAME AS 'FIRST', EMP_LNAME AS 'LAST'
FROM EMPLOYEE
ORDER BY 'LAST', 'FIRST'

Under certain circumstances, you must order by the new column names. An example is
performing a UNION (which I discuss next).

UNION And UNION ALL

The UNION statement allows you to combine the results of two queries. The only
restrictions are that the queries must include the same number of columns and that the
columns must be the same general data type. (For example, it is okay that one is a CHAR
and the other is a VARCHAR.) You can combine as many queries as you want.

Whereas UNION ALL combines all rows, UNION sorts the result set and eliminates any
duplicate rows.

Ordering a UNION query can be tricky because the column names from one query to
another may be different (as in the following example). Positional ordering is most
convenient. Some databases require that you order by the column names of the first query
(EMP_NO and EMP_LNAME in the following example) or that you rename the
columns and order by those new names. Check your RDBMS documentation or just try
the query and experiment with the ORDER BY clause:

SELECT EMP_NO AS 'NUMBER', EMP_LNAME AS 'NAME'
FROM EMPLOYEE
UNION
SELECT DEPT_NO, DEPT_NAME
FROM DEPARTMENT
ORDER BY 2, 1

SQL Functions

SQL provides a number of functions to manipulate information from the database.
Functions fall into two categories: Scalar functions act on one item at a time and
aggregate functions act on a range of values at a time.

Deciding whether a function is scalar or aggregate is more than an academic exercise.
Consider the WHERE and HAVING clauses (I discuss HAVING later in this chapter):

• WHERE clause—You can use a scalar function as a search condition in a
WHERE clause. For instance, WHERE SQRT (EMP_SALARY) > 5000
(SQRT returns the square root of an expression) is valid, but WHERE SUM
(EMP_SALARY) > 250000 is not.

• HAVING clause—You can use aggregate functions in a HAVING clause to
restrict a result set. For instance, HAVING SUM (SALARY) > 250000 is valid,
but HAVING SQRT (EMP_SALARY) > 5000 is not.

Whether a function is scalar or aggregate also has an impact on handling of null values.

Null Handling

A value of NULL stored in a database creates special problems. Consider the following:

100 + NULL = ?

Nonintuitively, the answer to this equation is NULL. Any operation performed on NULL
is automatically NULL. Assume that you want to give every employee a $100 a week
raise, and you want to see what the new weekly salary for each employee would be. You
might code the following query:

SELECT EMP_FNAME, EMP_LNAME, EMP_SALARY/52 + 100
FROM EMPLOYEE

The SELECT works fine except for those employees whose salary happens to be NULL.
The result for those employees is still NULL. Different databases handle this problem
with various functions. With Oracle, you can use the NVL function:

SELECT EMP_FNAME, EMP_LNAME, NVL(EMP_SALARY, 0)/52 + 100
FROM EMPLOYEE

In this case, the NVL function specifies that if EMP_SALARY is NULL, then the value
0 should be substituted.

Some other RDBMSs implement the similar function ISNULL:

SELECT EMP_FNAME, EMP_LNAME,
 ISNULL(EMP_SALARY, 0, EMP_SALARY)/52 + 100
FROM EMPLOYEE

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

In this case, the ISNULL function says that if EMP_SALARY is equal to NULL,
the value 0 should be substituted. If it is not equal to NULL, the EMP_SALARY
value should be used. (The ISNULL function is similar to the IF function in most
spreadsheets.)

Selected SQL Functions

SQL functions are one of those areas with a fairly high amount of variability
between RDBMSs. Some functions, such as SUM, are common to all, whereas
others may have no equivalent in another RDBMS. For instance, Oracle has a
flexible TO_CHAR function to convert a noncharacter data type (such as DATE or
NUMBER) to a character type and optionally format the output. Sybase uses either
the CAST or CONVERT function to accomplish the same thing. In general, if you
are comfortable with using functions in one RDBMS, you will have little problem
moving to another RDBMS.

In the following sections, I discuss some of the functions you are most likely to use
on a regular basis.

DISTINCT

Arguably, DISTINCT is not as much a function as it is a SELECT statement
qualifier. However, because it operates on a single value, I include it here. Its
purpose is to return only unique values for a row:

SELECT DISTINCT (EMP_DEPT_NO) FROM EMPLOYEE

The result is:

EMP_DEPT_NO

100

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

200
300
400

Most databases do not require that the column name be surrounded by parentheses
when using DISTINCT (however, it does not hurt to use them).

COUNT

COUNT returns a count of all rows that meet a condition. For instance, COUNT
(EMP_DEPT_NO) returns 32 because there are 32 values stored in that column.
However, COUNT (DISTINCT (EMP_DEPT_NO)) returns 4 because there are
only 4 unique values. Often, COUNT (*) is used to find the number of rows on a
table:

SELECT COUNT(*) FROM EMPLOYEE

Also, you can use COUNT(*) in conjunction with the GROUP BY clause to
determine counts in categories (I discuss GROUP BY later in this chapter):

SELECT EMP_GENDER AS 'GENDER', COUNT(*) AS 'COUNT'
FROM EMPLOYEE
GROUP BY EMP_GENDER

The following result set is returned:

GENDER COUNT
------ -----
F 18
M 14

SUM

SUM adds values in a column. To obtain a total of the salaries from the
EMPLOYEE table, run the following query:

SELECT SUM(EMP_SALARY)
FROM EMPLOYEE

The following is the result:

SUM(EMP_SALARY)

1861241.06

MIN, MAX, And AVG

MIN calculates the minimum value in a column. Similarly, MAX calculates the
maximum value, and AVG calculates the average value:

SELECT MIN(EMP_SALARY), MAX(EMP_SALARY), AVG(EMP_SALARY)

FROM EMPLOYEE

The result is:

MIN(EMP_SALARY) MAX(EMP_SALARY) AVG(EMP_SALARY)
--------------- --------------- ---------------
18331.50 127500 58163.78

LENGTH

As with the Visual Basic LEN function, LENGTH returns the length of a column or
expression. LENGTH (“Smith”) returns 5.

SOUNDEX

SOUNDEX searches for strings based upon their similarity (in sound) to the
supplied argument. Although this should be a powerful function, its usefulness can
be iffy. RDBMSs tend to have different levels of tolerance for what two words sound
alike and may need some tuning. The following query and result comes from Sybase
SQL Anywhere. Refer to your RDBMS’s documentation regarding the use of
SOUNDEX.

SELECT EMP_NO, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE
WHERE SOUNDEX('SMYTHE') = SOUNDEX(EMP_LNAME)

The result of the query is:

EMP_NO EMP_FNAME EMP_LNAME
------ --------- ---------
110 JOHN SMITH
118 STEVEN SMITH
103 CAROL SMITH

SUBSTR, LEFT, And RIGHT

The functions SUBSTR, LEFT, and RIGHT each return a portion of a string from
character data types.

You use SUBSTR to return a specific number of characters beginning anywhere
within the string:

SELECT SUBSTR (EMP_FNAME, 1, 4), SUBSTR (LOC_NAME, 3, 8),
 SUBSTR (DEPT_NAME, 2)…

In this example, the first SUBSTR is returning 4 characters of EMP_FNAME
beginning with position 1. The second SUBSTR is returning 8 characters from
LOC_NAME beginning with position 3. In the last SUBSTR, the number of
characters to return has been omitted. In this case, SQL simply returns all remaining
characters (in this case, beginning with position 2 of DEPT_NAME).

The LEFT and RIGHT functions are similar in operation. LEFT returns the

leftmost n characters from a column, whereas RIGHT returns the rightmost n
characters from a column:

SELECT LEFT (EMP_LNAME, 1), RIGHT (EMP_LNAME, 4)

Not all databases support the RIGHT and LEFT functions, but if not, the SUBSTR
function is adequate.

Concatenation

Some databases provide specific functions to concatenate two strings. For instance,
Oracle offers the CONCAT function, which accepts two arguments (two strings to
be concatenated). Almost all RDBMSs support the concatenation operator, which is
simply two pipe characters (the pipe character is usually above the backslash on your
keyboard and looks like one vertical dash on top of another). The advantage of the
concatenation operator is that you can concatenate as many strings as needed without
resorting to nesting functions. The first example in the next function shows the
concatenation operator in use.

TRIM, RTRIM, And LTRIM

The similar functions TRIM, RTRIM, and LTRIM take a string and trim any
leading or trailing spaces from it. RTRIM is useful when you want to concatenate
two fixed-length columns:

SELECT RTRIM(EMP_FNAME) || ' ' || EMP_LNAME AS 'NAME'
FROM EMPLOYEE
WHERE EMP_NO < 110
ORDER BY EMP_LNAME

The result is:

NAME

FRANK BENSON
EUNICE BROWN
ANN CALLAHAN
BRIAN JOHNSON
CAROL SMITH
GENEVIEVE WESLEY

Without trimming the rightmost characters from the first name, you get a result that
looks like the following:

NAME

FRANK BENSON
EUNICE BROWN
ANN CALLAHAN
BRIAN JOHNSON
CAROL SMITH

GENEVIEVE WESLEY

The LTRIM function removes leading spaces from a string if it has any. Some
RDBMSs also provide a TRIM function, which combines the functionality of
LTRIM and RTRIM.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

ROUND And TRUNCATE

ROUND and TRUNCATE are similar but not identical. The first rounds a
number to the specified position, whereas the latter merely truncates a number
at a specified position. Observe the difference when working on
EMP_SALARY/52 in the following example:

SELECT EMP_NO AS 'EMP NO',
 EMP_SALARY/52 AS 'WEEKLY',
 ROUND(EMP_SALARY/52, 3) AS 'ROUNDED',
 TRUNCATE (EMP_SALARY/52,3) AS 'TRUNCATED'
FROM EMPLOYEE
WHERE EMP_NO BETWEEN 110 AND 115
ORDER BY EMP_NO

The result follows. Note that the third and last rows have differences between
the rounded and the truncated numbers. Any result ending in a 5 or above is
rounded up.

EMP NO WEEKLY ROUNDED TRUNCATED
------ --------- -------- ---------
110 645.10212 645.102 645.102
111 1876.92308 1876.923 1876.923
112 696.18808 696.188 696.188
113 1395.44885 1395.449 1395.448
114 900.75038 900.750 900.750
115 678.30673 678.307 678.306

MOD Or REMAINDER

The MOD function returns the remainder after dividing two numbers. MOD

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

(15, 2) returns 1 because 15 divided by 2 equals 7 with a remainder of 1. This
can be a useful function when performing a lot of math at the database server.
Some RDBMSs call this function REMAINDER, but the purpose and syntax
is otherwise identical.

POWER

Similar to the Visual Basic exponentiation operator, POWER raises a number
to the power of another number: POWER (2, 4) returns 16 (2 raised to the 4th
power). Not all RDBMSs support this function. You can use fractional
exponents to return the root of a number. POWER (8, 3) returns two, which is
the third root of eight.

Date Functions

The different RDBMSs have a wide range in what functions they provide to
support operations on dates. For instance, Oracle has a DAYS_AFTER
function, which returns the date that falls n days after the supplied date:

SELECT DAYS_AFTER ('02-FEB-99', 365)

This function returns '02-Feb-00'. Sybase uses DAYS:

SELECT DAYS ('02-FEB-99', 365)

Check your RDBMS documentation for specific date functions.

GROUP BY

The SQL GROUP BY clause, which allows you to group data, is particularly
useful when taking breaks on aggregate functions (such as showing subtotals).
When a SELECT has a column with an aggregate function, you must
GROUP BY all columns where there is no aggregate function. The following
query performs a sum on EMP_SALARY and also selects EMP_DEPT_NO
and EMP_GENDER. Therefore, you must group by the latter two columns, as
shown in this example:

SELECT EMP_DEPT_NO, EMP_GENDER, SUM(EMP_SALARY)
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO, EMP_GENDER
ORDER BY EMP_DEPT_NO, EMP_GENDER

It sometimes confuses developers that they need to GROUP BY all
non-aggregate function columns, but the example shows it only makes sense
that if you are summing salary information, you need to take breaks (show
subtotals) on all the other columns. The result follows:

EMP_DEPT_NO EMP_GENDER SUM(EMP_SALARY)
----------- ---------- ---------------
100 F 328802.50
100 M 147374.18

200 F 147115.66
200 M 311425.32
300 F 525056.55
300 M 77568.70
400 F 75759.54
400 M 248138.61

You can use multiple aggregate functions as shown in the following example,
which compares minimum, maximum, and average salaries for males and
females in each department and shows a count for each:

SELECT EMP_DEPT_NO AS 'DEPT',
 EMP_GENDER AS 'SEX',
 COUNT(*) AS 'COUNT',
 MIN(EMP_SALARY) AS 'MIN SALARY',
 MAX(EMP_SALARY) AS 'MAX SALARY',
 ROUND(AVG(EMP_SALARY),2) AS 'AVG SALARY'
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO, EMP_GENDER
ORDER BY EMP_DEPT_NO, EMP_GENDER

The result of the query follows:

DEPT SEX COUNT MIN SALARY MAX SALARY AVG SALARY
---- --- ----- ---------- ---------- ----------
100 F 5 34591.90 127500.00 65760.50
100 M 3 21313.97 72563.34 49124.73
200 F 3 27487.44 72789.20 49038.55
200 M 6 33545.31 77492.47 51904.22
300 F 8 18331.50 104800.00 65632.07
300 M 1 77568.70 77568.70 77568.70
400 F 2 33543.13 42216.41 37879.77
400 M 4 36201.78 73643.82 62034.65

As shown in the result, females in this company tend to make less than their
male counterparts in similar jobs except in Department 100. (That was entirely
unintentional. All data in the supplied sample tables was generated randomly.)

You can also GROUP BY columns that do not appear in the SELECT list.
This option mostly has applications in subselects, which I discuss later in this
chapter. Sometimes, however, this option is useful even without subselects but
in conjunction with the HAVING clause, which I discuss next.

HAVING

The last clause in the SQL SELECT statement is the HAVING clause. The
HAVING clause allows you to restrict groups of data based on the results of
aggregate functions and thus is usually associated with the GROUP BY
clause. You will most likely read in some SQL texts that HAVING must be
used in conjunction with the GROUP BY clause, but that is not actually true.
The following statement, although not very meaningful, executes just fine:

SELECT SUM(EMP_SALARY)
FROM EMPLOYEE
HAVING SUM(EMP_SALARY) > 1

The example says to select the sum of all salaries if that sum is greater than
one. When used in conjunction with GROUP BY, the HAVING clause is
more meaningful. I refine the earlier example of salaries by department and
gender to show only those departments and gender combinations where the
average salary is less than $50,000:

SELECT EMP_DEPT_NO AS 'DEPT',
 EMP_GENDER AS 'SEX',
 COUNT(*) AS 'COUNT',
 MIN(EMP_SALARY) AS 'MIN SALARY',
 MAX(EMP_SALARY) AS 'MAX SALARY',
 ROUND(AVG(EMP_SALARY),2) AS 'AVG SALARY'
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO, EMP_GENDER
HAVING AVG(EMP_SALARY) < 50000
ORDER BY EMP_DEPT_NO, EMP_GENDER

The new report follows:

DEPT SEX COUNT MIN SALARY MAX SALARY AVG SALARY
---- --- ----- ---------- ---------- ----------
100 M 3 21313.97 72563.34 49124.73
200 F 3 27487.44 72789.20 49038.55
400 F 2 33543.13 42216.41 37879.77

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Sometimes it is useful to combine the GROUP BY and HAVING clauses even where
the aggregate function does not appear in the SELECT list:

SELECT EMP_DEPT_NO
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO
HAVING MIN(EMP_SALARY) < 25000

This query returns two rows (Departments 100 and 300) where the minimum salary is
less than $25,000.

You can also use HAVING in conjunction with a GROUP BY column that does not
appear in the SELECT list, as you will see in the next section.

Subqueries

A subquery can be considered a way to join the result of two queries. Suppose you want
to find all employees who work in a department whose average salary is greater than
$55,000. You really need to first know what departments have an average salary greater
than $55,000:

SELECT EMP_DEPT_NO, AVG(EMP_SALARY)
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO

As shown in the following result, you need to list those employees in Departments 100
and 300:

EMP_DEPT_NO EMP_SALARY
----------- ----------
100 59522.08
200 50948.99

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

300 66958.36
400 53983.02

You can now run a second query:

SELECT EMP_NO, EMP_DEPT_NO, EMP_FNAME, EMP_LNAME, EMP_SALARY
FROM EMPLOYEE
WHERE EMP_DEPT_NO IN (100, 300)

The trick, however, is to ask both questions at once. To do this, you need a subquery:

SELECT EMP_NO, EMP_DEPT_NO, EMP_FNAME, EMP_LNAME, EMP_SALARY
FROM EMPLOYEE
WHERE EMP_DEPT_NO IN
 (SELECT EMP_DEPT_NO
 FROM EMPLOYEE
 GROUP BY EMP_DEPT_NO
 HAVING AVG(EMP_SALARY) > 55000)

The subquery returns a list of those departments where the department’s average salary is
greater than 55,000 and produces the following result set:

EMP_NO EMP_DEPT_NO EMP_FNAME EMP_LNAME EMP_SALARY
------ ----------- --------- --------- ----------
101 100 ANN CALLAHAN 127500.00
105 100 EUNICE BROWN 61426.08
113 100 MICHAEL ANDERSON 72563.34
117 100 ROSE DANIELS 67572.42
119 300 URSULA SMITHSONIAN 104800.00
121 100 WINIFRED VANCE 37712.10
123 300 ALAN LAWRENCE 77568.70
125 100 CHARLES GERRFON 53496.87
127 300 EUGENE FITZ 58120.56
129 100 GEORGE DE NORVA 21313.97
131 300 JOAN WILLIAMS 74586.61
133 100 MAUREEN PODANSKI 34591.90
135 300 PATRICIA NORTON 61597.15
103 300 CAROL SMITH 74748.78
107 300 GENEVIEVE WESLEY 18331.50
111 300 KATHRYN AMES 97600.00
115 300 OLIVERA MAHARAMBA 35271.95

If I want to know which employee in each department has the highest salary, I need to
use what is called a correlated subquery. A correlated subquery is one where a search
condition in the inner query, specified in the WHERE clause, is correlated to the
WHERE clause of the outer query.

Subqueries And Database Performance

A subquery does not significantly diminish performance because the inner query (the
subquery) is performed only once. It returns its result set to the outer query, which then
executes like any other query.

However, when you run a correlated subquery, the inner query runs once for each
occurrence of the outer query. For example, in the next example where I search for
which employee makes the highest salary in each department, the outer query runs first,
returning every row in the EMPLOYEE table. As each row is returned by the database,
the inner query runs. In this case, the database checks whether the employee returned in
the outer row has a salary matching the row returned by the inner query. Imagine that
your company has 10,000 employees; the inner query then runs 10,000 times.
Correlated subqueries can have a devastating impact on performance, so you should use
them only when absolutely necessary.

Often, you can rephrase the query to yield better performance. If you are forced into
writing a correlated subquery, you might be able to rewrite it so that the outer query
returns the most exclusive result set (the least number of rows).

Although I generally recommend moving as much of the processing to the database
server as possible, correlated subqueries are often better handled partially within your
Visual Basic program. For instance, you can run the inner query from your VB
application and have the database return just four rows with department number and
salary:

SELECT EMP_DEPT_NO, MAX(SALARY)
FROM EMPLOYEE
GROUP BY EMP_DEPT_NO

Then, your VB program would dynamically construct another query, passing the
department numbers and salaries as part of the WHERE clause.

Assume you are running this correlated subquery in an organization with 10,000
employees and 50 departments. Further, assume that the inner query takes three seconds
to run and that a SELECT of employees matching a specific department and salary
condition takes one second to run. The correlated subquery might actually run for more
than 10 hours before it completes the work. (Database-caching techniques and so on
could actually improve this number tremendously, but expect to go to lunch, dinner,
and then to the unemployment office.) Using the technique I suggest, the query would
run in less than a minute (much less than a minute if the database is properly tuned).

The following query finds the person making the highest salary in each department:

SELECT EMP_DEPT_NO, EMP_FNAME, EMP_LNAME, EMP_SALARY
FROM EMPLOYEE EMP
WHERE EMP_SALARY IN
 (SELECT MAX(EMP_SALARY)
 FROM EMPLOYEE
 WHERE EMP_DEPT_NO = EMP.EMP_DEPT_NO
 GROUP BY EMP_DEPT_NO)

ORDER BY EMP_DEPT_NO

The output of the query looks like the following:

EMP_DEPT_NO EMP_FNAME EMP_LNAME EMP_SALARY
----------- --------- --------- ----------
100 ANN CALLAHAN 127500.00
200 DAVID MADISON 77492.47
300 URSULA SMITHSONIAN 104800.00
400 PAUL JAMESSON 73643.82

The WHERE clause in the outer query creates a correlated variable, EMP, allowing the
match of EMP_DEPT_NO from the outer query to the same column from the inner
query.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

You use the EXISTS keyword in subqueries to test for the existence of
occurrences in an outer query. Suppose you want to find all departments that
have one or more employees making less than $25,000 and show the number
of those employees. You can run a query and test whether the results of the
inner query exist in the outer query. The following example selects
EMP_DEPT_NO from EMPLOYEE and then restricts the results to those
rows where the department number is also returned by the inner query:

SELECT EMP_DEPT_NO
FROM EMPLOYEE EMP
WHERE EXISTS
 (SELECT EMP_DEPT_NO
 FROM EMPLOYEE
 WHERE EMP.EMP_NO = EMP_NO
 AND EMP_SALARY < 30000)
ORDER BY EMP_DEPT_NO

The result is:

EMP_DEPT_NO

100
200
300

You have a variety of other ways to join the results of an inner query to an
outer query, and you can nest the queries as deeply as necessary. Two
keywords that you will find in most databases are ANY and ALL. The ANY
keyword allows you to compare a column from the outer query to any of the
values returned by the inner query. Assuming you want to know all the male
employees who have a female manager, you can code the query as follows:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

SELECT EMP_NO, EMP_FNAME, EMP_LNAME
FROM EMPLOYEE
WHERE EMP_GENDER = 'M'
AND EMP_MGR_ID = ANY
 (SELECT EMP_NO
 FROM EMPLOYEE
 WHERE EMP_GENDER = 'F')
ORDER BY EMP_NO

The results are:

EMP_NO EMP_FNAME EMP_LNAME
------ --------- ---------
112 LARRY JOHANSSEN
113 MICHAEL ANDERSON
116 PAUL JAMESSON
120 VINCENT LINCOLN
123 ALAN LAWRENCE
125 CHARLES GERRFON
129 GEORGE DE NORVA
132 KEVIN KERRIGAN

TIP
A Few Words About COMMIT And ROLLBACK
Chapter 11 delves into the concepts of transactions, sometimes called logical
units of work (LUW). Every transaction ends with either a COMMIT or a
ROLLBACK. COMMIT makes permanent all changes to the database in
the current transaction. ROLLBACK puts the database back to where it was.
In other words, it undoes all the changes made during the current transaction.

In the following sections, I show you examples of commands that alter data.
So that your results remain the same as mine, I highly urge you to create a
backup of the database so that you can restore it to its original condition.
Alternatively, you can issue a ROLLBACK command after each INSERT,
DELETE, or UPDATE to undo all of the changes.

INSERT

It comes as no surprise that the INSERT statement is used to add new records
to a table. The syntax of the command is:

INSERT INTO tablename [(column-list)]
VALUES (value1, value2, … valuen)

The tablename is an existing table on which the developer has insert authority.
The column-list lists those columns into which data is to be inserted. If all
columns are used, the column list is not necessary. The following statement
adds a new row to the DEPARTMENT table. Because all columns are used,
the column list is omitted:

INSERT INTO DEPARTMENT

VALUES (500, 'NE', 'New Department')

Notice that all character values must be enclosed in single quotes. If you use
double quotes, SQL assumes you are referencing another column. If you are
inserting a row where a column will be set to NULL, you must specify the
NULL keyword:

INSERT INTO DEPARTMENT
VALUES (500, 'NE', NULL)

DELETE

The DELETE statement removes one or more rows from a table. The syntax
is:

DELETE FROM tablename
[WHERE condition]

The tablename is any valid table. If you omit the WHERE clause, all rows are
deleted. The following statement deletes all employees whose department is
100:

DELETE FROM EMPLOYEE
WHERE EMP_DEPT_NO = 100

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

UPDATE

The UPDATE command updates one or more rows in a single table and takes
the following syntax:

UPDATE tablename
SET column_name= value
 [, column_name= value…]
[WHERE condition]

You can update any one or more columns, although most RDBMSs won’t
allow you to update the primary key columns. If you leave out the WHERE
clause, all rows are updated. In the following code snippets, the first example
gives all employees an 8 percent raise. The second command then gives all
female employees in departments 200, 300, and 400 an additional 10 percent
raise (obviously to make up for the inequities noted in the GROUP BY
discussion earlier in this chapter):

UPDATE EMPLOYEE
SET EMP_SALARY = EMP_SALARY * 1.08

UPDATE EMPLOYEE
SET EMP_SALARY = EMP_SALARY * 1.1
WHERE EMP_GENDER = 'F'
AND EMP_DEPT_NO IN (200, 300, 400)

Where To Go From Here

In this chapter, I discussed SQL Data Manipulation Language, which is where
the average developer will spend the vast majority of his or her time. Although
the commands (INSERT, DELETE, and UPDATE) are simple enough, I

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

really only scratched the surface of what can be done with the SELECT
statement.

A point of confusion for any developer is where to perform processing. For
instance, you can do a simple SELECT from the database and then sort the
result set at the client using Visual Basic. Alternatively, you can use the
ORDER BY clause to do the sorting at the database level. Although there is
no hard and fast rule, common sense usually dictates the correct answer. In
general, it is better to let the database perform the work unless doing so would
generate more network traffic. The most obvious example of that is letting the
database format numbers (adding thousand and decimal separators and
currency symbols). That is probably best left to Visual Basic to add when it
displays the data. I discuss these issues in future chapters.

If you feel comfortable with SQL, particularly with the SELECT statement,
then read on. If not, you might want to consult one of the many books on the
subject. If you will be developing for more than one RDBMS, you might want
to consider books that are not RDBMS-specific. Otherwise, you probably want
to find a book that is specific to your database.

If you are developing and Microsoft Jet will be involved, you might want to
consult Appendix B, where I discuss some of the vagaries of that dialect of
SQL and how it differs from ANSI SQL. If you are using the ODBC API, you
will also want to refer to Appendix C.

If you haven’t yet read Chapter 2, you might want to do so. I discuss the other
two portions of SQL (DCL and DDL) there. For advanced topics, sneak a peek
at Chapter 11. Otherwise, read the next chapter (Chapter 4) where I overview
data access with Visual Basic.

Finally, don’t forget that the Internet provides a wealth of information.
Specifically, each of the major database vendors has its own Web site, and a
search of the knowledge base at Microsoft’s Web site using the terms
“database” and “SQL” yields many tricks and tips.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 4
Visual Basic 6 Data Access
Key Topics:

• Evolution of Data Access with Visual Basic

• Overview of flat (sequential) file processing

• Overview of DAO, RDO, and ADO

• Overview of VBSQL

• Overview of the ODBC API

• Considerations in choosing a data model

The nature of nearly all business (and most nonbusiness) programs is to
access and manipulate data. In client/server development, this data is nearly
(but not always) stored in a database. Visual Basic provides a dizzying array of
options to access the database. The correct one to use is often difficult to
ascertain. In this chapter, I discuss each of these access methods in turn and
attempt to provide some guidance as to when to use each. I wish I could say
that there is one right solution, but there isn’t. The best general guidance I can
offer is that you should base your decision on the current and anticipated skill
levels of your staff as well as the current size and complexities of your
application.

The good news in all of this is Microsoft’s migration to Active Data Objects
(ADO), which provides a one-stop interface to nearly all data sources, a high
degree of compatibility with what you may have already developed using
DAO or RDO, and performance metrics at least as robust as RDO.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Visual Basic Data Access Trends

Visual Basic 1.0 was released about the time Windows 3.0 came along. It was
the much-ballyhooed successor to the DOS-based QuickBasic. There was
some resentment at the time that the good folks at Microsoft had forsaken the
DOS-based development community. Microsoft responded with the release of
Visual Basic For DOS, which was essentially a bridge for those developers
who, for whatever reason, were not yet ready to make the jump to Windows. It
behaved much like VB for Windows with features such as event-driven
programming and Windows-like controls, but the code itself still looked like
the top-down Basic code of old. I believe that I might have been the only
developer in the world to actually buy a copy.

QuickBasic, Microsoft Basic Professional, Visual Basic For DOS, and Visual
Basic 1.0 For Windows all had one thing in common—no real method of
doing database programming. The explosion in popularity of the Internet left
Microsoft scrambling to catch up with the likes of Netscape. Plus, the success
of Visual Basic as a development tool left Mr. Gates and company scrambling
to meet developers’ demands for industrial-strength enterprise development
tools.

Visual Basic 3 was the first real attempt to give Visual Basic real-world
database development tools when Microsoft added Data Access Objects
(DAO) version 1.0. DAO was a beginning but was hardly a panacea for
large-scale development efforts and, in fact, was really only well suited for
small-scale projects aimed at ISAM files such as FoxPro or Paradox.

Version 4 of Visual Basic saw the introduction of Remote Data Objects
(RDO), which removed much of the overhead involved in DAO, allowing
direct access to ODBC rather than forcing everything through Microsoft Jet.
Although laudable, RDO 1.0 was immature and placed a lot of restrictions on
developers about what data sources they could connect to. At the same time,
DAO saw some improvements in the underlying Jet engine that made it
somewhat more practical to attach to ODBC data sources. VBSQL was added
to allow native access to Microsoft SQL Server via DB-Lib (DB-Library).

It is worth noting that the Microsoft development team essentially rewrote
Visual Basic from the ground up from versions 3 through 5 to support the
concept of add-in components, objects, and so on. Although it looks much the
same on the outside, on the inside, VB4 (and now VB5 and VB6) are very
different on the inside. Many projects developed in VB3 needed a fair amount
of recoding.

Version 5 of Visual Basic was really the first release where robust client/server
development became a practical reality. DAO was refined with a new
technology: ODBCDirect, which permitted the bypassing of the Jet engine,
became a practical if not particularly scalable data model. Jet itself was further
refined to increase performance and to offload some query processing on
remote data sources that supported that processing. RDO 2.0 was a major
enhancement over RDO 1.0, but careful testing of the Remote Data Control
(RDC) revealed some serious flaws in its architecture. Although technically
the ODBC API was always available, Microsoft talked more openly of using

the ODBC API as a means of database development. During VB5’s
development, Microsoft discussed the new Active Data Object model.
However, the technology was not ready by the time VB5 was shipping (and, in
fact, it will be evolving for some time to come), and most VB developers
therefore really did not understand that using the ADO model was another
option to development.

When the purchaser of Visual Basic 6 opens the box, he or she will again see
something that looks basically familiar. However, the client/server developer
will quickly lose that illusion when poking around under the covers. Wizards
that once generated DAO- or RDO-based forms don’t even offer those data
models as an option. The days of ADO have arrived, and ADO 1.5 is a
welcome, robust, and scalable data model upon which to develop. The ADO
Data control, although not “backwards compatible” with the RDC or the DAO
Data control, is similar enough that most VB developers will have little
problem adjusting. Best of all, ADO combines the best of DAO (access to
ISAM databases) and RDO (efficient access to ODBC data sources) with a
high-performance, low-overhead OLE DB engine.

Although this book discusses all of the data models, the unmistakable trend is
toward Active Data Objects. In the pages that follow, I discuss each of these
data models with a brief overview and some examples. In the chapters that
follow this one, each model is examined more in depth. For some developers,
it will be worth the effort to convert existing projects to ADO, but for others,
there will not be enough payback at this point in time to do so.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

What’s Behind Door Number One?

I teach client/server development using Visual Basic (as well as other tools) to
students with a wide variety of backgrounds. Even the most experienced
developers are confused by Visual Basic’s approach to database development,
and with good reason. VB really offered little in the way of database tools until
version 3.0 when DAO and Microsoft Jet were added. Even the “simple”
interface of DAO and its hierarchy of objects is enough to strike fear in the
hearts of the object-purists among us. Still, once mastered, each of the
approaches that I discuss offers amazing flexibility and, if approached
methodically, can be conquered.

Table 4.1 lists the 11 flavors of data access with Visual Basic and my own
subjective opinion of relative power, stability, learning curve, and ease of use.
Each is scored on a scale of 1 to 10; in all cases, a higher score is better. By
power, I judge the robustness of the end product in terms of processing a lot of
data efficiently and flexibly. A score of 10 indicates that the method is very
powerful. As to stability, I am referring to the likelihood of your program
crashing in the event of a program bug. A score of 1 means that the method
listed is not very stable. Learning curve refers to my opinion of how difficult
the technology is to master. A score of 10 means that the technology is easy to
learn. Finally, when I use the expression ease of use, I am referring to how
much programming is required to use the method. A score of 10 indicates that
the method is very easy to use.

Table 4.1 The varieties of data access methods with Visual Basic 6.0.

Method Power Stability Learning Ease Of
Use

Flat File I/O 2 10 10 6

DAO/Jet Data controls 3 9 9 10

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

DAO/Jet* 4 7 5 6

DAO/ODBCDirect Data
controls

 5 8 8 9

DAO/ODBCDirect* 6 7 5 5

RDO Data controls 6 9 8 9

RDO* 7 8 5 6

VBSQL 9 7 5 4

ODBC API 10 4 1 1

ADO Data controls 9 10 8 9

ADO* 10 9 5 7

*Writing all code instead of using the Data control.

Table 4.1 lists 11 separate methods of data access that all overlap at some
point or other. Table 4.2 shows which types of databases each method can
access. Flat file I/O (using VB’s Open and Get keywords) is, of course, the
roll-your-own approach and offers little to no realistic likelihood of accessing
a true, relational database. Under some circumstances, flat file I/O may be
appropriate for ISAM files. DAO/Jet (with or without the Data control) can
process some sequential file formats but only to the extent that they are
structured. DAO/Jet can also access most major relational databases.
DAO/ODBCDirect (with or without the Data control) can access almost any
relational database for which an ODBC driver is supplied and can access many
ISAM formats as long as an ODBC driver has been defined. RDO is strictly
bound to ODBC data sources, so it can connect to virtually all relational
databases and many ISAM files. VBSQL is used with Microsoft SQL Server
using DB-Lib. Older versions of Sybase SQL Server also support the DB-Lib
interface and should, in theory at least, be accessible via VBSQL. The ODBC
API method, like RDO, can access any ODBC data source. ADO is meant to
cover the entire spectrum of data sources, including those that may be defined
at some point in the future.

Table 4.2 The types of databases and which data access methods can access
each.

Method Sequential ISAM Relational

Flat File I/O Yes Limited No

DAO/Jet Data controls Limited Yes Yes

DAO/Jet* Limited Yes Yes

DAO/ODBCDirect Data
controls

No Limited Yes

DAO/ODBCDirect* No Limited Yes

RDO Data controls No Limited Yes

RDO* No Limited Yes

VBSQL No No DB-Lib only

ODBC API No Limited Yes

ADO Data controls Yes Yes Yes

ADO* Yes Yes Yes

*Writing all code instead of using the Data control.

In the following sections, I discuss each of the 11 database access methods.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Flat File I/O

The Visual Basic commands to process flat (nonrelational) files, more commonly called
sequential files, have been around for many years, dating back to the days of QuickBasic
(and in some cases, before that). Although using flat file I/O will not be your primary means
of processing data, it does have a place even in modern client/server applications.

Consider the possibility that you are updating many thousands of records currently stored in
a relational database. One of the down sides of RDBMSs is that there is a good deal of
overhead involved in processing. I have worked on some applications where it was more
efficient to “drop” a table into a sequential file (using an export utility of the database),
update it the old-fashioned way, and then reload it to the database. I would never encourage
this approach where not absolutely necessary because you lose the advantages of the
database’s built-in integrity constraints and so on. Flat file I/O is also well suited when you
need to process unstructured data. Perhaps you have received a file of records that you need
to add to the database. It may well be advantageous to read the file sequentially and add the
records programmatically.

Most Visual Basic developers who are reading this book are already fairly accomplished in
the use of the VB language, so I have not devoted a separate chapter to flat file I/O. Instead,
I outline the basics in this section. For additional guidance, refer to the Visual Basic
documentation.

Opening And Closing Files

Visual Basic uses the Open command to open a file regardless of the mode in which the file
is accessed. The syntax of the Open command is as follows:

Open filename For open_mode [Access access_mode] [lock_mode] _
 As [#]file_number [Len=record_length]

The filename includes a fully qualified path to the file. If the file name is omitted, Visual
Basic attempts to open the file in the current directory.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The five open_mode options are Append, Output, Input, Random, and Binary. The first
three options are used where a file is to be accessed sequentially (as opposed to randomly).
In Append mode, any data that you write is added to the end of the file. Conversely, in
Output mode, any data overwrites the file from the beginning. I discuss Random and
Binary modes in a moment. The default is Random.

The access_mode determines whether the file can be read to or written from. The options
are Read, Write, and ReadWrite. The default is ReadWrite.

The lock_mode option specifies how the file locking is handled in a multiuser environment.
The options are Shared, Lock Read, Lock Write, and Lock Read Write. If you open a file
in Shared mode, any other process has full access to the file. In Lock Read mode, the file is
locked against others reading it. Likewise, in Lock Write mode, other processes may not
write to the file. The most restrictive (and default) mode is Lock Read Write, which
prevents any other process from opening the file while your program has it open. If you have
opened a file as Lock Write and another program attempts to open it in Output mode (for
example), a runtime error in that program will be generated.

You must assign an unused file_number when opening a file. All subsequent operations
against the file reference the assigned file number. The number must be in the range of 1 to
511. Use numbers of 255 and below if the file will not be used by other processes. Use
numbers above 255 if the file can be opened by other processes. Use the FreeFile function
to return the next available file number:

' Return a file number from 1 to 255
Dim iFile1 As Integer
iFile1 = FreeFile

' Return a file number from 256 to 511
Dim iFile2 As Integer
iFile2 = FreeFile 1

The pound sign (#) before the file number is optional, and it is retained by Visual Basic for
backward compatibility with Basic versions that did require it.

The record_length argument is used with files opened in Random mode and is ignored if
the file is opened in Binary mode. With files opened randomly, all records in the file are
normally a fixed length. This provides the ability to locate a record quickly by simply
supplying a record number. For example, if all records in a file are 100 bytes long, the
operating system can use that to locate record number 4 by moving the “file pointer” to byte
301 in the file (assuming the first record begins at byte 1, the second record at byte 101, and
so on). Of course, your program is responsible for maintaining the logic necessary to know
where in the file a given record is.

When a file is opened in Binary mode, you can move around the file by specifying an
absolute byte offset from the beginning of the file or from the current location in the file.

Once you have finished using a file, use the Close statement followed by the file number to
close it. If you do not supply a file number, all currently opened files are closed. When a file
is closed, the file number is disassociated from that file and can be used again for another
file. You should be sure to close all open files, especially those opened in Output or
Append modes, because that forces the changes to be written to disk. Failure to properly
close the file can result in your changes being lost.

Listing 4.1 opens three files (in Append, Input, and Random modes). Notice that a user
type EmpRec is created and used as an argument to the Len clause on the Random file; the
file will be used to store employee records.

Listing 4.1 Demonstration of several flat file access techniques.

' Variables to store file numbers
Dim iFile1 As Integer
Dim iFile2 As Integer
Dim iFile3 As Integer

' Open a file in Append mode
iFile1 = FreeFile
Open "c:\program.log" For Append Lock Read Write As iFile1

' Open a file in Input mode, read only
iFile2 = FreeFile
Open "c:\autoexec.log" For Input Read As iFile2

' Create a user-defined data type for the next file
Type EmpRec
 Emp_No As Integer
 Emp_Name As String * 30
 Salary As Currency
End Type

' Create a variable of type EmpRec
Dim strEmp As EmpRec

' Open a file randomly using a record length
iFile3 = FreeFile
Open "c:\employee.dat" For Random As iFile3 Len = Len(strEmp)

' Read the record number 8 and display
Get #iFile3, 8, strEmp
MsgBox strEmp.Emp_Name & "'s salary is " & _
 Format$(strEmp.Salary, "$###,##0.00"

' Close the first file
Close iFile1

' Close all other open files
Close

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Reading Files

Use the Input # function to read a file opened in Binary or Input modes using
the syntax Input # file_number, var1, var2…. You use this function to read a
comma-separated list of variables from a file:

' Read three variables from a file
Dim myVar1, myVar2, myVar3
Open "c:\myfile.dat" For Input As 1
Input #1, myVar1, myVar2, myVar3
Close 1

About File Handles

The operating system is actually responsible for all file I/O, including
opening and closing the files. When a file is opened, it has a handle, which is
a Long “address” to the file. The file number you assign (or obtain using
FreeFile) is not the same as the file handle. In 16-bit Windows, you could
use the FileAttr function to determine in what mode a file has been opened
and to return the file handle: Handle = FileAttr (1, 2) where “1” is the file
number that you assigned when you opened the file and “2” is an action code
telling Visual Basic you want to return the operating system’s file handle.
Unfortunately, this option is not supported in 32-bit Windows.

You can, however, use FileAttr to obtain information about what mode a file
was opened in. In this case, use an action code of 1: Mode = FileAttr(1, 1)
where the first “1” is the file number you assigned when you opened the file
and the second “1” is the action code. Visual Basic returns one of the
following values:

• Input—1

• Output—2

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Random—4

• Append—8

• Binary—32

The Input function (without the pound sign), also used with files opened in
Binary or Input modes, differs from the Input # function in that it reads in a
fixed number of characters from the file, including commas, carriage returns,
and line feeds, as shown in the following example:

Dim sBuffer As String
Open "c:\autoexec.bat" For Input As 1
' Read 100 characters
sBuffer = Input (100, 1)

Line Input is used to read an entire line of text, up to (but not including) the
character-return and line-feed characters. The following code reads a file and
displays each line in a ListBox control. The result is shown in Figure 4.1:

Dim sBuffer As String
' Open the file
Open "c:\autoexec.bat" For Input As 1
Do While Not EOF(1)
 Line Input #1, sBuffer
 ' List1 is an existing ListBox control
 List1.AddItem sBuffer
Loop
Close 1

Figure 4.1 Example of using Line Input to populate a ListBox control with
the contents of a file.

Notice that Line Input requires the use of the pound sign in front of the file
number. Consistency is not Microsoft’s middle name.

You use the Get function to read a file opened in Random or Binary mode.
With Random mode, you supply a record number, whereas with Binary
mode, you supply a byte offset. If the record number or byte offset is omitted,
reading begins at the next record or byte in the file. The following statement
reads a file that was previously opened randomly:

' Read the 55th record into the strEmpRec variable
Get #iFile3, 55, strEmpRec

The following statement reads the next 512 bytes into a variable from a file
previously opened as Binary:

javascript:displayWindow('images/04-01.jpg',397,305)
javascript:displayWindow('images/04-01.jpg',397,305)

Dim sBuffer As String * 512
Get #iFile3, , sBuffer

Navigating Files

The current position in the file is said to be the file pointer. Therefore, if the
current record is number 55 in the file, the file pointer is 55. The Seek
statement moves the file pointer (that is, it sets the location in the file for the
next read or write), whereas the Seek function returns the current file pointer:

' Move to the 30th record
Seek #iFile3, 30
' Read the next record
Get #iFile3, , strEmpRec
' Display the current record number (31)
MsgBox Seek (#iFile3)

The Loc is the counterpart to Seek, returning the location of the last read or
write.

The counterpart to Get is Put, which writes a record (in Random mode) or the
value of a variable (in Binary mode):

Put #iFile3,, strEmpRec

Writing To Files

Put has additional functionality that varies somewhat depending on whether
the file was opened for Binary or Random. For instance, you can write the
contents of an array to disk. See the Visual Basic help file for additional
information.

The Write # statement writes data to a file in the same format that it is read
with the Input # function. Write # places quotes around strings and commas
after each variable. A carriage-return and line-feed sequence is written after
each Write # operation. Dates are surrounded by pound signs (“#December
25, 1998#”). Boolean data is written as #TRUE# or #FALSE#.

Print # writes formatted data to a sequential file. Strings do not have quotes
and variables are not separated by commas. However, a carriage-return and
line-feed sequence is written after each Print # operation unless the last
character is a semicolon or comma. Print # is useful for writing formatted
reports to a disk file for printing later. See the Visual Basic help file for more
details on some of the ways that you can use Print #.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Other File Support Functions

The EOF and LOF functions are very useful when you perform flat file
access. EOF returns a Boolean, indicating whether the end of the file has been
reached. LOF returns the length of an open file. (You can use FileLen to
determine the length of an unopened file.) The example for Line Input earlier
in this chapter (see Figure 4.1) used EOF. Listing 4.2 provides an example of
using LOF to perform a buffered read of a file.

Listing 4.2 Using LOF and a method to process very large files with buffered
reads.

Dim sBuffer As String
Dim lSize As Long
Dim lRemaining As Long
Dim iBufSize As String
' Open the file in binary mode
Open "c:\windows\modem.log" For Binary As 1
' Determine the length of the file
lSize = LOF(1)
' Initialize the value of lRemaining
lRemaining = lSize
' Loop through the file
 ' Pad the input buffer
 If lRemaining < 4096 Then
 ' If less than 4K characters remaining
 sBuffer = Space$(lRemaining)
 Else
 ' Otherwise, read a 4K chunk
 sBuffer = Space$(4096)
 End If

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 ' Read the data
 Get #1,, sBuffer
 lRemaining = lRemaining - Len(sBuffer)
 If lRemaining < 1 Then Exit Do
Loop

The Visual Basic help file contains information on other functions that may be
useful, such as FileDateTime (which returns the date and time when a file was
last modified), GetAttr (which returns the attributes of a file such as Hidden
or System), and SetAttr (which sets file attributes).

Data Access Objects

Data Access Objects (DAO) is the original model of the relational data access
models for Visual Basic. The current version is DAO 4.0. In this section, I
discuss the capabilities of DAO and its object models, and I review the DAO
hierarchy. I go into much more depth on these subjects in Chapter 5.

Capabilities

With the exception of ADO, DAO is the most flexible of the data access
methods available to the VB developer. It offers the ability to manipulate
ISAM databases as well as relational databases, shielding the developer from
many complexities and creating a layer where the developer can use a common
code base to interact with multiple back ends. In other words, if the developer
uses a reasonable amount of planning, he or she can use the same code to
interact with both FoxPro and Oracle. The actual implementation of DAO is
shown in Figure 4.2.

Figure 4.2 The relationship of DAO to the application and to the database.

The original implementation of DAO was with Microsoft Jet, which then
interacts with the ODBC Driver Manager. The ODBC Driver Manager handles
all low-level interactions with the database itself. Unfortunately, what Jet gains
in flexibility (because it can interface to virtually any data source), it loses in
performance. Jet is robust in its capabilities but is a “thick” layer between your
applications and the data, slowing down all database access. Also, Jet leaves a
large footprint in memory; it occupies more than a megabyte of RAM.

The seasoned (or should I say grizzled?) Visual Basic developer who wrote
database applications with Visual Basic 3 used Jet version 1.1. This was a
primitive implementation. Jet’s performance enhancements are derived in
large part by allowing the back-end database to do what it does best: process
queries. Jet 1.1 pulled all of the records from a table in a back-end database
such as Oracle and then performed the query locally.

javascript:displayWindow('images/04-02.jpg',459,490)
javascript:displayWindow('images/04-02.jpg',459,490)

ODBCDirect was added to DAO with version 5 of Visual Basic. It is not as
flexible as Jet in that it can only communicate with defined ODBC data
sources. However, it bypasses Jet and communicates with RDO. It also offers
some functionality improvements because it can access ODBC features not
available when going through Jet. Because ODBCDirect is a thin layer leaving
a minimal footprint in memory, it offers performance nearly as good as RDO
itself. ODBCDirect essentially maps DAO functionality to RDO functionality.
The RDO layer interacts with the ODBC Manager.

In Chapter 5, I discuss the DAO object hierarchy in depth.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using DAO

DAO has a fairly complex object hierarchy. (See Figures 5.1 and 5.2 in
Chapter 5 for a graphical representation of this hierarchy). In this model, all
data access objects exist in the context of a single DBEngine object.

Are DAO And Jet Dead?

One might easily jump to the conclusion that Jet, and by extension, DAO, are
both in the coffin, if not actually buried. Microsoft SQL Server 7 is making a
bold attempt to cover all portions of the enterprise from clustered servers
down to a desktop database. (You can purchase a Windows 95 version of
SQL Server that supports up to five users, although it is primarily aimed at
the desktop user.) If you are predicting the demise of Jet in particular based
upon Microsoft’s announcements regarding SQL Server 7, don’t bet a lot of
money. Although SQL Server 7 may, and probably will, eventually be a
viable desktop platform, it is far from that today. Although Microsoft may
have refined the product some by the time you read this, it appears that the
memory requirements are about two to three times greater for SQL Server 7
than for Jet. SQL Server 7 for the desktop is about a 200MB install, and
although Microsoft specifies a Pentium platform, my recommendation is to
not run it with anything less than a 200MHz CPU with at least 64MB of
RAM. This is not your typical desktop configuration.

Microsoft has continued to refine and improve Jet. Even more, informal
testing shows that not only is Jet 4.0 faster than its 3.0 counterpart, but it is
also much faster than SQL Server 7 on a typical desktop PC. That is not to
say that a future release of SQL Server will not change that discrepancy, but
that day has not arrived yet.

If anything is going to knock Jet off its desktop throne, it is ADO and OLE
DB (which is part and parcel of SQL Server 7, by the way), which I discuss

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

later in this chapter. For new relational database development efforts, I see
no compelling reason to use DAO over ADO because OLE DB seems to be a
much more robust technology than Jet and especially because Microsoft is
clearly going to concentrate its development bucks there.

For the typical desktop development effort, I see no reason not to use Jet
against ISAM-type databases, including MS Access. If more robustness is
needed (such as logging), then I recommend a product such as Personal
Oracle or Sybase SQL Anywhere, both of which offer good performance
with modest resource requirements. Otherwise, Jet is a proven data engine
technology for file-oriented databases.

The DBEngine object contains the Workspaces collection, which consists of
individual Workspace objects. Each Workspace object describes a current
“session” with the database and includes the Databases collection. Each
Database object includes several collections including QueryDefs and
RecordSets. A QueryDef object describes an SQL select. Each RecordSet
object is an active result set from the database. The actual implementation of
the object hierarchy varies a little based on whether ODBCDirect is used.
Because the objects themselves vary, there is also some variation in methods
and events available to the VB developer. For instance, ODBCDirect offers the
Cancel method to cancel a pending asynchronous query.

DAO gives the developer the opportunity to use data-aware controls, greatly
simplifying the task of DAO-based development. This opportunity comes at
the expense of some flexibility in design but can turn 200 lines of code into 20
or fewer. For instance, the Data control automatically connects to the database,
builds a RecordSet object, handles the chore of scrolling through the
RecordSet, and performs all updates behind the scenes. Without the Data
control, the VB developer has to code all of this functionality. Likewise, by
having a Data control, the user can bind other data-aware controls such as the
TextBox and the ListBox to individual columns in the Data control’s
RecordSet object. Without the Data control, the developer has to manually
populate each TextBox (or other control) as the user scrolls through a
RecordSet.

Figure 4.3 shows a form module that uses the Data control and several
TextBox controls to display records from the Employee table in the Access
version of the sample database provided with this book.

Figure 4.3 The Employee application created using the Data control and very
little coding.

TIP
Using The Sample Code
Because the application in Figure 4.3 uses an Access database without
ODBC, the path to the database file is “hard-coded” in the Database name of
the Data control. In addition, because the database is on your CD-ROM, the
database cannot be updated. To run this code on your own, copy the project
file and the form file to your hard drive along with the Access database.

javascript:displayWindow('images/04-03.jpg',509,171)
javascript:displayWindow('images/04-03.jpg',509,171)

Open the project and change the Database property of the Data control to
reflect the new path.

I actually wrote only one line of code (shown below) to display the record
number. The rest of the code was all generated as a result of drawing controls
on the form and setting their properties as needed.

Private Sub Data1_Reposition()

Data1.Caption = "Record " & _
 Str(Data1.Recordset.AbsolutePosition + 1) & _
 " of " & Str(Data1.Recordset.RecordCount)

End Sub

In Chapter 5, I expand on the use of DAO, adding functionality such as error
handling, data validation, and so on using the sample data provided with this
book (see Appendix A). I will also walk through the process of coding a
DAO-based application without using the Data control, as a means of
illustrating the DAO object hierarchy and to provide additional flexibility to
the application.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Remote Data Objects

Introduced with Visual Basic version 4.0, Remote Data Objects (RDO)
introduced a major performance boost for client/server applications. You can
use RDO with any backend database defined as an ODBC data source name
(DSN) that supports the SQLNumParams ODBC function (see sidebar).
Although some of the names of properties and objects have changed, RDO has
a lot in common with DAO. Most VB developers should have little problem
converting existing code to use RDO and even less problem grasping its usage.
Where RDO will work (when working with any ODBC-defined database), it
makes little sense to continue using DAO. However, before converting an
application from DAO to RDO, you might want to carefully consider the
benefits of converting to ADO instead. I discuss ADO later in this chapter.

RDO Capabilities

RDO puts a smaller layer between your application and the data than does
DAO. This is shown in Figure 4.4. RDO basically places a thin wrapper
around the ODBC API, allowing the developer most of the benefits of the
ODBC API with few drawbacks. The chief advantages of RDO are:

• No need for a local query processor (Jet); query processing is done
remotely.

• Smaller memory footprint.

• Event-driven asynchronous queries.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 4.4 The Remote Data Objects model.

The Visual Basic 5.0 implementation of RDO (RDO 2.0) and the Remote Data
control (RDC) was a significant improvement over the original Visual Basic
4.0 implementation (RDO 1.0). For example, under Visual Basic 4.0, you had
to continuously poll for the completion of a database operation. RDO 6.0,
introduced with Visual Basic 6 (don’t ask me what happened to versions 3, 4,
and 5), is another improvement. Unlike DAO, in which data access is usually
performed synchronously (meaning that the program has to wait for the result
set to be returned before processing can continue), RDO permits asynchronous
queries of the database. For example, if you set the RDC’s Options property to
rdAsyncEnable, the ResultSet is populated as a background task. When the
query is complete (and the ResultSet completely populated), the
QueryCompleted event is fired, providing an event-driven means for your
application to know that the query has completed.

The RDC’s functionality is similar to the Data control, which most VB
developers have used. Likewise, the Remote Data Object hierarchy is similar
(though simplified) to the Data Access Object hierarchy.

Using RDO

Figure 4.5 shows an application created using the RDC that is almost identical
to the DAO example in Figure 4.3. The snippet places the current row number
into the Caption property of the RDC. The properties of the RDC are almost
identical to those in the Data control. A few differences mostly reflect the SQL
row orientation of the Remote Data control versus the file record orientation of
the Data control. For instance, DAO’s RecordSet property is equivalent to
RDO’s ResultSet property. DAO’s RecordCount property is equivalent to
RDO’s RowCount property as shown in the following code snippet:

Private Sub MSRDC1_Reposition()

MSRDC1.Caption = "Record " & _
 Str(MSRDC1.Resultset.AbsolutePosition) & _
 " of " & Str(MSRDC1.Resultset.RowCount)

javascript:displayWindow('images/04-04.jpg',200,429)
javascript:displayWindow('images/04-04.jpg',200,429)

End Sub

Figure 4.5 The Employee application coded using the Remote Data control.

RDO And ODBC Compliance

The ODBC (Open Database Connectivity) standard is broken into three
levels. Base level or Core level defines a minimal set of functionality that an
ODBC driver must support. Level 1 defines additional functionality, whereas
Level 2 defines yet another layer of more advanced functionality. A Level
2-compliant ODBC driver essentially supports the full set of SQL
functionality defined by ANSI SQL.

Appendix C lists the different functions required by each level along with the
syntax for calling each from Visual Basic. RDO in Visual Basic 4 required a
Level 2-compliant implementation, whereas RDO in VB5 and now VB6 has
relaxed this requirement considerably to require only the SQLNumParams
function.

VBSQL

VBSQL is a library for accessing Microsoft SQL Server via DB-Lib. Because
Microsoft is heading away from DB-Lib and more toward an ODBC- and OLE
DB-oriented access method to SQL Server, the use of VBSQL is not
recommended except for existing projects already utilizing it.

VBSQL Capabilities

VBSQL is written to provide an interface to Microsoft SQL Server only.
Specifically, any functionality exposed by SQL Server’s DB-Lib is
implemented by VBSQL. Connections tend to be cursor-oriented, and you are
pretty much on your own to manually populate controls with information
retrieved from the database (as opposed to binding controls to a data source).
On the other hand, you have an unusual degree of control (relative to other
Visual Basic data models) over the efficiency of your database processing. For
instance, you can set the packet size for communicating between the database
server and your application using the SQLSetPacket function with the
SQLOpen function. (Note that you can determine the current packet size using
SQLGetPacket but that once a connection is established, the packet size
cannot be changed.) The packet size can be any size up to 64K and, if not
specified, is determined by the current SQL Server default. If the default is set
to 4,092 bytes but your application is mostly updating and retrieving single
records, the large packet size slows down your application. On the other hand,
if your application is processing a lot of data, a larger packet size is preferable
to reduce the number of disk reads.

Previous Table of Contents Next

javascript:displayWindow('images/04-05.jpg',509,171)
javascript:displayWindow('images/04-05.jpg',509,171)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using VBSQL

To use VBSQL, you need to visit the Microsoft Web site and download the VBSQL
ActiveX control (look for VBSQL.OCX). The version I used in this book was a
prerelease version, but a shipping version should be available by the time you read this.

VBSQL requires the use of the VBSQL control, which is really more like a DLL than a
Visual Basic control. You need to add to your project the VBSQL.BAS module, which is
also available from the Microsoft Web site and included on the CD-ROM (be sure to
check the Web site for a more recent release). The VBSQL.BAS module has a number of
function calls defined, such as establishing a connection with the database. The
declarations all reference the OCX file as shown in this code snippet:

Declare Function SqlNextRow Lib "VBSQL.OCX" _
 (ByVal SqlConn As Long) As Long

Figure 4.6 shows a VBSQL application running in front of the VB6 development
environment. A quick look at the two open code windows reveals that this coding,
although not terrifically difficult, is tedious. Because Microsoft is in the process of
eliminating the DB-Lib interface, and because the Active Data Object model is available,
you have little reason to use VBSQL code. Because of the length of the code, and the fact
that I don’t recommend VBSQL when clearly better data access models are available, the
entire 20 or so pages of code is not printed in the book.

Figure 4.6 The Employee application using VBSQL.

To open a connection to the database, a sample code snippet might look like the

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-06.jpg',1024,734)
javascript:displayWindow('images/04-06.jpg',1024,734)

following:

Dim lSQLConn As Long
Dim lRtn As Long
Dim sRtn As String
' Share with other procedures
Private myLogIn As Long
' Initialize
sRtn = SQLInit ()
' Establish login record
myLogIn = SQLLogIn ()
' Set login parameters
lRtn = SQLSetLUser (myLogIn, "Coriolis")
lRtn = SQLSetLPwd (myLogIn, "Coriolis")
' Workstation
lRtn = SQLSetLHost (myLogIn, "W243A")
' Can add other parameters
lRtn = SQLSetLApp (myLogIn, "Coriolis VBSQL Sample App")
' Establish connection
lSQLConn = SQLOpen (myLogIn, "Home")

The ODBC API

Perhaps the ugliest approach to data access using Visual Basic, at least in terms of
complexity of code, is via the ODBC API. It is not for the faint of heart. At one time,
particularly before the release of Visual Basic 5 (with its credible RDO version 2), the
developer seeking to expose the robustness of the underlying ODBC had little choice but
to drop down to the ODBC API. As with VBSQL, I see little reason to do so now,
especially with ADO obviating more complex data models. Even still, just as the Visual
Basic developer still finds legitimate need to drop to the Windows API for specialized
functions, the VB client/server developer may well need to drop to the ODBC API at
some point.

ODBC API Capabilities

The capabilities provided by the ODBC API are a function of both the backend database
and the driver with which the ODBC manager communicates. For instance, I have used
the Microsoft ODBC driver to access Oracle databases. I have also used Oracle’s own
driver. As odd as it may sound, Microsoft’s is more functional under many
circumstances. For instance, in a DAO environment, if you set the Data control’s
Options property to vbSQLPassThru (in order to tell Jet to let the back-end database
handle the query), the Oracle ODBC driver can only process the tables as read-only.

Appendix C documents some of the technical details of the API.

Using The ODBC API

Listing 4.3 provides a brief look at some of the steps involved in connecting to and
manipulating an ODBC data source. In this case, I have coded the steps necessary to list
the available ODBC data source names (DSNs). The application is shown in Figure 4.7.

Listing 4.3 Code from frmDSNList.

Private Sub cmdClose_Click()

End

End Sub

Private Sub cmdGetSources_Click()

Dim iRtn As Integer, iDSNLen As Integer, iDescLen As Integer
Dim hEnv As Long
Dim sDSN As String * 32, sDesc As String * 128

' Clear the list box
List1.Clear

' Allocate env handle
iRtn = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, _
 hEnv)

' Set environmental variables
iRtn = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC3, SQL_IS_INTEGER)

' Get first data source
iRtn = SQLDataSources(hEnv, SQL_FETCH_FIRST, sDSN, _
 Len(sDSN), iDSNLen, sDesc, Len(sDesc), iDescLen)

Do While iRtn = SQL_SUCCESS
 ' Add DSN to listbox
 List1.AddItem Left$(sDSN, iDSNLen)
 ' See if there are any more
 iRtn = SQLDataSources(hEnv, SQL_FETCH_NEXT, sDSN, _
 Len(sDSN), iDSNLen, sDesc, Len(sDesc), iDescLen)
Loop

' Free the handle
iRtn = SQLFreeHandle(SQL_HANDLE_ENV, hEnv)

' Report the results
Text1.Text = Str$(List1.ListCount)

End Sub

Figure 4.7 Listing the ODBC data sources using the ODBC API.

javascript:displayWindow('images/04-07.jpg',514,239)
javascript:displayWindow('images/04-07.jpg',514,239)

The project, included on the CD-ROM, consists of a general code module (ODBC.BAS)
containing API declarations and constants and a form module, frmDSNList.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Active Data Objects—The Future Is Now

One giant leap for Microsoft is an even bigger leap for us mere mortals who
don’t happen to own a lot of Microsoft stock. For those of us who have careers
based at least in part on the use of Visual Basic to develop client/server
applications (indeed, any database applications), Active Data Objects and its
concomitant technologies (such as OLE DB) are a huge leap forward. Not only
will most applications show anything from a modest to a drastic performance
improvement, but also the implementation of the data model is simpler than
either DAO or RDO. Perhaps even better, Microsoft has adopted a common
data model to be used across all its development products, making objects as
applicable in Visual C++ as they are in Visual Basic.

ADO Capabilities

ADO is actually an interface to OLE DB, which provides a common access
point for both relational and nonrelational data structures as well as such
disparate and nonstructured data sources as text, graphics, and email. In fact,
with OLE DB, you can relate two entirely separate data sources to each other
as long as there is an OLE DB driver written for each data source. For
example, you could read an Employee table in an Oracle, Access, or DB2
database. You could then join the Emp_Email column in that table to the
Pop3_Account_Name “column” in a Microsoft Outlook data source (when
and if an OLE DB driver is written to access Outlook). Whereas ADO
provides a high-level interface to the data, OLE DB is a low-level interface.
By and large, VB developers can ignore the dirty business of bits and bytes in
which OLE DB deals and concentrate on the streamlined interface provided by
ADO. ADO encapsulates OLE DB functionality (and, by extension, data) and
exposes it as objects.

When dealing with OLE DB data sources, OLE DB is considered the data
provider, whereas your application (and the Active Data Objects) is considered

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the data consumer.

Using ADO And OLE DB

With ADO and OLE DB come new ways to look at and process data.
Data-aware controls such as the TextBox have a new property, DataMember.
You can still treat data sources in the “old way”: Assign to the DataSource
property the name of an existing Data control (or Remote Data control or
Active Data control) and assign to the DataField property a column that
corresponds to one of the columns returned by the Data control. This is
perfectly acceptable.

However, the new data environment allows you to encapsulate the logic in a
relational database’s structure. Consider the sample database included with this
book. An Orders table is related to the LineItem table. In turn, the Item table
is related to the LineItem table. The relationship is shown graphically in
Figure 4.8.

Figure 4.8 The relationship between the Orders, LineItem, and Item tables.

Now, consider a selection from the Orders table along with all related rows in
the LineItem and Item tables. This data hierarchy can be modeled using
hierarchical cursors in the new Data Environment Designer. You can build a
DataEnvironment object that encapsulates this data hierarchy. Then, you can
assign to a data-aware control’s DataSource property a DataEnvironment
object instead of assigning a Data control to it. When you assign a
DataEnvironment object to a data-aware control, the DataEnvironment
object has certain properties that are exposed as data members.

In Figure 4.9, I am creating a DataEnvironment object using the Data
Environment Designer. After creating a DataEnvironment object, you can
insert stored procedures previously created on the database, or you can add
new Connection objects or Command objects. A Connection object
represents a connection to the database, including various parameters such as
user ID, password, and timeout. A Command object can be a table similar to a
DAO RecordSource type, an existing SQL view or stored procedure, or an
SQL statement. In Figure 4.9, I am creating an SQL statement type
Command.

Figure 4.9 Creating the deADO-Example DataEnvironment object using
the Data Environment Designer.

javascript:displayWindow('images/04-08.jpg',500,398)
javascript:displayWindow('images/04-08.jpg',500,398)
javascript:displayWindow('images/04-09.jpg',800,600)
javascript:displayWindow('images/04-09.jpg',800,600)

When placing a data-aware control on a form, you can set its DataSource
property to any valid DataEnvironment object. Because the
DataEnvironment object is a project-level object (as opposed to a form-level
object, such as a Data control), any control on any form may access it. Once
you have selected a DataEnvironment object as a control’s DataSource
property, you can use the control’s DataMember to select from any of the
Command objects of the DataEnvironment object. In Figure 4.10, I have just
selected my deADOExample DataEnvironment object as the DataSource
for the DataGrid control. I then selected the Ord_Rpt Command object as the
DataMember property.

Figure 4.10 Using a DataEnvironment object as a DataSource of a
data-bound control.

Of course, none of this is to say that you can’t use the ADO Active Data
control (ADC) as you would the DAO Data control or the RDO Remote Data
control. In Figure 4.11, I do exactly that. The figure shows two forms open
inside an MDIForm. The top form shows the form that was designed in Figure
4.10, displaying rows of data from the three tables represented in Figure 4.8.
The bottom form shows the same Employee Maintenance form that I created
using DAO and RDO earlier in this chapter.

Figure 4.11 An MDIForm housing two other forms using a DataGrid control
bound to a DataEnvironment object and some TextBox controls bound to an
ADO Data control.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/04-10.jpg',797,578)
javascript:displayWindow('images/04-10.jpg',797,578)
javascript:displayWindow('images/04-11.jpg',800,576)
javascript:displayWindow('images/04-11.jpg',800,576)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The code for this application is included on the CD-ROM. To build it yourself,
first create an MDI form named mdiADOExamples. Add two forms named
frmADOEmployee and frmADOReport. Set both of their MDIChild
properties to True. On the MDI form, add a File menu with three items: Report,
Employee, and Exit. For the mnuFile-Report_Click event, code the following:

frmADOReport.Show

In the mnuFileEmployee_Click event, code the following:

frmADOEmployee.Show

On frmADOEmployee, add an ActiveData control. To do so, select Microsoft
Active Data Objects from the Projects|Components menu to put the control on
the toolbox. Set its properties as follows: Align=2 ‘Align Bottom;
Connect=“DSN=Coriolis VB Example”; DataSource Name=“Coriolis VB
Example”; RecordSource=“employee”.

Next, create an array of five textbox controls named txtEmpDat. The
DataSource property for each should be Adodoc1. Set their DataField
properties to: emp_no; emp_fname; emp_lname; emp_hire_date; and
emp_salary. You can set the DataFormat properties for the date and salary
fields as you see fit.

Add label controls as shown in Figure 4.11 and then add the following code:

Private Sub Adodoc1_MoveComplete (ByVal adReason As _
 EventReasonEnum, ByVal pError As Error, adStatus _
 As EventStatusEnum, ByVal pRecordSet As RecordSet)

Adodc1.Caption = "Record " & _
 Str$(Adodc1.RecordSet.AbsolutePosition) & " of " & _

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Str$(Adodc1.RecordSet.RecordCount)
End Sub

On frmADOReport, add a DataGrid control named DataGrid1. Set the
DataGrid control’s properties as follows: AllowArrows=True;
AllowSizing=True; Caption=“Order Details”;
DataSource=“deADOExample”; DataMember=“Ord_Rpt”;
WrapText=True. The DataField property for the columns should be set to:
ord_no; ord_date; ord_cust_no; line_no; line_item_no; item_desc; line_qty;
line_price; line_total. The Caption and Format properties should be set
appropriately, such as those shown in Figure 4.11.

deADOExample has one Connection named CorVBExample. Its
SourceOfData property should be set to “3 - deUseOLEDBConnect-String”.
The ConnectionSource property should be set to “ Provider=MSDASQL.1;
Password=coriolis; User ID=coriolis; DataSource=Coriolis VB Example”.

The Connection object has two Command objects named Orders_Only and
Ord_Rpt.

For Orders_Only, set the CommandType property to “2 - AdCmdTable”. Set
other properties as follows: CommandText=“Coriolis.Orders”;
CursorLocation=“3 - adUseClient”; CursorType=“3 - adUseStatic”; and
LockType=“1 - adLockReadOnly”.

For the Ord_Rpt Command object, set properties as follows:
CommandType=“1 - adCmdText”; CommandText=“SELECT
orders.ord_no, orders.ord_date, orders.ord_cust_no, line_item.line_no,
line_item.line_item_no, item.item_desc, line_item.line_qty,
line_item.line_price, line_item.line_total FROM item, line_item, orders
WHERE item.item_no=line_item.line_item_no AND
line_item.line_ord_no=orders.ord_no ORDER BY orders.ord_no,
line_item.line_no”; CursorLocation=“3 - adUseClient”; Cursor-Type= “3 -
adUseStatic”; and LockType=“1 - adLockReadOnly”.

In the CD-ROM code listing, you will see other Command objects as well,
though they are not used in the sample application.

Each Command object exists in the context of a Connection object. The
Connection object must first exist, and it must be specified as the “parent” of
the Command object. This brings us to the simplified (and non-hierarchical)
object model of ADO relative to DAO and RDO, as shown in Figure 4.12. (Note
that the figure itself is somewhat simplified. For instance, Errors is actually a
collection of Error objects.)

Figure 4.12 The ADO data model.

One of the most impressive and useful aspects of ADO and VB6 is that you can
create a DataEnvironment object and use it on multiple forms (indeed, in any
module). Contrast that to the Data control or the Remote Data control, which
must be re-created for each form that will use them. This change is a leap

javascript:displayWindow('images/04-12.jpg',500,178)
javascript:displayWindow('images/04-12.jpg',500,178)

forward in the continued evolution of Visual Basic into an object-oriented
development tool.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Data Access As An Object—Introducing Data-Aware
Classes

To use a Data control in your application, you paste the control onto a form
and define properties that enable the control to communicate with the database.
When the application is running, the Data control is essentially an instance of a
class—in other words, an object.

In Chapter 5, I discuss creating data access objects and some of the theory
behind it. For now, understand that a class is a definition of an object. It is not
an object until instantiated. When you design a form in the development
environment, you attach controls, set properties, and add event procedures and
general procedures. (An event procedure is a predefined procedure that reacts
to an event such as Command1_Click (). A general procedure is one that you
create yourself as either a Sub or a Function.) All the properties, code, and so
on of that form represent the class. They are the definition of the form. The
form does not become an object until it is loaded into memory. The process of
loading it into memory is called instantiation—literally, creating an instance
of.

All objects have data, state, and behavior. An object’s data may include
information from a database, but it also includes the simple variables that you
use within your procedures. An object’s state is really those things that
describe the object. For example, a form has a Caption. An object’s behavior
describes what the object can do. A form can make itself visible by invoking
its Show method.

When a form includes a Data control, the Data control is part of the Form
object’s definition. It comprises a part of the class. Assume that you have
developed a form named frmCustomer, which consists of a Data control,
some TextBox controls bound to the Data control, and perhaps a menu and
some buttons. If you, the reader, are an object purist, you might want to

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

suspend belief as you read the next statement: In a sense, frmCustomer is the
result of a loose form of multiple inheritance.

Under inheritance, we can create a class (which, when instantiated, becomes
an object) by inheriting the attributes of another class and then adding (or
customizing) to create an entirely new class. For instance, in the real world, we
might say that cat and person are both inherited from the class called mammal.
The mammal class has certain attributes such as “has fur” and “bears its young
live.” The classes cat and person both inherit those attributes, but cat has
additional attributes such as “nocturnal,” “walks on four legs,” and “scratches
my furniture.” If an attribute is inappropriate for a new class, it is overridden.
For instance, for the class “platypus,” the behavior “bears it young live” is
overridden to “lays eggs.”

Unfortunately, Visual Basic does not truly support inheritance. You cannot
create a Form object and then inherit its properties to create a new Form
object. Each Form object is created from scratch.

Pure object-oriented programming (OOP) languages such as Smalltalk and
C++ support an extension to inheritance called multiple inheritance. With
multiple inheritance, you can inherit from more than one object to create an
entirely new object. A real-world example of that might be a motorcycle class.
We inherit from the “engine” class and the “bicycle” class to create a new
class, motorcycle, which uses attributes of both of the other classes.

If you stop and consider that the Data control and the TextBox control are both
classes, we can combine them with the Form class to create an entirely new
class, perhaps frmCustomer. Unfortunately, this falls apart when you seek to
reuse the customized behaviors of the Data control or indeed the
frmCustomer class. You can certainly copy the form, save it under a new
name, and then modify it for specific functionality (perhaps a new Form object
that will also display address information). However, if you alter the attributes
of the original frmCustomer class, the changes are not reflected in the new
form. Under inheritance, any changes to an ancestor class are propagated to its
descendants. In other words, I should be able to change the background color
of frmCustomer and then see that change reflected in all forms that inherit
from frmCustomer. VB does not do that.

The purpose of inheritance is ultimately something called reuse. I should be
able to create a class, such as a form, and then take all that work and reuse it
on other forms. The same is true for any objects that I create to interact with
the database or to enforce data validation rules. For instance, if I have a rule
that says an employee’s date of hire must be greater than his or her date of
birth, I should not have to code that in every place that accesses employee
records. I should be able to create an object that encapsulates that rule and
reuse that object wherever I manipulate employee data. Likewise, if I create a
Data control that connects to the database and retrieves employee records, I
should not have to re-create that Data control on every form object that
handles employee data.

The closest that Visual Basic comes to inheritance is a form of reuse known as
delegation. Visual Basic 4 introduced class modules. Class modules are

similar to general modules in that you can write procedures that can then be
accessed from anywhere in a VB project. However, the class module is more
like an object in that you can define properties, methods, and events. Whereas
the interface of a Data control is those properties and methods that another
object can access, the interface of a class is those properties and methods
(Subs and Functions) that you define as Public.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

You can also combine existing classes into a new class. The new class can
then take advantage of the interface of the other classes. Although this is a
simplified explanation, it is essentially what is meant by the term delegation.
Ironically, because the new class can combine the attributes of several classes,
Visual Basic actually does a better job of multiple inheritance than it does with
simple inheritance.

The inability to reuse objects in Visual Basic is partly solved with class
modules, but this did not (and still does not) provide a total solution. When
considering client/server development and its data-centric philosophy, the
problem is especially acute with data handling. Sure, you can manually code
database access from within a class module, but you lose the simplicity of the
Data control and you also lose the ability to bind controls to a data source.

Visual Basic 6 answers that problem with data-aware classes. When you add a
class module to your Visual Basic 6 project, it now has three “built-in”
properties instead of one. Besides the Name property, it now has the
DataBindingBehavior and DataSourceBehavior properties.

Further, Visual Basic now includes the BindingCollection object, which can
be used to bind classes as data sources to data-aware controls. You can even
bind data-aware classes to each other.

This newfound capability of the class module goes hand-in-hand with ADO
and OLE DB. A principal of ADO and OLE DB is that an object can be a data
source or a data consumer. This is true for data-aware class modules as well.
(Note that although the theory of data-aware class behavior is based on the
premise of OLE DB, the class is not restricted to using ADO as a data model.)

A class that is a data source interacts with the database and provides data for
other data consumer objects. It is analogous to having a Data control operating
independently of any form. By setting the class module’s
DataSourceBehavior property to vbDataSource, the class can act as a data

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

source to other objects, including other classes.

A class can also be a data consumer. By setting the DataBinding-Behavior to
vbSimpleBound, the class is bound to a single column or field from your
external database. If you set the property to vbBound-Complex, the class is
bound to an entire row or record from the external data source.

The BindingCollection object consists of bindings between a data source and
one or more consumers of that data. To access the Binding-Collection object,
you add a reference to it as you would with other ActiveX libraries (on the
Project menu, select References), as shown in Figure 4.13.

Figure 4.13 To use the BindingCollection object, first add it as a reference.

As shown in Figure 4.14, the BindingCollection object has the usual property
(Count) and methods (Add, Clear, and Remove) of collections as well as
several that are specific to data manipulation (such as DataSource and
DataMember).

Figure 4.14 You use the Object Browser to explore the various attributes of
the new BindingCollection object.

Using data-aware classes allows the encapsulation of data manipulation and
business logic into a reusable object that can not only be accessed from any
Form object, but also can be shared from project to project. The instantiated
object can even be deployed at an application server, fulfilling the goal of
DCOM as I began discussing in Chapter 1. In Chapter 10, I expand on these
concepts to create practical, reusable data and business components to drive
the enterprise-level client/server development effort.

Other Approaches To Database Development With
Visual Basic

From a strictly technical point of view, the term client/server refers to an
application involving two or more discrete processes acting in cooperation. I
discuss this in Chapter 1. However, as a practical matter, the term has come to
imply a number of other approaches to development to include the graphical
user interface (which therefore also implies event-driven development) and
rapid application development techniques.

Some of the most welcome changes in VB, even though they may not add a lot
of additional functionality, have been the new wizards and templates.

javascript:displayWindow('images/04-13.jpg',449,357)
javascript:displayWindow('images/04-13.jpg',449,357)
javascript:displayWindow('images/04-14.jpg',377,331)
javascript:displayWindow('images/04-14.jpg',377,331)

Templates are prebuilt, fill-in-the-blank objects (such as the About form) that
you can modify to your purpose rather than create from scratch. The wizards
walk you through a series of dialogs to create an object or an entire
application. The resulting object or application is not complete—you still need
to customize it (such as adding data validation edits), but the wizard eliminates
a lot of the repetitive drudgery. Further, because the wizard creates the same
“shell” over and over again, you gain a lot in terms of the reliability of the
code and the consistency of the user interface. Although the templates and
wizards will not fulfill all of your needs, where they do help, I highly urge
their use.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Visual Basic Application Wizard

When you create a new project in Visual Basic, you are prompted with a choice of a
number of templates and wizards, as shown in Figure 4.15. Of most interest are the
VB Application Wizard and the Data Project. (In Chapters 13 and 14, we delve into
IIS and DHTML applications.)

Figure 4.15 Visual Basic will help automate the creation of a variety of different
project types.

The Application Wizard generates a remarkably complete application with a simple
fill-in-the-blanks approach. Unlike the wizard bundled with VB5, the wizard in VB6
offers a lot of flexibility in how you complete the data access portion. Whereas VB5
restricted you to the Data or Remote Data controls, VB6 offers the option for a Data
control approach, an all-code approach, or a data-aware control approach. VB6
wizards also offer more presentation styles than were offered in VB5, as shown in
Figure 4.16.

Figure 4.16 Configuring the Application Wizard on how to access the database and
how to present the resulting data.

Figure 4.17 shows an application generated by the VB Application Wizard. The chart
reflects average salaries by department and gender, whereas the other form is a

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/04-15.jpg',443,290)
javascript:displayWindow('images/04-15.jpg',443,290)
javascript:displayWindow('images/04-16.jpg',483,370)
javascript:displayWindow('images/04-16.jpg',483,370)

master/detail presentation of employees by department. The form with the chart was
not built correctly by the Application Wizard (in fact, it did not even place a chart on
the form), but that problem should be rectified by the time you receive your copy of
VB6.

Figure 4.17 An application created by the VB Application Wizard.

Admittedly, the data entry forms are not attractive; it us up to you to move the controls
on the forms to suit your needs. The chart form is probably even less attractive, a
reflection of my being “artistically challenged.”

An examination of the code generated will show that VB adds comments where you
should add your own customized code. Listing 4.4 shows where VB inserted
comments prompting me to add validation code. Because the class is the data
provider, it provides public methods to move through displayed records and to edit
those records. These actions (and others) call the private
adoPrimaryRS_WillChange-Record procedure. A look at this reveals something
very similar to the validation code placeholder that VB5 added in its Data and Remote
Data control wizards. Because any form (or other module) can create an instance of
the class, the validation code you write here can be used over and over. That’s
encapsulation and reuse.

Listing 4.4 Code generated by the Wizard.

Private Sub adoPrimaryRS_WillChangeRecord _
 (ByVal adReason As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, adStatus As _
 ADODB.EventStatusEnum,
 ByVal pRecordset As ADODB.Recordset)

 'This is where you put validation code
 'This event gets called when the following actions occur
 Dim bCancel As Boolean
 Select Case adReason
 Case adRsnAddNew
 Case adRsnClose
 Case adRsnDelete
 Case adRsnFirstChange
 Case adRsnMove
 Case adRsnRequery
 Case adRsnResynch
 Case adRsnUndoAddNew
 Case adRsnUndoDelete
 Case adRsnUndoUpdate
 Case adRsnUpdate
 End Select

javascript:displayWindow('images/04-17.jpg',800,576)
javascript:displayWindow('images/04-17.jpg',800,576)

 If bCancel Then adStatus = adStatusCancel
End Sub

The Visual Basic Data Form Wizard

I, for one, see no reason to craft an application from scratch when the VB Application
Wizard will do so much of the work for you. On the other hand, the Application
Wizard is not that much help when you are adding functionality to an existing project.
This is where the Data Form Wizard can be a big help. The Data Form Wizard runs
from the Add-Ins menu and offers essentially the same functionality on a
form-by-form basis as the Application Wizard. In Figure 4.18, I used the Data Form
Wizard to create a customer maintenance form. I then spent a few minutes
customizing it to make it more usable and then added a line to the MDIForm’s menu
to open it. Time invested? Ten minutes, tops.

Figure 4.18 A customized customer maintenance form originally generated by the
Data Form Wizard.

The Visual Data Manager

Visual Basic provides the Visual Data Manager utility to help you with many of the
more mundane tasks involved in building a database-centric client/server application.
From the Add-Ins menu, I invoked the Visual Data Manager and then opened the
Coriolis VB Example data source. In Figure 4.19, you can see that the Visual Data
Manager opens a window with all of the tables in the database. I expanded the four
tables that I was interested in: Customer, Orders, LineItem, and Item. I then used
the Query Builder utility (from the Utility menu) and generated the query shown in the
SQL Statement window. From there, you can ask VB to develop a data form, run the
query to test it, and so forth.

Figure 4.19 The Visual Data Manager lets you invoke a suite of tools to generate
forms, queries, and so on.

Previous Table of Contents Next

javascript:displayWindow('images/04-18.jpg',800,576)
javascript:displayWindow('images/04-18.jpg',800,576)
javascript:displayWindow('images/04-19.jpg',800,576)
javascript:displayWindow('images/04-19.jpg',800,576)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

So…What Flavor Tastes Best?

I am partial to chocolate fudge, but when it comes to data access, I tend to lean
toward whatever seems to have the most flexibility, the most power, and is
easiest to use. In the past, that meant using three different and mutually
exclusive choices. In my mind, the introduction of ADO changes all that. In a
word, ADO is slick. Some might even say it is sexy, but I try not to get that
involved.

If you are developing desktop applications, you are already using DAO with
Jet, and if you are happy with it, there is no compelling reason not to continue
doing so. However, if you are developing beyond the desktop, and especially if
you are using ODBCDirect, you will probably want to convert to ADO.
Chapter 9 will help you do that.

Likewise, if you are using RDO and it suits your needs for the time being, I see
no reason to move to ADO either. However, that should not preclude you from
doing any additional development with ADO. If RDO is not giving you what
you need, then you probably should consider moving to ADO. Again, Chapter
8 should be of assistance in that regard.

If you are using the ODBC API in your present applications, things get a little
murkier because you have a large code base to change. My advice for the time
being is to do any new development using ADO but leave your existing code
base alone. You can always convert piece-by-piece (or form-by-form) as the
need arises.

Such is not the case with VBSQL. Although you definitely have a rather large
code base to convert, Microsoft is moving away from DB-Lib, which makes
me wonder how long VBSQL will be viable. Can you say “rewrite”? I am
concerned that you might be trapped technologically and urge you to consider
migrating to the ADO model. Again, the conversion does not have to occur all

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

at once; but you should move carefully to ensure that you don’t break what
ain’t broke already.

Finally, you face the question of the model to choose for new development.
For simple desktop development, DAO is still viable, and it is a more robust
platform than in the past. In particular, Jet keeps showing improvements. How
long Microsoft will continue to improve Jet remains to be seen, but it is
certainly not disappearing in the short term. Still, you might want to develop a
test form using both methodologies to see whether you prefer ADO. For all
other development efforts, I think ADO is the way to go. Not only does it
provide a solid, reasonably high-powered path to the database, but it also
encompasses a wide array of data sources. Further, it is Microsoft’s chosen
technology of the future and will only get better.

Where To Go From Here

I have taken some time in this chapter to explore in a reasonable amount of
depth each of the data access options available to the VB developer. I spent a
little more time with the newer technologies. For more information on
DAO-based development, move on to Chapter 5, which covers the subject in
depth. Likewise, if you are proceeding with RDO or you need to enhance
current RDO-based applications, you will want to move on to Chapter 6.

Because there is little need to do large-scale development with the ODBC API,
I have not included a separate chapter for that. However, some additional
information on ODBC can be found in Appendix C.

All readers should look at Chapter 7, which explores ADO and OLE DB in
depth. Chapter 9 uses that technology to build scalable, robust database
client/server applications.

Readers looking for even more information are urged to check out the
Microsoft Web site at www.microsoft. com or to access the Microsoft
Developers Network (MSDN), either online (www.microsoft.com/msdn/) or
on CD-ROM (with a yearly subscription fee).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1576102823/ch04/www.microsoft. com
http://www.itknowledge.com/reference/standard/1576102823/ch04/www.microsoft.com/msdn/
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Part II
Visual Basic 6 Database Programming

Chapter 5
Data Access Objects (DAO)
Key Topics:

• The DAO hierarchy

• Jet vs. ODBC workspaces

• Using DAO objects

• Using the Data control

• Transaction and concurrency management

• Database replication with Jet

As discussed in Chapter 4, Visual Basic provides a dizzying array of options
to access the database. Which one is appropriate is largely a function of what it
is you are doing. DAO is probably the simplest option, although even it can
get complicated if you get away from using data-aware controls. In this
chapter, I guide you through an in-depth examination of DAO, beginning with
the object hierarchy and then discussing the Data control. Throughout the
chapter, I provide numerous code examples (which you can also find on the
enclosed CD-ROM). At the end of the chapter, I also overview Visual Basic’s
built-in Data control, with which most VB developers are familiar.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

DAO Object Models

With Visual Basic 5, DAO had two object models (or workspaces): Microsoft
Jet and ODBCDirect. With the Data control, DAO defaults to using Jet. To use
ODBCDirect with the Data control, set the DefaultType property to 1
(useODBC). When using DAO objects in code, after creating the Workspace
object, create a Database object for Jet data models or create a Connection
object to use ODBCDirect.

Microsoft Jet

Version 3.0 of Visual Basic was the first with realistic tools to access and
manipulate a database. Microsoft Jet in particular provided an interface to
which the developer could write and access almost any relational database, as
well as a wide array of Indexed Sequential Access Method (ISAM) file
formats, such as Btrieve or dBASE. Even better, the interface was for the most
part transparent to the developer, allowing the same program to run against
data sources ranging from Microsoft SQL Server to FoxPro using Jet SQL.
(See Appendix B for a discussion of the elements of Jet SQL; see Chapters 2
and 3 for a discussion of the elements of ANSI SQL.)

Microsoft generally mentions three types of Jet-accessible back-end databases:
Microsoft databases (MDB files—in other words, Access databases), ISAM
files, and ODBC data sources (not to be confused with access via
ODBCDirect, which bypasses Jet). A Microsoft database is a hybrid between
an ISAM database (which tends to have its “tables” in separate files whereas
MS databases have all of their tables in one file) and a true relational database
management system with its own database engine.

Jet offered developers a reliable if not particularly robust method to access and
update databases. Although the Jet engine has improved in performance, it is
not nearly as efficient as a native or ODBC interface to, say, Microsoft SQL
Server. Even more, Jet’s footprint (the amount of space it takes) in memory is
much larger than that of ODBCDirect, RDO, or other comparable access
models.

The clear advantage to developers is the simplicity of the programs. Jet
handles much of the dirty work for you. If you further restrict your
development efforts to the Data control and data-bound controls, such as the
textbox, building a database application is almost a no-brainer. Indeed, we’ll
start with simple examples that do just that a little later in this chapter.

Although the performance of the Jet engine has improved with subsequent
releases, it is still hardly a barn-burner. With Visual Basic 6, the current
release of DAO is 4. Whether Microsoft will continue to develop the Jet
engine (given the introduction of Active Data Objects [ADO]) is a point of
conjecture.

Writing a client/server application for 4 or 5 users using Jet is fine, but you
probably will not be happy if you scale it to 20 or 30 users, let alone 100 or
200 users. Even more, to be a one-stop solution, Jet implements a lowest
common denominator approach to SQL. It is not a full implementation of

Structured Query Language, which limits you, the developer, to a core set of
statements. For instance, common SQL statements such as FETCH NEXT
and FETCH PRIOR are not supported. Jet relies on the application to scroll
through a result set already loaded into memory. Likewise, Jet relies on DAO
to perform transaction management. Jet itself does not directly support
COMMIT and ROLLBACK. (The RecordSet object needs to provide this
service.)

ODBCDirect

When you use ODBCDirect, Jet is bypassed. Instead, ODBCDirect creates a
small layer that actually communicates with RDO (making it questionable
whether a project using ODBC should even consider DAO). Still, there is a
large DAO code base in existence, and ODBCDirect offers DAO applications
almost the same performance as RDO. It also offers most of the same benefits,
including asynchronous executions. You cannot use stored queries, but you
can save precompiled queries as QueryDef objects. As with a stored
procedure, you can input or output (or both) parameters on a stored query by
adding Parameter objects to the QueryDef.

An ODBC Connection object can have one of four types of RecordSet
objects: Dynamic, Dynaset, Forward-Only, and Snapshot. These objects are
analogous to the ODBC cursor types of Dynamic, Keyset, Forward-Only, and
Static.

The OpenConnection, OpenRecordSet, Execute, and MoveLast methods all
allow asynchronous operations via the dbRunAsync option. You can cancel a
running operation using the Cancel method and determine the status of an
operation via the StillExecuting property.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

An Overview Of DAO Programming

In the next section, I discuss in depth each of the Data Access Objects.
Whether you are using the Data control or creating all of the objects directly in
code, the principles of DAO development remain the same; only the level of
how dirty your hands get is different. Although using the Data control greatly
simplifies development, an entirely code-based solution offers some additional
flexibility. Use whichever approach makes sense for you.

Most developers tend to be intimidated by the complexity of the DAO
hierarchy. However, a methodical review reveals that the model merely
implements into objects the interface to the database. As a developer, you
manipulate those objects using their properties and methods to read data from
and write data to the database.

The hierarchy of the DAO objects in a Jet workspace is shown in Figure 5.1,
whereas Figure 5.2 shows the DAO object hierarchy for ODBCDirect
workspaces. Note that ODBCDirect is a “flattened” model that is intuitively
simpler to understand. The Jet workspace data model is more involved because
the Jet engine itself needs to do so much more work than the equivalent
ODBCDirect data model. Put in another way, ODBC takes care of many of the
details that Jet normally needs to take care of. That is why, for the RDO and
ADO models in subsequent chapters, the hierarchies are also similarly simpler:
Each relies on the tools provided by the back-end database to manage such
things as users accounts, indexes, and so on.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 5.1 DAO objects in the Jet workspace model.

Figure 5.2 DAO objects in the ODBCDirect workspace model.

The highest level object in each hierarchy is the DBEngine object. There is
only one, even if you open both a Jet and an ODBCDirect workspace. When
you use the Data control, the DBEngine object is automatically created.
Likewise, any time you create a Workspace object in code, the DBEngine
object is automatically created (almost any reference to a DAO object causes
the DBEngine object to be created). Note, however, that if you take a
code-based approach to DAO development, you need to add a reference to the
DAO library: From the menu in Visual Basic, select Project|References. Scroll
until you find the Microsoft DAO Library 4.0 and select it.

The two entities belonging to the DBEngine object are the Errors collection
and the Workspaces collection. You will use the Errors collection to monitor
database errors as they occur. With the Data control, you can place code in an
Error event to handle database-related errors. The Workspaces collection
contains all of the Workspace objects in your application. Each Workspace
object represents a session with the database. If you are manipulating a FoxPro
file, you have a Workspace object that contains all of the objects, methods,
and properties needed to manage that file. If you are also manipulating an
Oracle database, you have another Workspace object.

In the Jet model, a Workspace object has a Users collection and a Groups
collection representing all of the authorized user and group accounts with
permissions to the database represented within the Workspace object. In
Figure 5.1, you will notice that a User object contains a Groups collection and
that a Group object contains a Users collection. This seems like a circular
reference, but it isn’t. It represents the fact that any group (permissions are
often administered at the group level in a database) can have multiple users in
it and that any user may be a member of multiple groups.

An ODBCDirect Workspace object has a Connections collection and a
Databases collection. When you create a Connection object, a corresponding
Database object is also created. The same is true in reverse. The two objects
are similar except that the Connection object has more capabilities than does
the Database object. Both have a RecordSets collection, and the Connection
object also has a QueryDefs collection.

The Jet Workspace object has only the Databases collection (in addition to

javascript:displayWindow('images/05-01.jpg',652,698)
javascript:displayWindow('images/05-01.jpg',652,698)
javascript:displayWindow('images/05-02.jpg',658,424)
javascript:displayWindow('images/05-02.jpg',658,424)

the Users and Groups collections).

When working with either ODBCDirect or Jet Workspace objects, you will
spend most of your time with RecordSet objects. The RecordSet retrieves
from the database one or more records and makes them available to be
maintained. You also use the RecordSet object to add or delete records. The
RecordSet object includes methods to update the database, handle
concurrency issues, and so on. The RecordSet object includes a Fields
collection, which represents all of the fields in each record of the record set.
Each Field object contains information such as the value of the field and its
data type.

TIP
Types Of Workspaces
Note that a workspace connecting directly to an ODBC data source is called
an ODBCDirect workspace. All others are called Jet workspaces even if they
connect to an ODBC data source via Jet.

The QueryDef object represents a stored or predefined query (on non-ODBC
databases, the query is actually stored within the database). The query can be
executed directly or it can be the source of the RecordSet object. The Fields
collection represents all of the fields of the QueryDef object, whereas the
Parameters collection allows for the maintenance of query parameters that are
not known until runtime.

A Jet workspace also has a TableDefs collection, which represents the layout
of tables stored on the database. The Relations collection stores relationships
between tables (foreign key constraints).

The Containers and Documents collections represent information about
objects within the workspace. Each Container object contains a Documents
collection. Three Container objects are predefined by DAO. The Databases
container contains Documents that store information about all saved databases
(whereas the Databases collection contains information about all open
databases). Similarly, the Tables and Relations containers contain Document
objects that describe information about saved tables and saved relationships.
The Tables Container object also contains information about saved queries.

Finally, most DAO objects (except Connection and Error) have a Properties
collection that contains all properties of the containing object. In Figures 5.1
and 5.2, the Properties collections were omitted for clarity.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

DAO Objects

The following section examines in detail each of the objects in the DAO hierarchy. I have included
a lot of code examples; you should review each one carefully, especially observing the differences
between the Jet and the ODBCDirect workspaces.

In the interest of space, I do not repeat most of the methods and properties that these object have in
common. For instance, each object except DBEngine has a Name property by which you reference
an object in a collection: RecordSet (“Employee”). Likewise, every object except Connection
and Error has a Parameters collection, so I do not discuss this separately for each object.

DBEngine

The top-level object is DBEngine—that is to say, DBEngine contains all other DAO collections
and objects. Whenever any DAO object is instantiated (such as when connecting to the database
with the Data control), DBEngine is automatically created.

The DBEngine object contains three collections: Errors is a collection of Error objects;
Workspaces is a collection of Workspace objects; and Properties is a collection of Property
objects. Workspaces is the default collection of the DBEngine object.

DBEngine has several properties:

• DefaultPassword is a string with a maximum length of 14 characters in Jet workspaces
and no limit in ODBCDirect workspaces. It is used to store a default password in case no
password is supplied at connection time. If the password is not specified, the value defaults
to an empty string. Typically, passwords are case-sensitive, although that is not always true
with an ODBCDirect data source (where it is normally a function of the back-end database
or the ODBC driver).

• DefaultUser is a string with a maximum length of 20 characters in Jet workspaces and no
limit in ODBCDirect workspaces. It is used to store a default user ID in case no ID is
supplied at connection time. If the ID is not specified, the DefaultUser property defaults to
“Admin”. Unlike the DefaultPassword property, user IDs are not case-sensitive. However,
there are restrictions on valid characters—the ID cannot contain control characters (ASCII
values 0 to 31); slashes; brackets; colons or semicolons; commas; question marks; plus or
equals symbols; asterisks; or pipe characters (“|”). Also, the ID cannot contain any leading
spaces.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• DefaultType sets or returns the default workspace type. Specify dbUseJet to create a Jet
workspace or dbUseODBC to create an ODBCDirect workspace.

• IniPath (Jet workspace only) is a string that sets or returns the Registry key where
settings such as installable ISAM DLLs for the Jet engine are maintained. The IniPath, if
used, must be set prior to the execution of any other DAO code and remains in effect as long
as the DBEngine object is instantiated. You may specify a root key of
HKEY_LOCAL_MACHINE (the default) or HKEY_LOCAL_USER in the Registry.

• LogInTimeOut is an integer that sets or returns the number of seconds that will elapse
before an error occurs when attempting to connect to an ODBC data source (Jet or
ODBCDirect workspaces). The default is 20 seconds. A value of 0 specifies no limit.

• SystemDB (Jet workspace only) is a string that sets or returns the path of the workgroup
information file. The default is System.MDW with no path. The workgroup information file
is most often used with Microsoft databases (Access files), although you can use it with any
Jet data source. It contains settings that permit or deny users and groups access to secured
data objects in the database. You must create the setting prior to instantiating the DBEngine
object, although it can follow setting the IniPath property. Once DBEngine is created,
SystemDB remains in effect until the application ends.

• Version returns the current version of DAO.

The DBEngine object also has a number of methods:

• BeginTrans is used to begin a transaction on the database. CommitTrans tells the
database to end the current transaction and make permanent all of the changes to the
database. You may optionally specify the dbFlushOSCacheWrites constant to force the
operating system to immediately write all changes to disk. Although this could adversely
affect performance, it also prevents the changes from being lost if the user turns off the PC
before the changes are written. I highly recommend using this setting, as shown in the first
example. Rollback is the opposite of CommitTrans ; it discards all changes made to the
database since the last BeginTrans and ends the current transaction or logical unit of work
(LUW). You will normally use this method when an error occurs during one or more of the
updates. Listing 5.3, later in this chapter, illustrates the use of these methods.

• CompactDatabase (Jet workspace only) takes an existing database and compacts it,
optionally creating a new collating sequence. You can also use this method to create a copy
of an existing database. The syntax is shown in the next code example. Databases are much
like the hard drive on your computer. As you add and delete records, the database quickly
becomes fragmented, resulting in loss of performance. Compacting the database rearranges
the rows in each table contiguously, resulting in less head movement to read records. Use
old_db to specify the fully qualified path and name of the database file. Use new_db to
specify the new path and name of the database file. dest_locale is where you specify a new
collation (sorting) sequence. If omitted, the locale will be the same as for old_db. The
options property allows the use of one or more of the settings summarized in Table 5.1. To
use more than one setting, add the values. src_locale is the current collation sequence and
can normally be omitted. Listing 5.3, later in this chapter, illustrates the repairing and
compacting of a database.

 DBEngine.CompactDatabase old_db, new_db, dest_locale, _
 options, password, src_locale

Table 5.1 Valid option settings.

Value Purpose

dbEncrypt Encrypts the database while compacting.

dbDecrypt Decrypts the database while compacting.

dbVersion10 new_db will be the Jet version 1.0 file format.

dbVersion11 new_db will be the Jet version 1.1 file format.

dbVersion20 new_db will be the Jet version 2.0 file format.

dbVersion30 new_db will be the Jet version 3.0 file format.

• CreateDatabase (Jet workspace only) creates and opens a new Microsoft database object.
The syntax is shown in the following code segment. workspace is a reference to an existing
Workspace object. db_name is a string containing the name of the new database file. locale
refers to the collation sequence to be used with the database, and options sets various
options for the database, such as encryption and file format (see Table 5.1). To merely copy
an existing database, use the CompactDatabase method.

 Set dbs = CreateDatabase = workspace.CreateDatabase _
 (db_name, locale, options)

• CreateWorkspace is used to create a new Workspace object. The new Workspace
object is not automatically appended to the Workspaces collection nor do you need to do so
before using it. (For more information, see “The Workspaces Collection And Workspace
Object” later in this chapter.) workspace_name is an object variable by which you will
reference the Workspace object. user_name is a string identifying the owner of the
workspace. password is a string containing the password for the Workspace object, and
type is either dbUseJet or dbUseODBC. If type is omitted, the default is to create a Jet
workspace. If the DBEngine object’s DefaultType property has been set, it will govern the
default type of workspace. Listing 5.1 creates two Workspace objects and appends them to
the Workspaces collection. Note that because the first workspace uses ODBCDirect, the Jet
engine is not loaded until the second workspace object is created. At the end of Listing 5.1,
the two Workspace objects are closed, which automatically removes them from the
Workspaces collection.

Listing 5.1 Creating Workspace objects and appending them to Workspaces.

' Create object variables
Dim wrkJet As Workspace
Dim wrkODBC As Workspace

' Create the ODBCDirect Workspace
Set wrkODBC = CreateWorkspace("ODBC Workspace", "Coriolis", _
 "Coriolis", dbUseODBC)
' Append to collection
Workspaces.Append wrkODBC

' Create the Jet Workspace
Set wrkJet = CreateWorkspace("Jet Workspace", "Coriolis", _
 "Coriolis", dbUseJet)
Workspaces.Append wrkJet

' Close the Workspace objects
wrkODBC.Close
wrkJet.Close

• Idle (Jet workspace only) can be considered similar to the Visual Basic DoEvents
function. The Idle method suspends processing, allowing pending tasks to be completed. In
a high volume, multiuser environment, DBEngine might not have the chance to release
locks. Using the Idle method allows these locks to be released, thus potentially enhancing
performance. You may optionally specify the dbRefreshCache argument, which forces any
pending writes to a Microsoft database file to be written to disk. It also refreshes the records

that are currently buffered in memory.

• OpenConnection (ODBCDirect workspace only) is similar to the OpenDatabase
method. The syntax for the method appears in the following code example. connection is a
valid Connection variable by which you reference the Connection object. Workspace is a
valid existing Workspace object. If omitted, the default Workspace object is used. The
Name argument must specify either a valid data source name (DSN)— if not specified in the
argument property—or it may contain any string. Either way, the Name argument then
becomes the Name property of the Connection object. You may also omit both the name
and the connect arguments depending on how you set the Options argument. If you allow
the ODBC driver to prompt for missing information, the DSN chosen by the user will
become the Name property. The Options argument determines if and how the ODBC driver
will prompt the user for DSN information. The valid values are listed in Table 5.2.
Read_Only specifies whether the Connection object will be read-only. If omitted, the
default is False (the Connection object is read-write). The Connect argument is an optional
string specifying how to connect to the database. If supplied, it must begin with “ODBC;”.
All parameters must be delimited by semicolons. If omitted, the password and user ID are
taken from the Password and UserName properties of the Connection object. The syntax
of the Connect property is fairly flexible, and its exact requirements will vary according to
the back-end database. A typical connect string is ODBC; DSN=Coriolis VB Example;
UID=Coriolis; PWD=Coriolis;. Listing 5.2 shows an example of using the
OpenConnection method for connecting to an ODBC data source.

 Set connection = Workspace.OpenConnection (Name, Options, _
 Read_Only, Connect)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Table 5.2 Valid options when connecting to an ODBC data source.

Value Meaning

dbDriverComplete (Default) Prompt only for missing connect information.

dbDriverCompleteRequired Prompt only for required missing information.

dbDriverNoPrompt Use settings from the Connect string.

dbDriverPrompt Display the ODBC Data Sources dialog box.

dbRunAsync Connect asynchronously. May be combined with any of the
preceding options.

Listing 5.2 The OpenConnection method.

Dim wrkODBC as Workspace
Dim conCoriolis As Connection

' Create ODBCDirect Workspace object
Set wrkODBC = CreateWorkspace("Coriolis", _
 "Coriolis", "Coriolis", dbUseODBC)

' Open Connection ' object
' Connect asynchronously and prompt only
' for missing information
Set conCoriolis = wrkODBC.OpenConnection _
 ("Coriolis", dbDriverCompleteRequired + dbRunAsycn, False, _
 "ODBC;DSN=Coriolis VB Example;UID=Coriolis;PWD=Coriolis;")

• OpenDatabase is similar to OpenConnection, but it can also be used in Jet workspaces.
When OpenDatabase is used in an ODBCDirect workspace, a Connection object is
automatically created. The syntax is shown in the next code segment. database is a valid
object variable of type Database that is used to reference the Database object. workspace
is a valid, existing Workspace object. If not supplied, the current Workspace object is
used. db_name is a string containing the name of the database. For a Jet workspace,
db_name is a qualified path and file name of a Jet database file. For ODBCDirect
workspaces, it can be a connect string as shown in the OpenConnection method. If it is

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

left blank and the connect property begins with “ODBC;”, the ODBC driver manager will
prompt the user for other information. If the connect argument is complete, then db_name
can be any string, and you can then reference the Database object using that name. For a
Jet workspace, the options argument may be either True or False (default). If True, the
database is opened in exclusive mode (no other process may use it). If another process
attempts to open it, an error results. If the database is already opened and you attempt to
open it in exclusive mode, an error results. For ODBCDirect workspaces, the value may be
any of those specified in Table 5.2. The connect argument specifies what database type
(such as Access or Paradox) to open and may also specify a password and other
information. Separate each of these parameters with semicolons. To access an ODBC data
source (regardless of whether you use Jet or ODBCDirect), begin the string with
“ODBC;”.

 Set database = workspace.OpenDatabase (db_name, options, _
 read_only, connect)

• RegisterDatabase enters connection information about the particular database into the
Windows Registry. I strongly urge that you instead use the ODBC Administrator applet in
the Control Panel. The requirements vary by database type, and you should consult the
help file for the database to determine exact requirements.

• RepairDatabase (Jet workspace only) is used to attempt to repair a corrupt database.
The database must be closed; no application may be using it when you attempt to repair it.
The method will validate all data and indexes and will delete any data that can’t be
repaired. A runtime error occurs if the repair fails. The CD-ROM contains an application
that lets you select a database for repair (see Figure 5.3) and optionally compact it.
(Modify the application as needed to add additional database types. Be sure to add a
reference to Microsoft DAO objects.)

Figure 5.3 The Database Repair application included on the CD-ROM.

• SetOption (Jet workspace only) is a method that allows you to temporarily override Jet
engine values stored in the Windows Registry. The syntax is shown in the next code
example. parameter is the Registry key to override, and new_value is the temporary new
setting. The valid parameters are dbPageTimeout, dbMaxBufferSize,
dbSharedAsyncDelay, dbMaxLocksPerFile, dbExclusiveAsyncDelay, dbLockDelay,
dbLockRetry, dbRecycleLVs, dbUserCommitSync, dbFlushTransactionTimeout, and
dbImplicitCommitSync. See your database documentation for valid values and meanings
of these parameters:

 SetOption parameter, new_value

The Errors Collection And Error Object

The Errors collection consists of Error objects. When errors occur during a DAO operation,
they are added to the Errors collection. The collection is cleared when a new DAO operation
generates an error. This means that all Error objects in the collection relate to one error
condition. Typically, the first object in the collection represents the lowest-level error. For
instance, if you select from a table that does not exist, the ODBC driver will return the first error.
The ODBC driver manager will likely then return an error, and finally, DAO will return an error
indicating that the data wasn’t found. You should check the Count property of the Errors

javascript:displayWindow('images/05-03.jpg',1024,741)
javascript:displayWindow('images/05-03.jpg',1024,741)

collection after database operations to ensure that no errors have taken place. If using the Data
control, you can also place code in the Error event to intercept any errors. If you use the New
keyword to create a new instance of a DAO object and the operation results in an error, the error
will not be appended to the Errors collection because the object does not get created and thus is
not yet part of DAO. VB’s Err object will contain the pertinent error information instead.

You can iterate through the Errors collection to examine all Error objects. Because the
collection is zero based, the Count property is always one greater than the highest index.
However, by using the For Each construct, you do not need to take this into account as you
would with a For Next loop. The following code iterates through the Errors collection,
displaying each error description:

Dim vError As Variant
For Each vError in Errors
 MsgBox vError.Description
Next

The Errors collection has only a Refresh method. Because Error objects are automatically
appended, there are no Append or Delete methods.

The Error object has properties similar to those of VB’s Err object. The Description property is
a string that contains a textual description of the error, and the Number property is a Long
containing the error number. For a list of these errors, consult “Trappable DAO Errors” in the VB
help file. The Source property is a string containing the programmatic class ID of the object
where the error occurred. The HelpFile property is a string containing the path and name of the
help file to present to the user for more information about the error. The HelpContext property is
a string containing the appropriate help context ID.

Figure 5.4 shows an application that you can copy from the CD-ROM. The application allows
you to type an SQL SELECT statement and then run it. Alternatively, you can enter an employee
number or employee last name and press the retrieve button, and the application will dynamically
create a SELECT statement and run it. The statement generated is displayed in a listbox along
with the results, including records found or errors generated.

Figure 5.4 The sample DAO Errors application allows you to dynamically generate SQL
statements and see the results. The application code is on the CD-ROM.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/05-04.jpg',605,391)
javascript:displayWindow('images/05-04.jpg',605,391)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Properties Collection And Property Object

Every DAO object except Error and Connection has a Properties collection. You can
add your own properties to Database, Field, Index, QueryDef, TableDef, or Document
properties on Jet workspaces only using the Properties collection’s Append method. (The
most common use occurs in maintaining partial replicas, as I discuss at various points in
this chapter.) You must first define its characteristics with the CreateProperty method of
the object to which you want to add the Property object. The following syntax creates a
new Property object:

Set prop_var = object.CreateProperty (prop_name, prop_type, _
 prop_val, prop_DDL)

Prop_name is a string containing the name by which you will reference the Property
object. Prop_type specifies the data type of the object, as listed in Table 5.3. Prop_val is
the initial value and prop_DDL is a boolean which, if True, indicates that this is a DDL
object. There is an example later in this chapter where we discuss the Replicable property
of the Database object.

Table 5.3 Valid Property types.

Type Description

dbBigInt Big integer (whole number with precision of 20 [unsigned] or
19 [signed])

dbBinary Binary (fixed-length binary up to 255 characters)

dbBoolean Boolean

dbByte Byte

dbChar Char (fixed-length string)

dbCurrency Currency

dbDate Date/Time

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

dbDecimal Decimal

dbDouble Double

dbFloat Float

dbGUID GUID (Global Unique Identifier used with RPCs [remote
procedure calls])

dbInteger Integer

dbLong Long

dbLongBinary Long binary (OLE object)

dbMemo Memo (variable length up to 1.2MB)

dbNumeric Numeric

dbSingle Single

dbText Text (fixed-length string up to 255 characters)

dbTime Time

dbTimeStamp Time stamp

dbVarBinary VarBinary (variable-length binary data up to 255 characters)

User-defined properties can be inherited in Jet workspaces. If you add a user-defined
property to a QueryDef object and then create a new RecordSet object using the
QueryDef object as a record source, the RecordSource will inherit the new user-defined
property.

You can determine whether a property is inherited by examining the Property object’s
Inherited property. The property is a Boolean, and True indicates that the property is
inherited. Other properties of the Property object include Name, Type, and Value, which
correspond to the prop_name, prop_type, and prop_val arguments in the
CreateProperty method discussed previously.

I have included an application on the CD-ROM called DAOHierarchy that iterates through
all DAO objects and their Properties collections. The application has a Jet workspace and
an ODBCDirect workspace. The Property objects are displayed in a listbox, as shown in
Figure 5.5.

Figure 5.5 This application iterates through all DAO objects and lists the Property
objects in each.

The Workspaces Collection And Workspace Object

Workspaces is the default collection of the DBEngine object, and it is the collection with
which you will interact the most. You will create a Workspace object for each database
session that you require. The VB documentation defines a session as “…a sequence of
operations performed by the Microsoft Jet database engine. A session begins when a user
logs on and ends when a user logs off. All operations performed during a session form one
transaction scope….” The definition is fine for Jet workspaces, but ODBCDirect

javascript:displayWindow('images/05-05.jpg',580,363)
javascript:displayWindow('images/05-05.jpg',580,363)

workspaces often have multiple transactions within a current session. Thus, I will use the
term a little more loosely than does the VB documentation.

The first time you create or refer to a Workspace object, the default Workspace object is
created as DBEngine.Workspaces (0). You create a new Workspace object with the
CreateWorkspace method of DBEngine. You must append the object to the Workspaces
collection using the collection’s Append method. You can create a “hidden” workspace by
not appending it to the collection. I discussed the creation of a workspace and appending it
to the collection under DBEngine earlier in this chapter. You can reference any of the
Workspace objects within Workspaces by using its ordinal index or by its name:
Workspaces (1) or Workspaces (“Coriolis”).

The Workspaces collection has the usual Append, Delete, and Refresh methods as well
as the Count property.

The Workspace object is comprised of different collections itself (refer to Figures 5.1 and
5.2), depending on whether it is a Jet workspace or an ODBCDirect workspace. Jet
workspaces have these collections: Databases, Groups, Users, and Properties.
ODBCDirect workspaces have Connections, Databases, and Properties. In both cases,
Databases is the default collection.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Workspace object has the following properties:

• DefaultCursorDriver (ODBCDirect workspace only) is a long equal
to one of the values shown in Table 5.4. It sets or returns the type of
cursor driver used when a new Database or Connection object is
created. (I discuss the concept of cursors, cursor libraries, cursor
stability, and so on, at some length in Chapter 11.)

Table 5.4 Valid cursor driver types.

Type Description

dbUseDefaultCursor (Default) If the server supports cursors, use them.
Otherwise, use clientside cursors.

dbUseODBCCursor Use client-side cursors.

dbUseServerCursor Use server-side cursors.

dbUseClientBatchCursor Use the client batch cursor library.

dbUseNoCursor Do not use cursors. Record set is open read-only,
forward-only with a rowset size of 1.

• IsolateODBCTrans (Jet workspace only) is a Boolean that indicates
whether transactions on the same Jet ODBC data source are isolated.
For example, assume you have two record sets open on the same ODBC
database; perhaps one is scrolling through the Employee table while
another is executing a report on the Customer table. If
IsolateODBCTrans is set to True, then both of the RecordSet objects
represent distinct transactions. If set to False, then the two RecordSet
objects comprise a single transaction and a Rollback or CommitTrans
on either RecordSet affects both objects. Having multiple transactions
is not supported by the Workspace object, so you have to open a
separate Workspace object in order to have multiple transactions on the
same ODBC data source (which is why this is a property of the
Workspace object and not the RecordSet object, which would be more

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

intuitive). A further consequence of setting IsolateODBCTrans to True
is that each workspace involving the same ODBC data source creates a
distinct connection. Therefore, for three Workspace objects connected
to a given ODBC data source, there are three separate, simultaneous
connections to the server. This can be expensive in terms of server
resources, and I recommend that you consider carefully the wisdom of
having more than one operation against the same database occur
simultaneously.

• LogInTimeOut (ODBCDirect workspace only) is an integer
representing how many seconds will elapse while trying to connect to a
database before an error occurs. A value of 0 indicates there is no limit.
This value overrides the LogInTimeOut value set at the DBEngine
level.

• Type is an integer that sets or returns the workspace type. You can set
the type only when creating the Workspace object. The valid values are
dbUseJet and dbUseODBC. For true back-end RDBMSs, we
recommend using the ODBCDirect workspace because it is more
efficient than Jet. Even better would be to consider RDO or ADO. With
an ISAM database such as Access or Paradox, you are probably better
off using the Jet model.

• UserName is a string representing the owner of the Workspace
object. If you are going to use this property, you must set it before
appending the object to the Workspaces collection. The most common
use of the property is in verifying or altering security privileges. We
discuss this option in more detail when discussing the Container object
later in this chapter.

The Workspace object supports several methods:

• BeginTrans creates a new transaction. CommitTrans commits the
current transaction. Rollback rolls back the current transaction. I
discussed these three methods under the DBEngine topic earlier in this
chapter. When you use BeginTrans with the Workspace object, you
face additional considerations. If you close a Workspace object after
issuing a BeginTrans, all changes are rolled back. If you issue a
CommitTrans or Rollback without first issuing a BeginTrans, a
runtime error occurs. If you change a record outside of a transaction
(without first issuing a BeginTrans), the change is automatically
committed. Not all ISAM databases (or ODBC drivers) support
transactions. If the database does not support transactions, the Database
object’s Transaction property will be False. Depending on how the
record set is opened, the RecordSet object may not support transactions.
In either case, issuing BeginTrans, CommitTrans, or Rollback is
ignored and no error is generated. If you use a Jet workspace, a “log
file” of transactions applied is maintained in the Temp directory. If the
disk runs out of space, an error occurs and data may be lost. Issuing a
Rollback empties the log. Issuing a CommitTrans outside of a nested
transaction also flushes the log. You can nest transactions as shown in
the next code example. Even if an inner transaction commits changes to
the database, if an outer transaction issues a Rollback, the inner
transactions are rolled back as well. Listing 5.3 illustrates the use of

nested transactions in an ODBCDirect workspace. The six textbox
controls are an array named txtFields. The two CommandButton
controls are an array named Command1. The running application is
shown in Figure 5.6. It creates Workspace, Connection, and
RecordSet objects in code, displays the results in the textboxes, allows
the user to alter data, and then rolls back the changes. Note that the inner
transaction may commit the work but that the outer will roll back all
changes anyway.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 5.3 The DAO transaction demonstration program.

Option Explicit

Private Sub Command1_Click(Index As Integer)

Dim iRtn As Integer
Dim sRaise As String
Dim sMsg As String
Dim sConn As String
Dim cSalary As Currency
Dim cSaveSal() As Currency
Dim wrkEmp As Workspace
Dim conCoriolis As Connection
Dim rsEmp As RecordSet

Select Case Index
 Case 0
 ' Create Workspace
 Set wrkEmp = CreateWorkspace _
 ("emp", "admin", "", dbUseODBC)
 ' Append to collection
 DBEngine.Workspaces.Append wrkEmp
 ' Create connection object
 sConn = "ODBC;DSN=Coriolis VB Example;UID=Coriolis;" & _
 "PWD=Coriolis;Database=Coriolis;"
 Set conCoriolis = wrkEmp.OpenConnection _
 ("", , , sConn)
 ' Create RecordSet object
 Set rsEmp = conCoriolis.OpenRecordSet _
 ("Select * from Employee", dbOpenDynamic)
 ' Start of outer transaction.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 wrkEmp.BeginTrans
 ' Start of inner transaction.
 wrkEmp.BeginTrans
 With rsEmp
 ' Make sure row count is accurate
 .MoveLast
 .MoveFirst
 ' Set up array to save old salaries
 ReDim cSaveSal(rsEmp.RecordCount)

 ' Prompt for changes to salary
 Do Until .EOF
 txtFields(0) = !emp_no
 txtFields(1) = !emp_fname
 txtFields(2) = !emp_lname
 txtFields(3) = Format$(!emp_Salary, "###,##0.00")
 cSaveSal(rsEmp.AbsolutePosition) = !emp_Salary
 sMsg = "What percent raise for " & !emp_fname & _
 " " & !emp_lname & " making $" & _
 Format$(!emp_Salary, "###,##0.00") & "?"
 sRaise = InputBox$(sMsg, "Raise", "0")
 cSalary = !emp_Salary * (1 + Val(sRaise) / 100)
 If cSalary <> !emp_Salary Then
 ' If changed, edit the record
 .Edit
 !emp_Salary = cSalary
 ' Save the change
 .Update
 End If
 ' Move to next record
 .MoveNext
 Loop
 ' Commit the changes?
 ' This is the inner transaction!!!
 If MsgBox("Save all changes?", vbYesNo + _
 vbQuestion,"Commit or Rollback") = vbYes Then
 wrkEmp.CommitTrans
 Else
 wrkEmp.Rollback
 End If
 ' Display changes (if any)
 .MoveFirst

 Do While Not .EOF
 txtFields(0) = !emp_no
 txtFields(1) = !emp_fname
 txtFields(2) = !emp_lname
 txtFields(3) = cSaveSal(rsEmp.AbsolutePosition)
 txtFields(4) = !emp_Salary
 If MsgBox("Show next record?", vbOKCancel + _
 vbQuestion, "Display Salary Changes") _

 = vbCancel Then
 Exit Do
 End If
 .MoveNext
 Loop
 ' Roll back all updates
 ' This is the outer transaction
 wrkEmp.Rollback
 .Close
 End With
 conCoriolis.Close
 Case 1
 End
End Select

End Sub

Figure 5.6 The DAO transaction application.

TIP
About Workspaces And Transactions
Transactions always have workspace scope. That is, a transaction affects all objects within
the Workspace object, even if the object contains multiple Database objects. If you issue a
CommitTrans for one of multiple Database objects, all the Database objects are affected.
If you need to manage transactions separately for different Database objects, create
additional Workspace objects. Note that you can nest transactions within a Workspace
object. See the BeginTrans method later in the list for more information.

• The Close method closes the Workspace object. Its use is illustrated near the end
of Listing 5.3 where wrkEmp is closed. You cannot close the default workspace.
(Attempting to close it is ignored; no error is generated.)

• The CreateDatabase method (Jet workspace only) creates a new Database object.
The ODBCDirect Database object is retained for backward compatibility with Jet
workspaces and is created automatically when you use the OpenConnection method.
However, although you can use the Database object much as you would use it in a Jet
workspace, the Connection object is richer in functionality. Use of the method was
discussed under the DBEngine topic earlier in this chapter.

• The CreateGroup method (Jet workspace only) creates a new Group object. The
syntax is shown in the next code segment. object is either a Workspace or User that
will own the Group object. The name may have any combination of letters, numbers,
and underscores but must begin with a letter. pid (personal identifier) is a string of 4
to 20 characters, which Jet uses in conjunction with an account name to identify a user
or group in a Workspace object.

 Set Group = object.CreateGroup (name, pid)

• The CreateUser method (Jet workspace only) creates a new User object. The
syntax is shown in the following code example. object is either a Workspace or
Group. pid is the personal identifier and password is a string of up to 14 characters
containing the User object’s password.

javascript:displayWindow('images/05-06.jpg',799,295)
javascript:displayWindow('images/05-06.jpg',799,295)

 Set User = object.CreateUser (name, pid, password)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Users Collection And User Object

The Users collection is a Jet-workspace-only construct belonging to the
Workspace and Group objects (see Figure 5.1). The User object is an account
with a certain set of permissions to the underlying data within a Workspace
object. Specifically, User objects enforce access permissions and restrictions
on Document objects within the Workspace that in turn represent the
databases, tables, and queries. (Note that permissions are actually administered
at the document level by the Permissions property of the Document object;
see “The Documents Collection And Document Object” later in this chapter.)
Given a User object, you can create a Workspace object with the same set of
permissions as the User object. You can append a User object to a Group
object’s User collections, having the effect of giving that User object the same
permissions as the Group object. Conversely, you can append a Group object
to the Groups collection of a User object, having the effect of making that
User object a member of that group.

Note that because of the way the Group and User objects tend to reference
each other, it is a good idea to invoke the Refresh method before referencing a
collection: wrkEmp.Users.Refresh.

DAO automatically creates two User objects, one named Admin and the other
Guest. Admin is added to the Group objects known as Admin and Users,
whereas Guest is made a member of the Group object named Guests. See
“The Groups Collection And Group Object” later in this chapter for more
information about these groups.

To create a new User object, use the Workspace or Group object’s
CreateUser method. I discussed this method earlier in the chapter in the
discussion on Workspaces.

The User object has two collections: Groups and Properties. The object has

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

three properties: Name, Password, and PID. I discussed each of these under
the CreateUser method.

The User object has two methods. I discussed the CreateGroup method
earlier in the chapter. You use the NewPassword method to change the
password of an existing User object. The syntax is shown in the next code
segment. old_password is the object’s current password. new_password is
the object’s revised password. Note that you must have the proper permissions
to alter the Password property of a User object. To clear the password, use a
zero-length string for new_password. Passwords are case-sensitive. I also
discussed this method earlier in the chapter under the DBEngine topic.

object.NewPassword old_password, new_password

The Groups Collection And Group Object

The Groups collection is a Jet-workspace-only construct belonging to either a
Workspace object or a User object (see Figure 5.1). To create a new Group,
use the CreateGroup method, which we discussed earlier in the chapter. You
can append a Group object to a User object’s Groups collection, which grants
that user membership in the group (also see the discussion of the User object
earlier in this chapter). Because of the way users and groups tend to reference
each other, it is good practice to use the Refresh method before referencing
the collection.

The Group object represents a group of users who have common access
permissions and restrictions to Document objects within a Workgroup object.
Note that the actual security is maintained at the Document object level via
the Permissions property.

The Group object has two collections (see Figure 5.1), Users and Properties;
two properties, Name and PID; and one method, CreateUser. All of these
were discussed earlier in the chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Databases Collection And Database Object

The Databases collection contains all Database objects created within a Workspace object. The
Database objects are automatically appended to the collection and are created by the Workspace
object’s CreateDatabase method, which I discussed earlier in this chapter. The Databases
collection has only the Refresh method and the Count property. The Database object is
automatically removed from the collection when you close it with the Close method. You should be
sure to close all RecordSet objects within a Database before closing the Database object.

The Database object consists of a number of collections: Containers, QueryDefs, Relations, and
TableDefs are Jet-workspace-only collections. Properties and RecordSets are collections common
to both Jet and ODBCDirect workspaces. TableDefs is the default for Jet workspaces, whereas
RecordSets is the default for ODBCDirect workspaces (see Figures 5.1 and 5.2).

The Database object is used to manipulate an open database. However, note that although you can
use it for ODBCDirect workspaces, the Connection object has more functionality. The Database
object has a number of properties:

• CollatingOrder (Jet workspace only) affects the sort sequence by setting which alphabet to
use for string comparisons.

• The Connect property sets or returns a string describing connection parameters to a
database. The syntax for the Connect property is shown in the next code example. object is a
valid Database, TableDef, QueryDef, or Connection object. (For QueryDef objects, the
property is read-only.) db_type is a valid database type, as listed in Table 5.5. If under a Jet
workspace, you are performing a connection to a table linked via a Microsoft database (called
a linked table), the db_type argument must be a valid ODBC connection string. parameters
is an optional argument with requirements that vary by database (see the database
documentation for more information). If supplied, the db_type must end in a semicolon and
all parameters must be semicolon delimited. If using ODBCDirect, db_type must be ODBC;.
If you do specify this as a db_type and supply no parameters, then the ODBC driver displays
a dialog box of all available data sources. If a password is required but not supplied in the
parameters argument, a logon dialog is displayed. For more information, see the
OpenDatabase method of the Workspace object discussed earlier in this chapter.

 object.Connect db_type; parameters;

Table 5.5 Connect string settings.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Database Type Specifier Example

Microsoft Jet Database [database]; drive:\path\filename.mdb

dBASE III dBASE III; drive:\path

dBASE IV dBASE IV; drive:\path

dBASE 5 dBASE 5.0; drive:\path

HTML Import HTML Import; drive:\path\filename

HTML Export HTML Export; drive:\path

Lotus 1-2-3 WKS Lotus WK1; drive:\path\filename.wks

Lotus 1-2-3 WK1 Lotus WK1; drive:\path\filename.wk1

Lotus 1-2-3 WK3 Lotus WK3; drive:\path\filename.wk3

Lotus 1-2-3 WK4 Lotus WK4; drive:\path\filename.wk4

Microsoft Excel 3.0 Excel 3.0; drive:\path\filename.xls

Microsoft Excel 4.0 Excel 4.0; drive:\path\filename.xls

Microsoft Excel 5.0 Excel 5.0; drive:\path\filename.xls

Microsoft Excel 95 Excel 5.0; drive:\path\filename.xls

Microsoft Excel 97 Excel 8.0; drive:\path\filename.xls

Microsoft Exchange Exchange 4.0;
MAPILEVEL=folderpath;
[TABLETYPE={ 0 | 1 }];
[PROFILE=profile;]
[PWD=password;]
[DATABASE=database;]

drive:\path\filename.mdb

Microsoft FoxPro 2.0 FoxPro 2.0; drive:\path

Microsoft FoxPro 2.5 FoxPro 2.5; drive:\path

Microsoft FoxPro 2.6 FoxPro 2.6; drive:\path

Microsoft Visual FoxPro 3.0 FoxPro 3.0; drive:\path

Paradox 3.x Paradox 3.x; drive:\path

Paradox 4.x Paradox 4.x; drive:\path

Paradox 5.x Paradox 5.x; drive:\path

ODBC ODBC; DATABASE=database;
UID=user; PWD=password;
DSN=datasourcename;
[LOGINTIMEOUT=seconds;]

None

Text Text; drive:\path

• The Connection property (ODBCDirect workspace only) returns the Connection object
that corresponds to the Database object. Note that the Connection object and Database
object are two different variables that correspond to the same open database.

• The DesignMasterID property (Jet workspace only) returns a 16-byte value that
corresponds to a Design Master in a replica set. A Design Master is a database to which
system tables, system fields, and replication properties have been added, and it represents the
first replica in a replica set. I discuss replicas throughout the chapter.

• The QueryTimeOut property is an integer that sets how long a query will run before
timing out. A value of 0 specifies no limit.

• The RecordsAffected property returns the number of records that were affected by the
most recent invocation of the Execute method. For example, if you were to run the following

query on the sample Employee table, the RecordsAffected property would return 35 because
there are 35 rows on the Employee table:

 Update Employee Set Emp_Sal = Emp_Sal * 1.08

• The Replicable property (Jet workspace only) must first be created by using the
CreateProperty method (discussed under the Properties topic earlier in this chapter). It must
be a Text data type. If the value is “T”, the database becomes replicable. Once the property is
set, it cannot be changed. The following code illustrates this process:

 Dim prpReplica
 Set prpReplica = .CreateProperty ("Replicable", dbText, "T")
 dbEmp.Properties.Append prpReplica
 dbEmp.Properties ("Replicable") = "T"

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Microsoft Jet And Replication

One of the neater features of Microsoft databases in general and Microsoft Jet in
particular is the ability to perform database replication. Replication refers to the process
of being able to distribute portions or all of a database to distributed locations and then
merge back all the changes to the master database. For instance, a traveling salesperson
might have a copy of the database on his or her laptop computer and then be able to add
and maintain customers and take new orders. The changes to the replicated database can
be merged back into the main database at a later time.

A replica is a copy of a database, including all of its objects (tables, queries, and so on)
and is a member of a replica set. The replica set is all of the replicated copies of the
database. Changes in one replica are synchronized and applied to all other replicas in the
replica set.

When you set the Replicable property of a Jet database, you should first make a backup
of the database because a lot of changes will be done immediately. When you set this
property on a Database object, Jet adds fields, tables, and properties to all database
objects. All tables, as an example, add three new columns that help Jet determine what
rows have changed so they can then be merged back into other copies of the database.

If you inherit an object and that object has a Replicable property, you might assume that
the inherited object will have the same Replicable value. This is not accurate. You still
need to explicitly set the value. I discussed the concept of inheriting properties earlier in
the chapter in the discussion of Properties collections and the Property object.

• ReplicaID (Jet workspace only) returns a 128-bit Globally Unique Identifier
(GUID). In terms of a replicable database, the GUID on both the server and the client
must match for the two to bind. The ReplicaID, then, is a unique identifier of the
replica itself. It returns a reference to the Design Master, which is the first replica in
a replica set. Different replicas can serve as the Design Master, but there can only be
one Design Master at a time. This value is stored in the MSysReplicas system table
in the database.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Updatable is a Boolean that returns True if the underlying object is updatable.
There are a number of reasons an object might not be updatable, from the mode in
which it was opened (such as read-only) to the nature of the query itself (not having
a primary key or a join on several tables) to the nature of the record set type (such as
snapshot).

• V1XNullBehavior (Jet workspace only) is applicable to Jet version 1 databases
converted to later versions. It is a Boolean that, if set to True, indicates zero-length
text fields will be converted to Null.
• Version returns the ODBC driver version on ODBCDirect work-spaces, but it
returns the version of Jet on Jet workspaces.

The Database object has the following methods:

• Close closes the object. You should be sure to first close all RecordSet objects.

• CreateProperty (Jet workspace only) adds a property to the Properties
collection. I discussed this method earlier.

• CreateQueryDef creates a QueryDef object and appends it to the QueryDefs
collection. The syntax is shown in the next code example. object is a valid Database
or Connection object. sql is a string containing an SQL statement. In an
ODBCDirect workspace, it can also contain the name of a stored procedure on a
Microsoft SQL Server database. You can leave sql blank and set the SQL property
of the object after you create it. We discuss the QueryDef object later in this chapter.

 Set QueryDef = object.CreateQueryDef (name, sql)

• CreateRelation (Jet workspace only) creates a Relation object that specifies the
relationship between two objects in TableDef or QueryDef objects. I discuss the
Relation object later in this chapter. The syntax of the statement is shown in the
following code segment. db is a valid Database object. table and foreign_table are
Variants of type String that identify the two tables involved in the relationship.
attributes is an optional argument that specifies how two tables are related. See the
discussion of the Relationship object for more information.

 Set relation = db.CreateRelation (name, table, _
 foreign_table, attributes)

• CreateTableDef (Jet workspace only) creates a TableDef, which I discuss later in
this chapter. The syntax of the statement is shown in the next code segment. db is a
valid Database object. attributes is one or more constants that describe attributes of
the object. source is the name of the table in the underlying database that the object
refers to. connect is a string that describes the connection. See the discussion of the
Connect property of the Database object for more information.

 Set tabledef = db.CreateTableDef (name, attributes, _
 source, connect)

• Execute runs an SQL statement such as SQL SELECT or UPDATE. Two
variations on the statement appear in the following code example. In the first
example, object is a valid Database or Connection object. source is a string that
contains either an SQL statement or the name of a QueryDef object. options is one
or more constants (as listed in Table 5.6) that specify the data integrity
characteristics of the query. The second form of the statement specifies the

QueryDef object and thus omits the name argument. Execute does not return a
record set. For best performance, I recommend issuing a BeginTrans before the
Execute method. Immediately following, perform a Rollback or CommitTrans
method to end the transaction.

 object.Execute source, options
 querydef.Execute options

Table 5.6 Valid options constants for the Execute method.

Value Description

dbDenyWrite Other users cannot write to the object. Jet only.

dbInconsistent (Default) Perform inconsistent updates. Jet only.

dbConsistent Perform consistent updates. Jet only.

dbSQLPassThrough Perform an SQL pass-through query. Jet only.

dbFailOnError Perform rollback if an error occurs. Jet only.

dbSeeChanges Generate runtime error if another user changes data. Jet only.

dbRunAsync Perform asynchronous query. ODBCDirect only (Connection
and QueryDef).

dbExecDirect Do not first call ODBC SQLPrepare function. ODBCDirect
only (Connection and QueryDef).

• MakeReplica (Jet workspace only) makes a new replica from another database
replica. (See the discussion of Replicable and ReplicaID properties earlier in this
section.) The syntax for the method is shown in the next code segment. database is a
valid Database object. replica is a string containing the full path and name of the
new replica. It cannot already exist. description is a string describing the replica.
This user-defined argument might be something such as “Replica of California
Customers”. options is one or both of the constants dbRepMakePartial, which
specifies the replica is a partial replica (not all records are included). You need to set
the ReplicateFilter properties of the TableDef object to determine what data will
actually be replicated. Initially, all properties are set to False, meaning no data will
be replicated. dbRepMakeReadOnly prevents users from changing the data in the
replica. However, when synchronized with other replicas, the changes in those
replicas will be applied to the new replica. This is a useful option when replicating
data that is normally static (such as a ZIP code table).

 database.MakeReplica replica, description, options

• NewPassword (Jet workspace only) creates a new password for the object. See the
discussion of this method earlier in the chapter under the User object.

• OpenRecordSet opens a new RecordSet object and appends it to the RecordSets
collection. I discuss the RecordSet object later in this chapter. Two variations on this
method are shown in the next code example. recordset is the name of a valid object
variable of type RecordSet. object is a valid Database or Connection object in the
first example or a valid QueryDef, TableDef, or RecordSet object in the second
example. source is a string that specifies the source of the data. For Jet workspace
table-type record sets, this can only be a table name. For ODBCDirect workspaces,
this can be a table name, a query name, or an SQL statement. type is the record set
type, as outlined in Table 5.7. Under ODBCDirect, the default is

dbOpenForwardOnly. Under Jet, the default is dbOpenTable. If Jet cannot open
this type or if you are opening an ODBC data source, the default is dbOpenDynaset.
Valid options and lockedits are listed in Tables 5.8 and 5.9. I discuss these settings
in more detail later in this chapter under “The RecordSets Collection And
RecordSet Object.”

 ' Database and Connection objects
 Set recordset = object.OpenRecordSet (source, type, _
 options, lockedits)
 ' QueryDef, TableDef and RecordSet objects
 Set recordset = object.OpenRecordSet (type, options, _
 lockedits)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Table 5.7 Valid RecordSet type constants.

Constant Jet ODBCDirect Description

dbOpenTable Yes No
Opens a table-type record
set.

dbOpenDynamic No Yes
Opens a dynamic-type
record set.

dbOpenDynaset Yes Yes
Opens a dynaset-type
record set.

dbOpenSnapshot Yes Yes
Opens a snapshot-type
record set.

dbOpenForwardOnly Yes Yes Opens a
forward-only-type record
set object.

Table 5.8 Valid RecordSet option constants.

Constant Jet ODBCDirect Description

dbAppendOnly Yes No User can only append new
records. Dynaset only.

dbSQLPassThrough Yes No Passes an SQL statement
to ODBC for processing.
Snapshot only.

dbSeeChanges Yes No Generates an error if
another user changes data.
Dynaset only.

dbDenyWrite Yes No Prevents other users from
modifying or adding
records.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

dbDenyRead Yes No Prevents other users from
reading data in a table.

dbForwardOnly Yes No Creates a forward-only
record set. Snapshot only.

dbReadOnly Yes No
Prevents changes to the
record set.

dbRunAsync Yes No
Runs query
asynchronously.

dbExecDirect No Yes Does not first call ODBC
SQLPrepare function.

dbInconsistent Yes No Allows inconsistent
updates. Dynaset,
snapshot only.

dbConsistent Yes No Allows only consistent
updates. Dynaset,
snapshot only.

Table 5.9 Valid RecordSet lockedit constants.

Constant Jet ODBCDirect Description

dbReadOnly Yes Default
Prevents users from
making changes.

dbPessimistic Default Yes
Uses pessimistic
locking.

dbOptimistic Yes Yes
Uses optimistic
locking.

dbOptimisticValue No Yes Uses optimistic
concurrency based on
row values.

dbOptimisticBatch No Yes
Enables batch
optimistic updating.

• PopulatePartial (Jet workspace only) populates a partial replica,
synchronizing it with the Design Master. It takes only the argument of
the replica to synchronize as a string containing a path and name of the
replica (see MakeReplica). Based on the values of the Filter properties
of the TableDef objects, the replica is populated with data based on the
current DataBase object.

• Synchronize (Jet workspace only) synchronizes two replicas. The
syntax is shown in the next code example. The database argument is a
valid Database object. pathname is a String containing the path and
name of the replica. exchange is a constant indicating which way to
replicate. dbRepExportChanges sends changes from the Database
object to the replica. dbRepImpChanges sends changes from the
replica to the Database object. dbRepImpExpChanges, which is the
default, sends changes both ways. dbRepSyncInternet replicates
changes between two files connected by an Internet pathway. To use

this, specify a URL instead of a file name and path in the pathname
argument. Note that when you replicate changes, changes to the design
of the database are always replicated first. This occurs even if
replication is going only one way. The two replicas cannot have the
same ReplicaID. If synchronizing partial replicas with other partial
replicas, you must use the PopulatePartial method instead.

 database.Synchronize pathname, exchange

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Connections Collection And Connection Object

The Connections collection is an ODBCDirect workspace construct that
encompasses the functionality of the Databases collection and adds additional
functionality. If you create a Database object in an ODBCDirect workspace, a
corresponding Connection object is also created and added to the
Connections collection. Conversely, if you create a new Connection object, a
corresponding Database object is also created and added to the Databases
collection. To create a new Connection object, see the CreateConnection
method of the Workspace object discussed earlier in this chapter. Connection
objects are automatically appended to the collection. Because you can open the
same Connection object more than once, its Name may appear more than
once in the collection.

The Connection object itself represents a connection to an ODBC data source.
It contains two collections (see Figure 5.2): QueryDefs (the default) and
RecordSets. The Connection object has a number of properties, several of
which are in common with the Database object and were discussed earlier in
this chapter: Connect, QueryTimeOut, RecordsAffected, and Updatable.
Other properties of the Connection object include the following:

• Database returns an object variable that is a reference to the
corresponding Database object.

• StillExecuting is a Boolean that indicates whether a query run
asynchronously is still executing. It is available when invoking the
Execute or CreateConnection methods.

• Transactions is a Boolean that returns True if the underlying data
source supports transactions.

The Connection object also has a number of methods in common with the
Database object: Close, CreateQueryDef, Execute, and OpenRecordSet. I
discussed these methods earlier in this chapter under the Database object

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

topic. Connection also has a Cancel method that you can use to cancel a
currently executing asynchronous query: myConnection.Cancel.

The Containers Collection And Container Object

The Containers collection is a Jet-workspace-only construct representing all
of the Container objects in a Database object. Some of these Container
objects are defined by the Jet engine, whereas others are defined by other
applications. Because Container objects are automatically appended to the
Containers collection, the collection has only a Refresh method and a Count
property.

The purpose of the Container object is to group similar types of Document
objects. For the Database object, the Container contains information about
saved databases. For the Table object, the Container maintains information
about tables and queries. For the Relationship object, Container maintains
information about saved relationships.

The Container object has two collections: Properties and Documents (which
is the default). It has the following properties:

• AllPermissions returns all of the permissions of the current
UserName property, as listed in Table 5.10. Some of these permissions
may be specific to the user; others may be inherited from the group to
which he or she belongs. The Document object also has this property,
although the possible permissions are slightly different. See also the
Permissions property.

Table 5.10 Container and Document permission constants.

Constant Container Document Description

dbSecDBAdmin No Yes User can replicate the
database and change the
password.

dbSecDBCreate No Yes User can create new
databases. This setting is
valid only on the
Databases container in
the workgroup
information file
(System.MDW).

dbSecDBExclusive No Yes
User has exclusive access
to the database.

dbSecDBOpen No Yes
User can open the
database.

dbSecDeleteData Yes Yes User can delete records.

dbSecInsertData Yes Yes User can add records.

dbSecReadDef Yes Yes User can read the table
definition, including
column and index
information.

dbSecReplaceData Yes Yes User can modify records.

dbSecRetrieveData Yes Yes User can retrieve data
from the Document
object.

dbSecWriteDef Yes Yes User can modify or delete
the table definition,
including column and
index information.

• The Inherit property indicates whether new Document objects will
inherit the Permissions property from this object. Set it to True to cause
new objects to inherit the Permissions property.

• The Owner property is a string that is the name of an object in either
the Groups or Users collection and represents the owner of this object.
As such, he or she has the privilege of changing the Owner property,
assuming other permissions permit this.

• The Permissions property is a long containing constants indicating
which permissions have been assigned to the UserName property. This
does not include permissions inherited by membership in a group (see
AllPermissions). These permissions are summarized in Table 5.11.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Table 5.11 Valid Permissions constants.

Constant Table Database Other Description

dbSecCreate Yes No No
User can create new
documents.*

dbSecDBAdmin No Yes No User can replicate database and
change password.*

dbSecDBCreate No Yes No User can create new databases.*

dbSecDBExclusive No Yes No
User has exclusive access to the
database.

dbSecDBOpen No Yes No User can open the database.

dbSecDeleteData Yes No No User can delete records.

dbSecDelete No No Yes User can delete the object.

dbSecFullAccess No No Yes
User has full access to the
object.

dbSecInsertData Yes No No User can add records.

dbSecNoAccess No No Yes
User doesn’t have access to the
object.*

dbSecReadSec No No Yes User can read the object’s
security-related information.

dbSecReadDef Yes No No
User can read the table
definition.

dbSecReplaceData Yes No No User can modify records.

dbSecRetrieveData Yes No No User can retrieve data from the
Document object.

dbSecWriteOwner No No Yes User can change the Owner
property setting.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

dbSecWriteSec No No Yes
User can alter access
permissions.

dbSecWriteDef Yes No No User can modify or delete the
table definition.

*Not valid for Document objects.

• UserName is a string representing the user of the object.

The Container object has no methods.

The Documents Collection And Document Object

The Documents collection is a Jet-workspace-only construct belonging to the
Container object. Document objects are automatically appended to the Documents
collection. Document objects describe instances of objects specified by the owner
Container object. With the properties discussed in this section, you can obtain
information about saved databases (in a database Container), tables (in a table
Container), and relationships (in a relationship Container).

The Document object has one collection: Properties.

The Document object has a number of properties in common with its Container
object: AllPermissions, Name, Owner, Permissions, and UserName. See the
discussion of the Container object earlier in this chapter for explanations of these
properties. Other properties include the following:

• Container returns an object variable that is a reference to the parent
Container object.

• DateCreated returns the date and time that a table was created for table-type
record sets (Jet workspace only) or that the object was created in all other cases.
LastUpdated returns the date and time the table or object was last updated.
Both values are of type Variant with an underlying data type of Date.

• KeepLocal is similar to the Replicable property of the Database, Document,
TableDef, and QueryDef objects. It is a user-defined property and must
therefore be created using the CreateProperty method discussed earlier in this
chapter for the Property object. You should create this property before making
an object replicable. Then, this Document object will not be replicated with the
other objects. The following code segment is adapted from the Microsoft VB
help file and shows KeepLocal being used on the Northwind database:

 Dim dbNorthwind As Database
 Dim docTemp As Document
 Dim prpTemp As Property
 Set dbNorthwind = OpenDatabase("Northwind.mdb")
 Set docTemp = dbNorthwind.Containers("Modules"). _
 Documents("Utility Functions")
 Set prpTemp = docTemp.CreateProperty("KeepLocal", _
 dbText, "T")
 ' Set an existing document
 docEmp.Properties("KeepLocal") = "T"

 docTemp.Properties.Append prpTemp
 dbNorthwind.Close

• Replicable is a user-defined property that determines whether the object can
be replicated. I discussed this method under the Database topic earlier in this
chapter.

The Document object has no methods.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The TableDefs Collection And TableDef Object

The TableDefs collection is a Jet workspace construct belonging to the Database object. With
the individual TableDef objects, you can manipulate a table definition, including validation rules.
When you create a TableDef object, you must append it to the TableDefs collection. The
TableDef object has three collections: Properties, Fields, and Indexes (see Figure 5.1).

To create a TableDef object, you invoke the Database object’s CreateTableDef method, which
I discussed earlier in this chapter.

The TableDef object has some properties in common with the Document object, discussed
earlier in the chapter: DateCreated, KeepLocal, LastUpdated, Name, and Replicable. It also
has the following properties:

• Attributes is a long consisting of one or more constants describing various attributes of
the object, as listed in Table 5.12. You can write to this property even if the object has not
been appended to the collection. Note that attributes of the individual columns are stored in
the Attributes property of the individual Field objects. Attributes of the relationships are
stored in the Attributes property of the individual Relationship objects.

Table 5.12 Valid Attributes constants of the TableDef object.

Constant Description

dbAttachExclusive The table is a linked table opened for exclusive use.1

dbAttachSavePWD Save the user ID and password with the connection information.1

dbSystemObject Table is a system table provided by Jet.2

dbHiddenObject Table is a hidden table provided by Jet.2

dbAttachedTable Table is a linked table from a non-ODBC data source. Read-only.

dbAttachedODBC Table is a linked table from an ODBC data source. Read-only.

1Not valid for local tables.
2You can set this constant on an appended TableDef object.

• ConflictTable is a string containing the name of the table that caused an error during a
replica synchronization process. If this is a zero-length string, there was no conflict. This

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

property is useful when two users make changes to the same record. The update of one
record will be replicated to the other, but the second user’s changes will not be replicated.
This property tells you the name of the table that contains the conflict information so that
the problem can be resolved. The table name will be suffixed with “_conflict”. For
instance, if a conflict occurs on the Employee table, this value will be Employee_conflict.
• Connect is a string containing connect information. I discussed this property earlier in
the chapter in the Database topic.

• RecordCount is a long containing the total number of records in the object. If the table
is a linked table, then the RecordCount is always -1.

• The ReplicaFilter is used with partial replicas (I discussed this earlier in the chapter
when I discussed the Database object). The three settings are True (replicate all records),
False (don’t replicate any records), or a string specifying a filter to use to determine which
records to replicate. It is specified similar to the RecordSet object’s Find criteria
argument. You cannot use any aggregate functions or user-defined functions. Before
changing the filter, be sure to execute the Synchronize method. After changing the filter,
invoke the ReplicatePartial method. Listing 5.4 replicates only the employees from the
state of California to a partial replica contained in the “California.MDB” file.

Listing 5.4 Using ReplicaFilter and performing a partial replication.

Dim tdfEmp As TableDef
Dim sFilter As String
Dim dbCoriolis As Database

' Open the database
Set dbCoriolis = OpenDatabase("Coriolis.mdb")

' Define the TableDef as the employees table
Set tdfEmp = dbCoriolis.TableDefs("Employees")
' Synchronize first! This is a full replica
dbCoriolis.Synchronize "California.mdb"

' Set the replica filter
sFilter = "Emp_St = 'CA'"

' Now do the partial replication
tdfEmp.ReplicaFilter = _
 sFilter dbCoriolis.PopulatePartial "California.mdb"

• The SourceNameTable property is a string that specifies the name of a linked table or a
base table in a Jet workspace. In other words, it is the name of the underlying table of the
TableDef object.

• The ValidationRule for a TableDef object differs from that for a Field object in that it
can apply to multiple fields in the table. The ValidationRule property allows you to
validate values entered or maintained by the user on the underlying object (the table, in this
case) by creating a rule similar to an SQL WHERE clause without the WHERE keyword.
The data entered by the user must conform to the rule set in the ValidationRule or the
change is rejected and the message entered into the ValidationText property is displayed.
For example, the following code enforces the rule for the Item table that price must be
greater than cost and that the cost must be greater than zero:

 ' tdfItem is an existing TableDef
 tdfItem.ValidationRule = Str$(Item_Price) & " > " & _

 Str$(Item_Cost) & " AND " & Str$(Item_Cost) & " > 0"

• The ValidationText property sets the text of a message that will be displayed if an edit
does not pass the ValidationRule. The following code sets the property:

 tdfItem.ValidationText = "Price must be greater than" & _
 "cost and cost must be greater than 0!"

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The TableDef object has a number of methods:

• The CreateField method creates a new Field object, which you must
append to the Fields collection manually. I discuss the Field object later in
this chapter. You cannot delete a Field object from the collection if an Index
object is referencing it. The syntax for the CreateField method is shown in
the next code example. object is an existing Field, TableDef, or Relation
object. type is the data type of the new Field object. Table 5.3 earlier in the
chapter listed the valid data types. size is a Variant (subtype Integer) that is
used to set the maximum size of a text field.

 Set field = object.CreateField (name, type, size)

• The CreateIndex method creates a new Index object. The syntax is shown
in the next code example. You must manually append the Index object to the
Indexes collection. I discuss Index later in this chapter.

 Set Index = TableDef.CreateIndex (name)

• OpenRecordSet opens a new RecordSet object.

• The RefreshLink method allows you to refresh connection information.
For instance, you could change the Connect property to attach to a different
data source. When you do, you should issue the RefreshLink method to
physically attach to the new data source. Note that once you change a data
source, you need to use the Refresh method on all collections (Fields and
Indexes) belonging to the TableDef object so that they will also be in sync.

The Fields Collection And Field Object

The Fields collection is a construct belonging to a TableDef, QueryDef,
RecordSet, Relation, or Index object (see Figures 5.1 and 5.2). It represents all of
the fields associated with that object. Whereas a TableDef object represents a table
within a database (represented by the Database object), the Fields collection of

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Field objects represents all of the fields or columns on that table. For an Index
object, the Fields collection is the database fields represented in that index.

Within a RecordSet object, you use the Fields collection to read and set values
from the current record. For other objects, such as TableDef, the Field objects are
the specifications of the field (such as data type).

When referring to a Field object in the collection, you can reference it by its Name
property or by its ordinal number (as in any other collection). However, the ordinal
number represents the actual order in which the fields appear within the owning
object. For instance, if you were to append to the Fields collection objects
representing Emp_Salary, Emp_LName, and then Emp_FName, Emp_LName
would be ordinal number 1 (the collection is zero-based) and would appear to be the
second column on the Employee table.

The Field object has a number of properties that you use depending on its context.
For example, FieldSize is an important property in terms of the TableDef object,
whereas Value is a frequently used property when dealing with Field objects
belonging to the RecordSet object. As such, different properties are available
depending on the owner of the Field object. These are summarized in Table 5.13.

• AllowZeroLength is a Boolean that sets whether a text or memo field can
contain a zero-length string.

• Attributes is a Long containing one or more constants with which you can
specify various attributes of the Field object, such as whether it can be
updated (dbUpdatableField). dbAutoIncrField causes the value of the field
in new records to increment to a new Long value; this is useful for primary
keys, such as a customer number. dbDescending specifies that a Field object
in an Index will sort in descending order. dbFixedField specifies that the
field is fixed length. This is the default for numeric values. dbVariableField
specifies that the field is variable length. dbHyperLinkField is used with a
memo field to specify that it contains a hyperlink. dbSystemField specifies
that the field contains replica information.

• CollatingOrder is a Long containing a constant that specifies a collation
sequence (sort order).

• DataUpdatable is a Boolean indicating whether the field can be updated.
True indicates the field is updatable.

• DefaultValue is a string of up to 255 characters specifying a default value
for the field. The string can contain the special value GenUniqueID(), which
causes a unique random number to be assigned as a value of the Field object.
The string can also contain any expression except a user-defined function.

• FieldSize returns a Long indicating the size of the Field object. For a
memo field, this is the number of characters. Note that the number of
characters and number of bytes may not be the same, depending on whether
ANSI or multibyte characters are used. For a numeric field, it is the number
of bytes.

• ForeignName is used in referential integrity relationships. ForeignName
contains the name of a Relation object. If used, the Relation object’s
TableName property contains the name of the table on whose primary key
this Field object is dependent. For example, if the Field object is part of the
Orders table containing the definition of the Cust_No field, then the

ForeignName property is set to the name of that Relation object whose
TableName property is set to Customer. Thus, the Value property of the
Field object is constrained to already existing Cust_No values on the
Customer table.

• OrdinalPosition is an integer that sets or returns the relative position of the
Field object within the Fields collection.

• OriginalValue contains the original value of the Field object when first
retrieved. This is useful during batch updates so that you can determine
whether another process has altered a record in between the time that you
retrieve it and the time you update it. If a change occurred, then the new
value of the field is shown in the VisibleValue property. When the
VisibleValue is different from the OriginalValue, a collision is said to have
occurred. I talk at more length of transaction and concurrency issues in
Chapter 12. Listing 5.8 illustrates some techniques to handle collisions.

• Required is a Boolean indicating whether the field must contain a non-null
value. Setting this property to True is the equivalent of specifying Not Null
in a table Create statement.

• Size is used with the text data type to set a maximum number of characters
(up to 255 characters). For most data types, the Type value determines the
maximum size and this property is set automatically. See also the FieldSize
property.

• SourceField and SourceTable set or return the name of the field (or
column) and file (or table) to which this Field object corresponds. If the
object is used for a customer’s last name, then SourceField would be
Cust_LName and the SourceTable would be Customer.

• Type sets or returns the data type of the Field object. It is a constant as
listed in Table 5.3 earlier in this chapter.

• ValidateOnSet is a Boolean that dictates when the data will be validated.
If True, the data is validated as soon as it is set. If False, it is validated only
when being updated to the table.

• ValidationRule was discussed earlier in this chapter under the TableDef
object. However, unlike the ValidationRule property of the TableDef object,
the ValidationRule can only reference the Field object to which it applies. In
other words, the ValidationRule property of the “Cust_LName” Field
object cannot reference the “Cust_FName” Field object.

• ValidationText sets or returns the text that will be displayed if data does
not pass validation. See the ValidationRule example earlier in this chapter
under the TableDef topic.

• Value contains the value of the Field object. For instance, the
“Cust_LName” Field object might have a Value of “Smith”.

• VisibleValue is used in conjunction with the OriginalValue property
discussed in concurrency management in batch updates.

Table 5.13 Properties of the Field object and when they are available.

Property Index QueryDef RecordSet Relation TableDef

AllowZeroLength No No Jet only Jet only Jet only

Attributes Yes Yes Yes No Yes

CollatingOrder No Jet only Jet only No No

DataUpdatable Yes Yes Yes Yes Yes

DefaultValue No Jet only Jet only No Jet only

FieldSize No No Yes No No

ForeignName No No No Yes No

Name Yes Yes Yes Yes Yes

OrdinalPosition No Yes Yes No Jet only

OriginalValue No No ODBCDirect* No No

Required Yes Yes Yes No Yes

Size No Yes Yes No Yes

SourceField No Yes Yes No Yes

SourceTable No Yes Yes No Yes

Type Yes Yes Yes No Yes

ValidateOnSet No No Jet only No No

ValidationRule No Jet only Jet only No Yes

ValidationText No Jet only Jet only No Yes

Value Yes No Yes No No

VisibleValue No No ODBCDirect* No No

*Only if DefaultCursorDriver is dbUseClientBatchCursor.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Field object has three methods. I discussed the CreateProperty method earlier in
this chapter in the Properties collection section. The other two methods help in
dealing with large memo or long binary fields. GetChunk retrieves all or a portion of
such a field. AppendChunk adds data to the end of a memo or long binary field. Note
that the first time you use AppendChunk on a field, the value of the field is replaced.
Subsequent calls to AppendChunk then add to the end of the field. GetChunk uses
the syntax shown in the following code segment. variable is a Variant of type String.
RecordSet is a valid RecordSet object. Field is a valid Field object. offset is a Long
specifying from which byte to start copying, and length is how many bytes to copy.
The syntax for AppendChunk is also shown. source is a Variant of type String from
which data is to be copied to the Field object.

Set variable = RecordSet ! Field.GetChunk (offset, length)
Recordset!Field.AppendChunk, source

The Indexes Collection And Index Object

The Indexes collection contains all of the Index objects of a TableDef object in a Jet
workspace (see Figure 5.1). You create an Index object using the TableDef object’s
CreateIndex method. You should then use the Append method to append it to the
collection. However, you can only do that if the TableDef is updatable (as denoted by
the Updatable property of the TableDef).

An index is used on a database either to speed up access or to act as an integrity
constraint. I discussed indexes in Chapter 2. You can place an index on one or more
columns in a table, such as Cust_LName and Cust_FName. When ordering by
Cust_LName or by both Cust_LName and Cust_FName, the database will use the
indexes to tremendously improve performance. An index can be unique, in which case
it also acts as an integrity constraint by preventing any duplicate values in the column
or columns on which the index is defined. For instance, if a unique index were created
on the last and first name fields of the Customer table, the database would allow

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

duplicate values of “Smith” in Cust_LName, but it would allow only one
combination of “Smith” in Cust_LName and “John” in Cust_FName.

An index becomes “active” only when it is appended to the Indexes collection. If the
index is unique and there is a duplicate value in the column or columns covered, then
a trappable error occurs. Because the index becomes active when appended to the
collection, you must set all of its properties before appending it.

An Index object has two collections: I discussed Properties earlier in this chapter and
Fields right before this topic. The Fields collection is used, of course, to specify what
columns comprise the index.

The Index object has the following properties, which you use to maintain and
manipulate the index. Listing 5.5 demonstrates the use of most of the properties.

• Clustered is a Boolean indicating whether the index is clustered. Some ISAM
files and most relational databases support clustering of data. A table may have
only one clustered index on it. The clustering specifies in what order the data is
physically stored on the table. Microsoft databases (MDB files) do not support
clustering. You should consult your database documentation for whether your
database does support clustering and what restrictions are enforced. For
example, most (but not all) databases require that the clustered index be
specified when the table is created or before any data is added to the table.
ODBC data sources always return False for this property; the clustered index is
not detected. By and large, you are better off maintaining the clustering
information at the database level and not within your Visual Basic program.
Because of performance considerations, you should also consult with your
DBA.

• DistinctCount is a Long that returns the number of unique values in the
index. If the index is on one column, then the property is equivalent to the
number of unique values in that column. If the index covers more than one
column (called a compound index or composite index), then the property is the
number of unique combinations of those columns. Note that this property may
not always reflect the actual number of distinct properties. This information is
typically maintained in the database’s system tables. Some databases have an
Update Statistics command that should be run periodically to update this type
of information (which is helpful to the query optimizer). From Visual Basic,
you should use the CreateIndex method if you need this property to be exact.

• Foreign is a Boolean indicating whether this index references a column in
another table in a referential integrity relationship. In other words, if this
property is True, the index represents a foreign key to a parent table.

• The IgnoreNulls property is a Boolean that determines how null values are
handled. If a field allows null values, you can set this property to False to
ignore those null values and thus speed searches. You use this property in
association with the Required property, which is a Boolean that determines if
null values are allowed. True is the equivalent of the Not Null clause in the
CREATE TABLE statement. If IgnoreNulls is True and Required is False,
then null values are allowed but are not reflected in the index. If IgnoreNulls
and Required are both False, then null values are allowed and are also reflected
in the index. If Required is True, then the IgnoreNulls property is irrelevant
because there can be no null values.

• The Primary property is a Boolean indicating whether the index is the
primary key of the table. A table can have only one primary key, and by
definition, it is unique.

• The Unique property is a Boolean indicating whether the index is unique.

NOTE
An Index object does not specify in what order the data is stored, only in what order
the data will be returned when the index is used in an Order By clause.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 5.5 demonstrates the use of the Index object using the sample Access
database supplied on the CD-ROM.

Listing 5.5 Using the Index object.

' Declare variables
Dim dbCoriolis As Database
Dim tdfEmployee As TableDef
Dim idxName As Index

' Open the database object
Set dbCoriolis = OpenDatabase("Coriolis.mdb")
' Open the Employee table
Set tdfEmployee = dbCoriolis!Employee

' Create a new index object
Set idxName = tdfEmployee.CreateIndex("Name")
' Set properties as needed
With idxName
 ' Create a non-unique index on the employee
 ' last name and first name fields
 .Fields.Append .CreateField("Emp_LName")
 .Fields.Append .CreateField("Emp_FName")
 ' Not unique
 .Unique = False
 ' Do not ignore null values
 .IgnoreNulls = False
End With

' Make the index active (builds the index)
tdfEmployee.Indexes.Append idxName

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

' Display how many unique values there are
MsgBox "There are " & _
 tdfEmployee.Indexes.Index ("Name").DistinctCount & _
 " unique values."

The Index object also has two methods: CreateProperty and CreateField. Both
were discussed earlier in the chapter, in the Properties collection and TableDefs
collection sections, respectively.

The Relations Collection And The Relation Object

The Relations collection contains all of the Relation objects of a Database object
and is created using the CreateRelation method, which I discussed earlier in this
chapter in the Database object section. After creating a Relation object, you
should append it to the Relations collection.

A Relation object sets or returns how columns in a database relate to one another.
You can determine if the relationship is one-to-one or one-to-many. You can also
specify how columns are to be used when joining two tables. The default is a
natural or inner join, which simply specifies that data is returned from both tables
if the join condition is satisfied. However, you can also specify the use of an outer
join. An outer join states that even if the join condition is not satisfied, some data
is to be returned. Consider the following selection:

SELECT DEPT_NO, DEPT_NAME, EMP_NO, EMP_FNAME, EMP_LNAME
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = EMP_DEPT_NO

If a department did not happen to have any employees in it, it would not be listed
because the join condition would not be satisfied. We can solve that by creating
an outer join. A left outer join is how we indicate that it is okay if the information
on the left-hand side of the comparison is missing; list the other information
anyway. In this example, a left outer join states that even if a department number
is missing on the department table, list all employees. A right outer join is just the
opposite. It indicates that even if no employees are in a particular department, the
department information should be returned. We can perform outer joins using the
Attributes property of the Relation object.

The Relation object has two collections (see Figure 5.1)—Fields and
Properties—which were discussed earlier in this chapter.

The Relation object has these properties:

• The Attributes property is one or more constants and describes the
relationship between the Field objects in the Fields collection associated
with this Relation object. dbRelationUnique specifies the relationship is
one-to-one. dbRelationDontEnforce means there is no referential integrity
enforced. dbRelationInherited means that the relationship is enforced in
some other database than the current database (this is a Microsoft Access
concept only). dbRelation-UpdateCascade specifies that any updates to a
value will cascade down to dependent values. For instance, if a customer
number is changed on the Customer table, then all of the customer

numbers on the referenced Orders table will also be updated to reflect the
change. dbRelationCascade is similar, specifying that if a parent row is
deleted, all child rows will also be deleted. For example, if a customer is
deleted, all of the customer’s orders will also be deleted. dbRelationLeft
and dbRelationRight are used with Microsoft Access to specify a left outer
join or a right outer join as the default join type.

• The Table and ForeignTable properties specify the parent and child
tables in a relationship. The Attributes property describes how to relate
them. Use the Fields collection to set or determine what fields are involved
in the relationship.

• The PartialReplica is a Boolean that, if True, specifies that the Relation
should be considered when populating a partial replica from a full replica.
This has implications if a row in a partial replica has its parent or child link
broken because the partial replica does not include the parent or child
information. If set to True, associated information will be included in the
partial replica, even if it’s not defined to be a part of it in the TableDef
object’s PartialReplica property.

The Field object has one method, CreateField, which I discussed earlier in the
chapter in the TableDefs topic.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The QueryDefs Collection And QueryDef Object

The QueryDefs collection maintains all QueryDef objects of a Database
object (see Figure 5.1) or a Connection object (see Figure 5.2). The QueryDef
object represents a saved query. To create a QueryDef object, use the
CreateQueryDef method, which I discussed earlier this chapter when I
discussed the Databases collection. In a Jet workspace, the QueryDef object
is permanent (that is, it is saved in the database). For ODBCDirect
workspaces, it is a temporary object and is destroyed when the application
ends or the object is unloaded from memory. QueryDef objects are manually
appended to the collection.

The QueryDef object consists of the Fields collection (which I discussed
earlier in the chapter) and the Parameters collection (which I discuss later in
the chapter). I illustrate the use of the QueryDef object in Listing 5.6, later in
this chapter, under the Parameters section.

The QueryDef object has a number of properties, which you can use to specify
how the query will run and behave:

• The CacheSize property (ODBCDirect workspace only) is a Long
that sets or returns how many rows will be cached locally. In a Jet
workspace, all records are cached locally. A setting of 0 turns off
caching. Otherwise, the value must be between 5 and 1,200 but cannot
exceed the memory available. Also, see the CacheStart property of the
RecordSet object. You can fill the cache by invoking the FillCache
method or simply by moving through the record set. Note that the
CacheSize property is a tuning parameter. By caching records locally,
you can improve performance by eliminating how many times rows
have to be retrieved from the server. However, you also don’t want to
set this too high because the user may not be able to interact with the
data until the cache fills. A good compromise setting is 100 rows.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• The Connect property specifies connection parameters to the database
and was discussed earlier in this chapter in the Database section.

• The DateCreated and LastUpdated properties (Jet workspace only)
return when the object was created and when it was last updated.

• The KeepLocal property (Jet workspace only) applies to partial
replicas. Before using this property, it must first be created, which I
illustrated under KeepLocal earlier in the chapter in our discussion of
the Document object. Setting this property causes the object not to be
distributed to other replicas.

• LogMessages (Jet workspace only) causes messages returned from an
ODBC database to be written to a log file. The property is a Boolean
where True causes messages to be logged. The messages are contained
in a table within the database. The name of the table is the user name
appended with a sequential number such as “Admin-01” or
“Admin-02”.

• MaxRecords is used to limit the number of records that will be
returned from an ODBC data source. It is a Long where 0 specifies no
limit. As a practical matter, you will want to limit the number of records
returned by making your SQL SELECT statements as restrictive as
possible. However, this setting is useful in limiting potentially
“runaway” selects, such as when testing. Once the maximum number of
records is reached, no more will be returned, even if more fit the
selection criteria.

• The ODBCTimeOut property indicates the number of seconds that
will occur before an executing query will time out. Like the
MaxRecords property, this is useful in reining in a potential runaway
query. A value of 0 specifies no limit. A value of -1 indicates that the
default Database or Connection QueryTimeOut value should be used.

• The Prepare property (ODBCDirect workspace only) is a Long that
indicates whether a query should be prepared before being executed.
You can ask the database to prepare a statement, which is roughly
equivalent to compiling it. The database analyzes the query and
determines the optimum access path to the data. It is then stored
temporarily on the database until run. In general, a query that is going to
run in less than three seconds does not need to be prepared. Where a
query is more complex or will take more time to execute, you may get
somewhat better performance by preparing it before execution. Also, if
you are going to run the same query repeatedly, it may make sense to
prepare it first. The value dbQPrepare causes the query to be prepared,
whereas dbQUnPrepare causes the query to run dynamically (without
being prepared). You can override dbQPrepare by setting the Execute
method’s Options argument to dbExecDirect.
• The RecordsAffected property is a Long that returns the number of
records affected by the most recent Execute. This is the number of
records added, modified, or deleted. In ODBCDirect workspaces, the
value is meaningless when performing a Drop Table statement (the
value will not reflect the number of records deleted).

• The Replicable property sets or returns a value that determines if the

current object should be replicated. I discussed this property’s usage
earlier in the chapter when I discussed the Database object.

• The ReturnsRecords property (Jet workspace only) sets or returns a
Boolean that indicates whether an SQL passthrough query returns
records. An SQL UPDATE command, for instance, does not return any
records. If the query does return records, you should set this property to
True; otherwise, set it to False.

• SQL is a string containing the query to be executed by the QueryDef
object. In Jet workspaces, you should use Jet SQL (see Appendix B)
unless you are performing a passthrough query, in which case you
should use your database’s SQL dialect (such as Oracle or MS SQL
Server). In ODBCDirect workspaces, you use the database’s dialect.
(Note that the ODBC driver for your database may not necessarily
implement 100 percent of your database’s functionality. Refer to your
ODBC driver’s documentation.) The SQL statement can contain
parameters. The parameters (see the discussion of the Parameters
collection later in this chapter) must be set prior to execution of the
query. You can also call a stored procedure with or without parameters
in ODBCDirect workspaces.

• The StillExecuting property (ODBCDirect workspace only) returns a
Boolean indicating whether a query being run asynchronously is still
executing. You cannot manipulate data retrieved until this property is
False.

• The Type property sets or returns the query type, as listed in Table
5.14. In general, this is a read-only property, meaning that DAO reports
back to you the type of query stored in the QueryDef object.

Table 5.14 Valid QueryDef object Type values.

Constant Jet ODBCDirect Description

dbQAction Yes Yes
A query that changes data
such as Update.

dbQAppend Yes Yes
Adds records to the end of a
table.

dbQCompound Yes No A compound query.

dbQCrosstab Yes Yes A cross-tab query.

dbQDDL Yes Yes Data definition language
(that is, Create and Drop).

dbQDelete Yes Yes A query that deletes rows.

dbQMakeTable Yes Yes A query that creates a new
table from an existing record
set.

dbQProcedure No Yes A stored procedure.

dbQSelect Yes Yes A Select statement.

dbQSetOperation Yes Yes A Union query (combines
two or more Select queries).

dbQSPTBulk Yes No With
dbQSQLPassThrough, a
query that doesn’t return
records.

dbQSQLPassThrough Yes No A passthrough query.

dbQUpdate Yes Yes An action query that changes
a range of records.

• The Updatable property returns True if the query definition itself can
be updated, even if the resulting record set is read-only.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The QueryDef object has a number of useful methods:

• The Cancel method (ODBCDirect workspace only) cancels a currently running
asynchronous query.

• The Close method closes the QueryDef object and removes it from the collection and
from memory.

• The CreateProperty method creates a new Property object. We discussed this method
earlier in the chapter in the Properties section.

• The Execute method runs the query and takes the syntax shown in the next code
example. The query must be an action query (see the Type property). The options
argument is one or more constants, as shown in Table 5.8 earlier in the chapter. After the
query has been run, you can use the RecordsAffected property to determine how many
records were modified. In Jet workspaces, you will get better performance if you place the
Execute statement after an explicit BeginTrans statement. Listing 5.3 demonstrated the
BeginTrans method.

 querydef.Execute options

• The OpenRecordSet method, demonstrated in Listing 5.3 and discussed earlier in the
chapter under the Databases topic, creates a new RecordSet object based on the
QueryDef object and appends it to the RecordSets collection. The syntax is somewhat
different from when used within a Database or Connection object and is shown in the
next code segment. The object is a valid object variable of type QueryDef, RecordSet, or
TableDef. type is the type of record set to open, as listed in Table 5.7 earlier in the
chapter. options is one or more constants, as listed in Table 5.8, and lock is a constant
specifying what locking strategy to use, as listed in Table 5.9 earlier in the chapter. I
expand on locking and options strategies later in this chapter when I discuss the RecordSet
object.

 Set recordset = object.OpenRecordset (type, options, lock)

The Parameters Collection And Parameter Object

The Parameters collection contains all of the Parameter objects of a QueryDef object. A
parameter is a value that is supplied to a query at runtime and can be thought of much like a

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

variable in your program where a value is supplied during execution. You might create a query
with a placeholder similar to “Where Cust_No = ?”. Here, the question mark represents a value
that will be supplied before the query is actually run. You supply the value via a Parameter
object. This allows you to create a stored query where you do not know in advance what some of
the values will be. You supply the value via the Value property of the Parameter object.
Additionally, you can use the Direction property to determine whether the parameter is input,
output, or both, much as you would with a stored procedure on a database.

Imagine you have this query stored about your employees:

SELECT EMP_DEPT_NO, EMP_GENDER, EMP_NO, EMP_FNAME,
 EMP_LNAME, EMP_SALARY
FROM EMPLOYEE
WHERE EMP_DEPT = ?
 AND EMP_GENDER = ?
ORDER BY EMP_DEPT, EMP_LNAME, EMP_FNAME

You want to be able to run this query, supplying the department number and gender at runtime.
You first create a QueryDef object to store the query definition and then two Parameter objects
to supply the missing information.

The code in Listing 5.6 creates a QueryDef object with two parameters for department number
and gender, creates a RecordSet based on the QueryDef, and then displays the results on the
screen shown in Figure 5.7. The application (which is also on the CD-ROM) prompts the user to
supply a department number and a gender and then displays all the records that fit that criteria.
The query itself creates the two parameter objects, as shown on the first highlighted line. After
executing the statement, you can examine the Parameters collection in the Immediate window.
If you type “? dbCoriolis.CreateQueryDef.Parameters.Count”, the answer will be 2. Type “?
dbCoriolis.CreateQueryDef.Parameters (0).Name”, and the answer is Dept. Notice in the
statement that you use SQL data types when “declaring” the parameter type instead of Visual
Basic data types.

Listing 5.6 Demonstration of the QueryDef, Parameter, and RecordSet objects.

Private Sub Command1_Click()
Dim dbCoriolis As Database
Dim qdfDeptGenEmpSal As QueryDef
Dim rsReport As RecordSet
Dim sCoriolis As String
Dim sGender As String
Dim iCtr As Integer
Dim iDept As Integer
' Change this to reflect your path
sCoriolis = "c:\coriolis.mdb"

Set dbCoriolis = OpenDatabase(sCoriolis)

' Create a temp QueryDef object
' Use 2 parameters

Set qdfDeptGenEmpSal = _
 dbCoriolis.CreateQueryDef("", _
 "PARAMETERS Dept Integer, Gender Char ; " & _
 "SELECT EMP_DEPT_NO, EMP_GENDER, EMP_NO, EMP_FNAME, " & _

 "EMP_LNAME, EMP_SALARY FROM EMPLOYEE WHERE " & _
 "EMP_DEPT_NO = [Dept] AND EMP_GENDER = [Gender] " & _
 "ORDER BY EMP_DEPT_NO, EMP_LNAME, EMP_FNAME")

' Prompt the user for the values to search for
iDept = Val(InputBox("Enter Department to Search For", _
 "Department", "100"))
GenderBad:
sGender = UCase$(InputBox("Enter Gender to Search For",
 "Gender", "F"))
If sGender <> "F" And sGender <> "M" Then
 MsgBox "Gender must be M or F!", vbOKOnly + _
 vbExclamation, "Gender Crisis"
 GoTo GenderBad
End If

' Set the parameters
qdfDeptGenEmpSal.Parameters("Dept") = iDept
qdfDeptGenEmpSal.Parameters("Gender") = sGender

' Open the RecordSet
Set rsReport = _
 qdfDeptGenEmpSal.OpenRecordSet(dbOpenSnapshot)

' Scroll to last record to ensure accurate record count
rsReport.MoveLast
rsReport.MoveFirst

' Display the results
For iCtr = 0 To rsReport.RecordCount - 1
 If iCtr > 0 Then
 ' Display More?
 If MsgBox("Display More?", vbYesNo + vbQuestion) _
 = vbNo Then
 Exit For
 Else
 rsReport.MoveNext
 End If
 End If
 txtFields(0).Text = rsReport!EMP_DEPT_NO
 txtFields(1).Text = rsReport!Emp_Gender
 txtFields(2).Text = rsReport!Emp_No
 txtFields(3).Text = rsReport!Emp_FName
 txtFields(4).Text = rsReport!Emp_LName
 txtFields(5).Text = rsReport!Emp_Salary
Next

' Close everything
rsReport.Close
qdfDeptGenEmpSal.Close
dbCoriolis.Close

End Sub

Figure 5.7 This application returns all records that match the department and gender entered by
the user.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/05-07.jpg',460,208)
javascript:displayWindow('images/05-07.jpg',460,208)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Parameter object has no methods. It does have these properties:

• Direction (ODBCDirect workspace only) determines whether the parameter is
input, output, or both. This is most useful with stored procedures (see Chapter 11).
Some RDBMSs, such as Microsoft SQL Server, can determine the direction of
parameters. Others (depending especially on the ODBC driver being used) cannot
determine the direction. Therefore, it is safest to set the direction property prior to
executing the procedure. The possible values are dbParamInput, which is the
default and indicates an input parameter, such as in the example in Listing 5.6;
dbParamOutput, which indicates an output parameter (a parameter that the
database will supply, such as a column in a query result); dbParamInputOutput,
which passes information to the procedure and receives information from the
server; and dbParamReturnValue, which is used to receive the return value from
the procedure.

• The Type property specifies the data type of the Parameter. If you examine
Listing 5.6, you see that you use SQL data types and not the equivalent Visual
Basic data types. If you make the assignment directly, and not as part of the
CreateQueryDef method, then you must use one of the Visual Basic constants
listed in Table 5.3 earlier in this chapter.

• The Value property is the actual value stored in the parameter. Because it is the
default property of the object, you can omit it in assignments and references, as I
did in Listing 5.6. Alternatively, I could have coded the assignments as shown here:

 qdfDeptGenEmpSal.Parameters("Dept").Value = iDept
 qdfDeptGenEmpSal.Parameters("Gender").Value = sGender

The RecordSets Collection And RecordSet Object

The DAO object with which you will most often interact is the RecordSet object. The
RecordSets collection contains all of the RecordSet objects in a Database object or, in
an ODBCDirect workspace, a Connection object. When you open a RecordSet object, it

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

is automatically appended to the collection. When you close it, it is automatically
removed. You can open the same RecordSet object more than once, meaning that you
can have duplicate named RecordSet objects within the same collection. To refer to
them, you must create an object variable to reference them uniquely, as shown in this
code:

' Create two object variables
Dim rsSet1 As RecordSet
Dim rsSet2 As RecordSet

' qdfSample is an existing QueryDef object
' First instance of the RecordSet
Set rsSet1 = qdfSample.OpenRecordSet(dbOpenSnapshot)
' Second instance of the RecordSet
Set rsSet2 = qdfSample.OpenRecordSet(dbOpenSnapshot)

The RecordSet object itself is the program’s near-exclusive interface to the database. It
represents either all of the records in a base table (in a table-type record set) or the rows
generated from a query.

Depending on whether you use a Data control to access the records, you can generate up
to five types of record sets. You should use the type that provides the functionality you
need but uses the least resources. In other words, if you need to look up records for a
report but you don’t need to scroll forward and backward through the records, you should
use a forward-only-type record set instead of the snapshot-type. The latter provides more
flexible access to the records (you can move forward and backward through the records)
but also takes more resources.

The types of record sets that you can generate follow:

• A table-type record set (Jet workspace only) represents one entire base table. You
can add, delete, and modify records and move through the records in any direction.

• A dynaset-type record set is also fully updatable and you also can move freely
through the records. However, the rows can consist of one or more fields from
multiple tables. Depending on what fields are actually represented, you may be
restricted in whether you can update. This is a function of the database and not of
the record set. For instance, you generally cannot update a record if the record set
does not contain the primary key of that record. Use the Updatable property to
determine if the record set can be updated.

• A snapshot-type record set is not updatable. If other users add or change records
on the database, they are not included in the snapshot until it is closed and
reopened. You can move freely through the records. This is most useful for data
that you need to reference but not change, such as a postal code lookup table.

• A forward-only-type record set is identical to a snapshot except that you can only
move forward through the records.

• A dynamic-type record set (ODBCDirect workspace only) is the result of a query
against one or more tables. You can add, update, or delete records. Depending on
the nature of the data returned, the database may not allow you to update, but this is
not a restriction of the record set. For instance, you generally cannot update a
record if the record set does not contain the primary key of that record. Use the
Updatable property to determine whether the record set can be updated. The record

set automatically reflects the changes, additions, and deletions made by other users
to the database that affect your records.

To specify the type of record set, use one of the constants listed in Table 5.8 earlier in this
chapter. This is specified in the type argument of the OpenRecordSet method, which I
discussed earlier in this chapter with the Database topic. Most of the listings in this
chapter show examples of opening record sets, closing them, and referencing them.
Listing 5.3 makes extensive use of a RecordSet object in an ODBCDirect workspace,
whereas Listing 5.6 illustrates the use of a RecordSet object in a Jet workspace. As
shown, the use is nearly identical.

When you open a record set, the current record is always the first record (denoted by the
property AbsolutePosition =0). If there are no records, the BOF and EOF properties are
both true and the RecordCount property is equal to 0.

The RecordSet object has two collections, each of which I discussed earlier in the
chapter. The Properties collection contains all of the Property objects of the RecordSet
object. The Fields collection denotes all of the fields within the RecordSet object. You
can examine each Field object to determine the data type of each field in the record set
using the Field object’s Type property. Use the Value property to examine the value of
each field.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The properties that are available when using the RecordSet property depend both on the type of
workspace (Jet or ODBCDirect) and on the type of record set. The properties are discussed in turn
in the following list:

• AbsolutePosition is a Long that returns the current record number. Alternatively, you can
set the property to move to a specific record number within the RecordSet (except on a
forward-only-type record set). The AbsolutePosition is zero-based so the highest record
number will always be one less than the number of records. Specifying an AbsolutePosition
of less than zero or greater than the number of records causes a runtime error. If no record is
current, this property is equal to -1.

• BatchCollisionCount (ODBCDirect workspace only) returns the number of records that
did not complete the last batch update. A collision in a batch update occurs when you
attempt to update a record that has been altered because you retrieved it. This can only
happen in a multiuser environment or when your application opens multiple record sets on
the same data. Use this property along with the BatchCollisions property, which is an array
of bookmarks of those records on which collisions occurred. This allows your application to
then move to each record and correct the problem. Once the problem is rectified, you can
invoke the Update method again. If there are any more collisions, then these two properties
(BatchCollisionCount and BatchCollisions) are repopulated. Visual Basic knows not to
re-update those records for which no collision occurred because their RecordStatus is
changed to dbRecordUn-Modified once successfully updated.

• The BatchSize (ODBCDirect workspace only) property sets and returns how many
statements are sent to the server at a time during a batch update. Note that not all ODBC
drivers support more than one statement being sent at a time. The default value is 15.

• The BOF and LOF properties both return Boolean values that determine whether the
current record position is before the first record (BOF) or after the last record (LOF). If both
values are True, then there are no valid records. If BOF is True but LOF is False, there are
valid records, but the current record position is before the first record. If you are positioned
on the last record and you delete it, the LOF property may not accurately reflect the fact that
you are now beyond the last record. In either case, if you do delete the last record in a record
set, you should perform a MoveLast to reposition to the new last record in the record set. If
there are valid records and BOF is True, a runtime error results if you then attempt to
perform a MovePrevious. Likewise, if EOF is True and you then attempt to perform a
MoveNext, a runtime error also occurs. Note that if you have an empty record set and add a
record, BOF and EOF behave differently between Jet workspaces and ODBCDirect

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

workspaces. In a Jet workspace, BOF becomes False but EOF remains True, indicating
that the current record is still invalid. You should perform a MoveFirst or MoveLast to
make the current record valid. On the other hand, in an ODBCDirect workspace, both BOF
and EOF become False. Several of the sample applications on the CD-ROM scroll through
records until EOF is True, indicating that there are no more records. The following scrolls
backward through the records until BOF is True.

 With rsEmp
 ' Move to last record
 .MoveLast
 ' Scroll through records in descending order
 Do While Not .BOF
 ' Put the record in edit mode
 .Edit
 ' Give them a raise!
 !Emp_Salary = !Emp_Salary + cRaise
 ' This is a local update; the database
 ' is not getting updated yet!
 .Update
 ' Scroll to prior record
 .MovePrevious
 Loop

• Bookmark is a property whose data type is a Variant array of Byte data. It uniquely
identifies each record in a record set. Bookmarkable is a Boolean that determines whether
the current record can be bookmarked. You can save your current position in a current
record by saving the bookmark to a variable of type Variant. This allows you to quickly
move back to it at any time. If you create a copy of the record set using the Clone method,
the bookmarks are identical. The following code segment stores the current bookmark,
moves to the end of the record set, and then moves back to the saved bookmark:

 ' rsEmp is a currently open RecordSet
 If rsEmp.BookMarkable = False Then
 MsgBox "Cannot Save Position!"
 Else
 ' Save the position
 Dim vBookMark As Variant
 vBookMark = rsEmp.BookMark
 ' Scroll to the end
 rsEmp.MoveLast
 ' And back again
 rsEmp.BookMark = vBookMark
 End If

• CacheSize is a Long that sets or returns the number of records from an ODBC data source
that will be cached locally. I discussed its usage earlier in the chapter when we discussed the
QueryDef object.

• The CacheStart property (Jet workspace only) is used with dynaset-type record sets. It
allows you to specify which record will be the first record in a cache. Suppose you have 50
records cached locally and you want the new cache to begin with record 40. You can move
to that record and then set the CacheStart property equal to the Bookmark property of that
record. If you then rebuild the cache (see CacheSize), the 40th record will then be the first
record in the new cache.

• The Connection property (ODBCDirect workspace only) is a string containing connection
parameters and was discussed earlier in this chapter with the Databases topic.

• The DateCreated and LastUpdated properties (Jet workspace only) return the date and
time the base table (not the record set itself) was created and last updated.

• The EditMode property is a Long that contains a constant indicating the current edit state
for the first record. dbEditNone indicates that the record is not being edited.
dbEditInProgress indicates that the current record is currently being edited. dbEditAdd
indicates that the current record is a new record that hasn’t been updated to the database,
which occurs when the AddNew method has been invoked.

• Filter (Jet workspace only) contains a string restricting what records appear in the record
set. It is essentially the WHERE clause in an SQL query except that the word WHERE is
omitted. Set the Filter property on an existing RecordSet object to refine which records will
be included in the record set. My recommendation is that you will usually achieve better
performance by opening a new record set where the SQL statement includes the WHERE
clause.

• Index (Jet workspace only) is used to alter the order of records. If you set this property to
the Name property of a valid Index object, Jet will use that index on the database to order
the records.

• The LastModified property is useful to determine which record was the last to be
modified in a record set. LastModified contains the bookmark of the last record to be
altered or added. If no record has been updated or added, this value is not valid.

• LockEdits is a Boolean indicating whether pessimistic locking (True) or optimistic
locking (False) is in effect. Under pessimistic locking, the 2K page on which the record is
stored is locked as soon as the record is edited. Under optimistic locking, the page is not
locked until the record is saved. In general, I recommend optimistic locking, but you need to
take extra care for concurrency issues, as I discuss in Chapter 12 and at various points
throughout this chapter.

• The Name property is a Variant of subtype String that you use to reference the object
within the RecordSets collection. Because you can open the same RecordSet object more
than once, you can have duplicate Name properties. To uniquely identify a given RecordSet
object, assign the RecordSet to an object variable.

• NoMatch (Jet workspace only) is a Boolean indicating the success or failure of the most
recent Find or Seek operation. If you search for a record and it is not found, this property is
set to True. You should evaluate this property each time you perform a Find or Seek. See
the Find method later in this section.

• PercentPosition returns a single between 0 and 100 that gives an approximate percentage
of the relative position within the record set. For instance, if there are 1,000 records and you
are currently displaying record 125, PercentPosition will be equal to 12.5. You can set this
property to move within a record set (rsEmp.Per-centPosition=12.5), but it is not a precise
method for moving around. You are better off moving using the Bookmark property.

• RecordCount is a Long that returns the number of records in the current RecordSet
object. When you first open the RecordSet, this property may not be accurate until you have
scrolled through all of the records. In Listing 5.6, I illustrate using the MoveLast method to
scroll to the last record, which ensures that the RecordCount property is accurate.
RecordCount reflects the actual number of records, whereas AbsolutePosition is 0 based.
(RecordCount does not reflect any records that have been deleted.) The following code
updates a Data control’s Caption property to display the current record number and the
number of records. If it is not necessary to know how many records there are, you may want
to omit this step because moving to the last record has an adverse impact on performance.

 Data1.Caption = "Record " & rsEmp.AbsolutePosition + 1 & _
 " of " & str$(rsEmp.RecordCount) & " records"

• RecordStatus (ODBCDirect workspace only) is a Long that reflects the current status of

each record in the RecordSet. The constants can be dbRecordUnModified,
dbRecordModified, dbRecordNew, dbRecordDeleted, or dbRecordDBDeleted. This is
meaningful only in optimistic batch updating, because other types of record sets cause the
record change to be updated to the database immediately. In an optimistic batch update, you
can determine from each record’s RecordStatus what type of change will be made to the
database.

• Restartable is a Boolean that returns True if the RecordSet can be requeried (see the
ReQuery method later in this section). If the property returns False, you will have to close
the record set and reopen it to refresh the records.

• Sort (Jet workspace only) is a string that sets or returns the sort order for a record set. The
syntax is the same as the SQL ORDER BY clause except that it omits the ORDER BY
phrase. In general, I recommend using the ORDER BY clause in the SELECT statement
itself. Altering the Sort property of an already opened RecordSet object does not alter its
sequence; you must set the property before opening it.

• StillExecuting (ODBCDirect workspace only) is a Boolean that returns True if an
asynchronous query is still executing. You cannot access the records in a RecordSet object
until the query has finished processing. You also cannot reference any other property of the
RecordSet object until this property returns False. The following code opens a RecordSet
object. Then, a MoveLast is performed asynchronously. The code then loops until the move
is complete. The DoEvents statement allows the screen to redraw while the loop is
executing:

 ' Open the RecordSet
 Screen.MousePointer = vbHourGlass
 Set rsEmp = conEmp.OpenRecordSet _
 ("SELECT * FROM EMPLOYEE", dbOpenDynaset, 0, _
 dbOptimisticBatch + dbRunAsync)
 ' Move to the last record
 rsEmp.MoveLast dbRunAsync
 ' Don't do anything until the move is finished
 Do
 If rsEmp.StillExecuting = False Then Exit Do
 DoEvents
 Loop
 Screen.MousePointer = vbDefault

• Transactions (Jet workspace only) is a Boolean that returns True if the RecordSet object
supports transaction processing. Using BeginTrans, CommitTrans, and Rollback has no
effect if the RecordSet does not support transaction processing. However, you should check
the Transactions property before issuing a BeginTrans to ensure that you don’t receive
unexpected results. Listing 5.3 earlier in this chapter contains a program demonstrating
transaction processing.

• Type sets or returns the RecordSet type. I enumerated the five different types of record
sets at the beginning of this section. The constants associated with these types are
dbOpenTable, dbOpenDynamic, dbOpenDynaSet, dbOpenSnapShot, and
dbOpenForewardOnly.

• Updatable is a Boolean that returns True if the RecordSet object is updatable. There are
any number of reasons why a RecordSet object might not be updatable. For instance, the
record set type itself may preclude updates (snapshot types, for example). Your query may
combine updatable and non-updatable tables or perhaps it does not include the primary key
of a record. You should check this property to ensure that your RecordSet object can be
updated.

• UpdateOptions (ODBCDirect workspace only) determines the WHERE clause in an

update statement sent to the database. Normally, you only need to specify the primary key in
the WHERE clause to uniquely identify the row to be updated. However, in a multiuser
environment, you might want to include more columns to ensure that no other user has
altered the record between the time you retrieved the row and the time you update it. For
instance, if you specify your WHERE clause, include all columns from the record; then if
the WHERE clause fails, you know that the record has been altered. Use dbCriteriaKey if
you only want to use the primary columns in the WHERE clause. dbCriteriaModValues
causes the WHERE clause to include the primary columns and any columns that were
changed. Use this option if you are concerned about concurrency issues (see Chapter 11 for
more details) but only care about those columns that you altered. dbCriteraAllCols uses all
columns in the WHERE clause. Use this option in a multiuser environment where you
absolutely do not want to alter a record if another user has altered it. dbCriteriaTimeStamp
will use the primary columns and the timestamp column if there is one. This is often just as
good as dbCriteriaAllCols because any change to the record will cause the timestamp to be
changed, and it is more efficient (because the WHERE clause is simpler). Along with any
of the five prior constants, you can also specify either dbCriteriaUpdate to specify that the
update be done with an UPDATE statement or dbCriteriaDeleteInsert to specify that the
update be done by first deleting the record and then inserting a new one. Normally, you will
want to use dbCriteriaUpdate (which is the default) because it is inherently more efficient.
However, if for some reason you are altering the primary key, you normally need to delete
the first record and then insert a new record.

• The ValidationRule and ValidationText properties (Jet workspace only) control the
validation criteria and what message to display if the record fails validation. I generally
recommend validating each field in the RecordSet independently. Note, however, that the
ValidationRule for a Field object cannot reference other Field objects, whereas the
ValidationRule for a RecordSet can reference any field in the record. I discussed these
properties earlier in the chapter in the TableDef and Field topics.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The RecordSet object has a rich set of methods that you use to manipulate fields or data as
well as properties. Not all methods are available for all record set types, as noted in the
discussion of each:

• The AddNew method adds a new record to the RecordSet. It does not add it to the
database. (Use the Update method to make the change to the database.) If the fields
have default values, they are set to those values; otherwise, they are set to Null. If you
create a new record and then move to another record, the changes are lost unless you
first invoke the Update method (unless you are performing batch updates). In a
dynaset-type RecordSet, new records are always added to the end of the RecordSet. In
a table-type RecordSet, records are added in their proper sort order if one has been
specified with the Index property. The new record must have a unique key. If there is
no unique key, Jet workspaces generate a “Permission Denied” error, whereas
ODBCDirect workspaces generate the message “Invalid Argument.”

• The Cancel method (ODBCDirect workspace only) cancels execution of a currently
running asynchronous query (for the RecordSet object, this is the OpenRecordSet
method) or MoveLast operation. If dbRunAsync was not specified, using Cancel
causes a runtime error.

• CancelUpdate cancels any changes that are pending since the last Update call. If the
user adds a record or modifies a record, the changes are discarded. If performing batch
updating, you can also specify an argument, as shown in the following example.
dbUpdateRegular cancels any pending changes that aren’t cached. This is the default.
dbUpdateBatch cancels any changes pending in the cache.

 rsEmp.CancelUpdate dbUpdateBatch

• Clone (Jet workspace only) creates a copy of the current record set. The bookmarks
in each copy of the RecordSet are shared, but each RecordSet can have different
current records. You can issue the Clone method on the cloned RecordSet without
affecting the original RecordSet and you can issue another Clone on the original
RecordSet without affecting the cloned RecordSet. Cloning a RecordSet is useful if
you need to access the records in different ways at the same time, and it is more
efficient than creating a second RecordSet using the CreateRecordSet method. The
following example creates a cloned RecordSet and searches it to see if the primary key

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

of a record that has just been added already exists:

 ' Assumes rsEmp already exists and that the
 ' user has just entered a new record
 Dim rsClone As RecordSet
 ' Clone the RecordSet
 Set rsClone = rsEmp.Clone
 ' Now, search through it for the primary key
 ' txtEmpID is a textbox containing Emp ID
 rsClone.FindFirst "Emp_ID = '" & Trim(txtEmpID.Text) & _
 "'"
 If rsClone.NoMatch = False Then
 ' Duplicate key found
 MsgBox "Invalid Primary Key!"
 ' Move to the offending record
 rsEmp.Bookmark = rsEmp.LastModified
 End If

 ' Close the cloned RecordSet
 rsClone.Close

• The Close method closes the RecordSet object. You should close all open RecordSet
objects prior to closing the Database or Connection object to which the RecordSet
objects belong.

• The CopyQueryDef is used to create a new QueryDef object that is the same as the
QueryDef on which the RecordSet object is based.

• The Delete method is used to delete the current record in the RecordSet. The current
record remains current but is inaccessible. You should move to a new record after
executing the Delete method. It is no longer possible to reference the deleted record,
and the change cannot be undone unless you perform a Rollback after a BeginTrans
statement.

• Edit causes the current record to be placed into edit mode. Changes to the record are
placed into the copy buffer and are made permanent after the Update method is issued.
Note that in a non-batch-based RecordSet, moving to another record without using the
Update method causes the changes to be discarded.

• FillCache (Jet workspace only) fills all or part of a local cache. The syntax is shown
in the following code segment. recordset is a valid object variable of type RecordSet
(the RecordSet must already be opened). rows is the number of records to retrieve. If
omitted, the CacheSize value is used instead. The startbookmark argument specifies
the Bookmark of the record that should be the first record in the cache. If omitted, the
value stored in the CacheStart property is used. See the discussion of CacheSize and
CacheStart earlier in this section.

 recordset.FillCache rows, startbookmark

• The FindFirst, FindLast, FindNext, and FindPrevious methods (Jet workspace
only) allow you to search the record set for a specific record. The search criteria is
similar to the SQL WHERE clause except that the word WHERE is omitted. These
methods are not available in ODBCDirect workspaces. Instead, you should use your
SQL SELECT statement to return those rows that you require. The following example
searches the rsEmp RecordSet object for all occurrences of the last name “Smith”. If
the first one is found (using FindFirst), then you use FindNext to find all subsequent

occurrences. FindLast finds the last occurrence of a criteria, whereas FindPrevious
finds the occurrence of a criteria prior to the current record.

 rsEmp.FindFirst "EMP_LNAME = 'SMITH'"
 MsgBox "Smith Found at Record " & _
 str$(rsEmp.AbsolutePosition + 1)
 If rsEmp.NoMatch = False Then
 Do
 rsEmp.FindFirst "EMP_LNAME = 'SMITH'"
 If rsEmp.NoMatch Then Exit Do
 MsgBox "Another Smith Found at Record " & _
 str$(rsEmp.AbsolutePosition + 1) & "!"
 Loop
 End If

• GetRows copies one or more rows from a RecordSet into a two-dimensional array of
type Variant, where the first subscript refers to the column number (zero-based) and
the second subscript refers to the row number (also zero-based). The following example
moves 300 rows in a RecordSet called rsCusts into an array. If the RecordSet contains
fewer than 300 rows, no error results. Use UBound to determine how many rows were
moved. The code also displays the value of the 3rd field in the 18th record. Note that
the current record is the one immediately after the last one loaded. If you load all of the
rows, the current record will be past the last record (in other words, EOF will be True).

 ' Do not need to declare as array
 Dim vArray As Variant

 ' Copy the first 300 rows
 Set vArray = rsCusts.GetRows (300)
 ' Display how many there actually are
 MsgBox UBound (vArray, 2) & " records loaded"
 ' Display a field
 MsgBox varray(2, 17)
 ' Reposition to the first record
 MoveFirst

• The Move, MoveFirst, MoveLast, MoveNext, and MovePrevious methods move to
an absolute record within the RecordSet. The Move method accepts two arguments.
The first is the number of records to move relative to the current record. A value greater
than zero moves forward, whereas a value less than zero moves backward. You may
specify an optional argument, startbookmark, which causes the move to occur relative
to whichever record is referenced by the Bookmark. The following example records
the current position and then moves to the last record. It then uses the Move method to
move 10 rows ahead of the record that was bookmarked. If there are no current records,
moving causes an error. An error results if BOF is True and you MovePrevious or if
EOF is True and you MoveNext. If you otherwise move forward or backward more
records than are in the RecordSet, BOF or EOF is set to True as appropriate.

 Dim vBookMark As Variant

 ' Bookmark the current record
 vBookMark = rsEmp.BookMark
 ' Move to the last record

 rsEmp.MoveLast
 ' Move to the 10th record beyond the bookmark
 Move 10, vBookMark

• NextRecordSet (ODBCDirect workspace only) gets the next set of records when
more than one SQL statement is specified in the RecordSet object’s Source property
(or in the SQL property of the QueryDef object on which the RecordSet is based). If
you do specify more than one query, each must be separated by semicolons. I do not
recommend this practice (placing more than one query in the Source property) and
prefer to use entirely different RecordSet objects for different result sets. If there are no
more records to be fetched, this method returns False. Otherwise, it returns True.

• OpenRecordSet (Jet workspace only) creates a new RecordSet object. I discussed
how to use it in the Databases topic earlier in this chapter.

• ReQuery re-creates or refreshes the records in a RecordSet object by re-executing
the query.

• The Seek (Jet workspace only) method is roughly equivalent to the Find methods,
which search for a value in a RecordSet. Seek is available only in table-type record sets
(and thus, only in Jet workspaces). The value you are searching for must be part of the
current index (see the Index method earlier in this section). For example, if the current
index is on the Emp_ID field, you can only search for employee IDs. Further, you can
only use these comparison operators: =, <, <=, >, or >=. If you specify =, >, or >=, the
search starts from the beginning of the record set and returns the first match. If the
search uses < or <=, the search starts at the last record in the record set. The following
locates employee ID 350: rsEmp.Seek=350.

• Update causes the contents of the copy buffer to be saved to the RecordSet object. It
works only on the current record. If you specify pessimistic locking when you place a
record in edit mode, then the record (and the entire page the record is on) remains
locked until you issue the Update method. The syntax is shown in the following code
example. recordset is a valid object variable of type RecordSet. The optional type
argument specifies how to update the data. If you specify dbUpdateRegular (which is
the default), the changes to the record are written to disk without being cached. If you
specify dbUpdateBatch, any pending batched updates are written to disk.
dbUpdateCurrentRecord causes any changes to the current record to be updated to
disk regardless of whether there are other pending, batched changes. The force
argument optionally specifies whether to force the database to be updated even if
another user has changed the record. True forces the changes to be saved. If not
specified, False is used, indicating that the changes should not be made if another
process has made changes to the records since you invoked the AddNew, Delete, or
Edit method. No error occurs, but the BatchCollisions and BatchCollisionCount
properties will be set. I discussed these two properties earlier in this section, including
an example of using the Update method in a multiuser environment.

 recorset.update (type, force)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Data Control

The Data control is the granddaddy of all Visual Basic data access controls and
is the only data access control intrinsic to VB. To use the Remote Data control or
the Active Data control, you first must add them to the toolbox using the
Components selection from the Project menu.

The Data control works only with DAO workspaces, although it does support
both Jet and ODBCDirect. To force the Data control to create an ODBCDirect
workspace, set the DefaultType property to 2 (dbUseODBC).

The Data control is flexible in that it provides access to most of the DAO
hierarchy that I discussed in first part of this chapter with little coding. Further,
the control provides buttons for the user to navigate a record set. The buttons
equate to the MoveFirst, MovePrevious, MoveNext, and MoveFirst methods.
When a form is opened, the Data control automatically creates a RecordSet
object and fetches the records from the database.

The Data control also offers the convenience of being a target—a data provider,
if you will—for data-aware controls to bind to. Thus, any time the Data control
scrolls a record, all controls that are bound to it also update their contents.
Data-aware controls include the textbox, label, listbox, ComboBox, picturebox,
image, checkbox OLE, MaskedEdit, and RichTextBox controls. The latter two
controls come with the Professional and Enterprise editions of VB only.
Additionally, the DataList, DataCombo, DataGrid, and MSFlexGrid controls can
display multiple values at the same time.

The Data control provides the interface necessary to automatically add and
update records. It includes events that make it convenient to process records such
as the Validation event, which occurs any time there is an action that would
cause the current record to no longer be the current record.

In addition to the brief examples shown in this section, Listing 5.4 earlier in this

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

chapter provides an example of using the Data control.

The Life Of The Data Control

When you open a form containing a Data control, it is initialized before the
form’s Load event. If an error occurs during initialization, an untrappable error
occurs. The Data control creates a Database object and a RecordSet object, and
then populates the RecordSet and positions itself onto the first record.
Alternatively, you can create a RecordSet in your code and assign it to the Data
control. When this happens, the RecordSet is automatically populated and,
again, the Data control makes the first record the current record. The Microsoft
documentation states that with a Data control, you do not need to perform a
MoveLast, implying that the RecordCount property of the RecordSet will be
accurate. This has not always been my experience; you will have to experiment
with your own database implementation.

Any time the user scrolls a record, the control’s Validate event occurs, giving
you the opportunity to edit any changes made by the user as well as the
opportunity to prevent the update and even stop the action the user took. Thus, if
the user attempts to close the form, the Validate event fires and you can stop the
form from closing.

Bound Controls

One of the great conveniences of the Data controls is, of course, the ability to
bind a control to a field or column in the database. Controls that can be bound to
a data source are data aware. You bind a control to a data source by setting the
control’s DataSource property to the name of the object (such as a Data control)
and setting the DataField property to whichever field is to be displayed. Where
appropriate, bound controls have a DataFormat property to customize the
display of data (this is new to Visual Basic 6). Also, bound controls have a
DataChanged property, allowing you to quickly determine which fields of a
record have been modified. In Chapter 9, I discuss more advanced uses of these
properties as well as the new DataMember property, which is not meaningful in
DAO applications. I also show the DataChanged property being used in the
Validate event example later in this section.

Using The Data Control

You draw the Data control on a form as you would any other VB control. If you
do not like its interface, you can make it invisible (by setting its Visible property
to False). However, you will have to then supply your own navigation
capabilities.

I discuss here the key properties of the Data control that I did not discuss earlier
in the chapter when reviewing the Data Access Objects:

• The Align property allows you to dock the Data control to one edge of
the form. When the form is resized, the control is also automatically
resized. Although you can dock the control to the left or right edges of the
form, it is rather ugly. I recommend docking on the bottom where the
control is out of the way of any toolbars. Possible values are 0 (no

alignment), 1 (align top), 2 (align bottom), 3 (align left), or 4 (align right).

• BOFAction and EOFAction determine what to do if the user attempts
to scroll before the first record or after the last record. If the user is on the
first record (BOF is True) and attempts to move to a prior record,
vbBOFActionMoveFirst causes the first record to remain the current
record. In other words, the attempt to move backward is ignored. This is
the default action. vbBOFActionBOF causes the Data control to scroll
before the end of the file. When this happens, the Validate event is
triggered for the current record and the Reposition event is triggered on
the now invalid record. Similarly, vbEOFActionMoveLast and
vbEOFActionEOF ignore the move and move to the EOF invalid record.
I recommend using vbBOFActionMoveFirst and
vbEOFActionMoveLast for the two properties.

• The Caption property is a string you can use to display information
about the database connection (or whatever purpose suits your needs). The
following code snippet placed in the Reposition event will cause the
caption to display a “Record x of y records” message every time the user
moves to another record:

 Data1.Caption = "Record " & _
 str$(rsEmp.AbsolutePosition + 1) & _
 " of " & str$(rsEmp.RecordCount) & " records"

• The RecordSetType property determines what type of RecordSet
object will be displayed. Using the Data control, you can only specify
table, dynaset, or snapshot. To use other types of RecordSet objects, you
need to create and manipulate the RecordSet object in code. All the
properties and methods of the RecordSet object are available to you by
referencing the Data control, as shown in the previous example. If not
specified, DAO will attempt to create a dynaset. If you change the
RecordSetType property in code, you must Refresh the Data control.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Data control has these key methods beyond those that I discussed earlier in the chapter:

• The Refresh method rebuilds the results of the RecordSet associated with the Data
control. Most commonly, you will modify the RecordSet object’s Source property, creating
a new SQL statement or associating a QueryDef object with it. When you then use the
Refresh method (Data1.Refresh), DAO will rebuild the RecordSet. The first record in the
new RecordSet will be the current record, and bound controls will be updated with the new
fields. If there is an error, such as passing an invalid QueryDef object or an invalid SQL
statement, an untrappable error occurs. Often, you will have two Data controls on a form in
a master/detail relationship where the contents being retrieved from the detail Data control
depend on a value in the current record of the master Data control. For instance, if you have
a Data control displaying department numbers and names, you might have a second Data
control that fetches all of the employees in that department. When a new record is displayed
in the master Data control, the secondary Data control fetches the employees in the currently
displayed department. You place code similar to the following in the master Data control’s
Reposition event:

 datSecondaryRS.RecordSource = "Select * From Employee " & _
 "Where Emp_Dept_No = " & datPrimaryRS!Dept_No

• The UpdateControls method is used to get the current record in the Data control’s
RecordSet object and display the values in all bound controls. This is normally not
necessary except when you want to cancel all changes made by a user on the current record
and restore the values in the bound controls.

• The UpdateRecord method saves all changes to the current record to the database, but the
Validate event is not triggered, as when using the RecordSet object’s Update method. This
is useful, for instance, from the Validate event itself when you don’t want to create a second
call to the event.

The Data control also has a number of events that are useful in the client/server environment:

• The Error event occurs as a result of any error that occurs while no VB code is being
executed—in other words, when the error occurs at the database. If you don’t code for these
errors, VB displays a message and the error is typically fatal. The syntax for the event is
shown in the next code example. data_error is the error number generated, whereas
response is one of two values that you set: vbDataErrContinue causes the program to
continue execution and vbDataErrDisplay causes VB to display the error and act as though

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the error was unhandled. Beyond that, the Error event is roughly the same as an active error
handler in your code. Note that an error that occurs prior to the form’s Load event does not
trigger the event. An example is if the Data control attempts to open an invalid RecordSet.

 Data1_Error (data_error, response)

• The Reposition event occurs after any record becomes the current record, including when
the Data control is loaded and the first record is displayed. This is where you will place code
to handle situations unique to each record. For instance, you may want to add code to the
Reposition event to calculate the age of an employee based on his or her date of birth each
time a new employee is displayed. Under the Caption method, I included a line of code to
change the caption each time a new record is displayed.

• The Validate event is where you will place code to ensure that data is valid before being
saved to the database. The event occurs before a new record becomes the current record
(such as when the user clicks one of the move buttons), before the Update method, and
before a Delete, Unload, or Close operation. You have the opportunity to save the changes
or to cancel the operation that triggered the Validate event. For example, if the user changes
a record and then clicks a move button, you can cancel the move to force the user to correct
any input errors. The syntax of the event is shown in the next code example. The action
argument is a constant that you can evaluate to determine what action caused the Validate
event to occur. Table 5.15 lists the possible constants. You can code a Select Case Action
statement to determine which action occurred. The save argument is a Boolean that you can
evaluate to determine whether any bound data was changed. If the value is False, there is
usually no need to update the database and there is probably no need to validate the data. If
the value of Save is True when the event is exited, the Edit and UpdateRecord methods
are invoked, causing the change to be saved to the database. You can set the value of Action
to vbDataActionCancel to cancel whatever action the user took. Finally, you can change
one action to another. For instance, you might change an AddNew method to MoveNext.
You cannot invoke any methods of the RecordSet during the Validate event.

 Private Sub Data1_Validate (Action As Integer, _
 Save As Integer)

 Select Case Action
 Case vbDataActionUnload
 ' Prevent the form from being unloaded
 Action = vbDataActionCancel
 Case Else
 ' Check the Salary
 If Val(txtSalary.Text) < 0 Then
 MessageBox "Invalid Salary!"
 ' Prevent the action
 Action -= vbDataActionCancel
 ' Put focus on the error
 txtSalary.SetFocus
 txtSalary.SelStart = 0
 txtSalary.SelLength = Len(txtSalary.Text)
 End If
 ' See if ID has changed
 If txtID.DataChanged Then
 MessageBox "Can't Change ID!"
 Save = False
 End If
 End Select

 End Sub

Table 5.15 Constants for the action argument of the Validate event.

Constant Meaning

vbDataActionCancel Cancel the operation when the Sub exits.

vbDataActionMoveFirst MoveFirst method.

vbDataActionMovePrevious MovePrevious method.

vbDataActionMoveNext MoveNext method.

vbDataActionMoveLast MoveLast method.

vbDataActionAddNew AddNew method.

vbDataActionUpdate Update operation (but not UpdateRecord).

vbDataActionDelete Delete method.

vbDataActionFind Find method.

vbDataActionBookmark Bookmark property set.

vbDataActionClose Close method.

vbDataActionUnload Form is being unloaded.

Where To Go From Here

In this chapter, we have covered in depth the Data Access Objects, their use both in code and with
the Data control, and numerous examples. Read Chapter 4 to see DAO contrasted with other
Visual Basic data models. If you have determined that DAO is the correct model for you, I
recommend reading Chapter 11 where I discuss advanced database techniques such as transaction
and concurrency management.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 6
Remote Data Objects (RDO)
Key Topics:

• The RDO hierarchy

• RDO vs.DAO

• Event-driven data access with RDO

• Managing asynchronous communications

• Transaction and concurrency management

In Chapter 5, I discussed the usage of Data Access Objects (DAO). DAO is
most appropriate for desktop database applications, although you can use it,
with or without the Jet engine, for true client/server applications. When you
create a DAO ODBCDirect workspace, DAO actually communicates with
Remote Data Objects (RDO) through a thin layer, as shown in Figure 6.1. If
you are using ODBC data sources, it may make more sense to avoid DAO
altogether and use RDO instead. Of course, as I discussed at the end of
Chapter 4, it makes even more sense for many to move directly to ADO.

Figure 6.1 How an application communicates with ODBC via the RDO layer.

You can also use RDO to access Jet databases. However, the Jet engine gets

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/06-01.jpg',500,502)
javascript:displayWindow('images/06-01.jpg',500,502)

loaded as it does in DAO, and RDO passes its ODBC function requests to the
Jet engine, which attempts to map them to Jet functions. This setup is actually
more expensive in terms of computing power than simply using DAO. Worse,
a given Jet ODBC driver might not support some RDO functions, resulting in
potential erratic program behavior.

In this chapter, I review the use of Remote Data Objects, concentrating on
in-code techniques with a review of the Remote Data control (RDC).

What Is RDO?

RDO version 1 was introduced with Visual Basic 4 and was tremendously
improved with RDO version 2, released with Visual Basic 5. RDO offers a
compelling alternative to DAO for those who do not need to use the Jet engine.
RDO essentially acts as a thin wrapper around the ODBC API, so it is much
more efficient than DAO. DAO developers will recognize familiar features in
RDO: Many of the methods and properties are similar and the object
hierarchy, although considerably simpler than DAO, is still familiar. Table 6.1
provides a basic cross-reference of RDO objects to their DAO counterparts.

Table 6.1 Cross-reference of RDO objects to DAO objects.

RDO Object DAO Object

rdoEngine DBEngine

rdoError Error

rdoEnvironment Workspace

rdoConnection Database or Connection

rdoQuery QueryDef

rdoColumn Field

rdoParameter Parameter

rdoResultset Recordset

rdoTable TableDef

rdoPreparedStatement N/A

You will notice two key differences between RDO and DAO: RDO is table
and row oriented, whereas DAO is file and record oriented; RDO places more
emphasis on procedures and result sets, whereas DAO’s primary emphasis is
on the retrieval itself. RDO leaves the details of data retrieval to the ODBC
driver.

Additionally, RDO provides an event-driven environment in which to manage
the database. You can declare most RDO objects with the WithEvents clause
and then use an event-driven model to handle messages and manage
asynchronous communications, for example. This environment not only
provides more flexibility than you have with DAO, but it also tends to simplify
the program logic.

Overview Of Remote Data Objects

Whereas DAO has up to 17 objects (and 16 collections), RDO has just 10
objects (and 9 collections). If you use the RDC, the Remote Data Objects
library is automatically loaded. Otherwise, you must add it as a reference in
your VB project. (From the menu, select Project|References. Scroll down the
list until you locate Microsoft Remote Data Objects and select it.)

Like DAO, RDO objects are arranged in a hierarchy (see Figure 6.2). The
rdoEngine is the highest object in the hierarchy. As such, there is only one
rdoEngine object, and it is created as soon as you reference any RDO object.

Figure 6.2 The Remote Data Object hierarchy.

Like DAO, RDO maintains information about ODBC errors in the rdoErrors
collection.

The rdoEngine object also has a collection of rdoEnvironment objects,
which are the equivalent of the DAO Workspace objects. The
rdoEnvironment object contains the rdoConnection collection. Each
rdoCollection object consists of the rdoQueries, rdoResultsets, rdoTables,
and rdoPreparedStatements collections.

The rdoQuery object is similar to DAO’s QueryDef object and represents a
query against the database. Thus, each rdoQuery object contains an
rdoColumns and an rdoParameters collection, which are equivalent to
DAO’s Fields and Parameters collections. Each rdoColumn object
represents a column in the query, and each rdoParameter object represents a
query parameter.

The rdoResultset object is similar to the Recordset object in DAO. It allows
you to manipulate a row from a query and consists of an rdoColumns
collection.

The rdoTable object stores information about an SQL table or view and thus
also includes an rdoColumns collection. rdoTable is included mostly for
backward compatibility, and its use is discouraged because its functionality
has been incorporated into other objects.

The rdoPreparedStatement is also provided for backward compatibility with
RDO 1.0. Its functionality—as a database-prepared query or stored
procedure—is encompassed by the rdoQuery object.

As with DAO, you can create RDO objects by using the Remote Data control
or by using methods of the parent object to create them. For example, you can
create the rdoResultset object by using the rdoConnection object’s
OpenResultset method. The rdoEngine object is created automatically. The
first instance of the rdoEnvironment object is created whenever the

javascript:displayWindow('images/06-02.jpg',660,490)
javascript:displayWindow('images/06-02.jpg',660,490)

rdoEngine object is created. Additional instances of it are created with the
rdoEngine object’s rdoCreateEnvironment method. The Remote Data
control can create rdoConnection and rdoResultset objects. The
rdoParameter object is created automatically for parameter queries. The
rdoTable object is created automatically whenever a table or view is
referenced. The rdoError object is created automatically any time an ODBC
error occurs.

TIP
The rdoParameter object and rdoParameters collection are only created
and populated if the ODBC driver supports the SQLNumParams function.
Refer to your ODBC driver documentation if you encounter any problems. If
the ODBC driver does not support parameters or is otherwise unable to parse
the query, the rdoParameter objects and rdoParameters collection are not
created and a trappable runtime error occurs.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

RDO Collections

As noted, all RDO objects are maintained in collections except the rdoEngine object,
of which there can only be one. However, Visual Basic 6 allows you to create
rdoConnection and rdoQuery objects that are not part of a collection. Therefore,
these objects are not automatically appended to collections when created; you must
use the Append method to add these objects to the collections and the Delete method
to remove them. All other objects are automatically appended to their collections, so
the collections have only the Refresh method and Count property.

Exploring Remote Data Objects

In the following sections, I discuss each of the Remote Data Objects and provide
examples for their usage. As in Chapter 5, it is not my intention to chop down the
rain forest, so I concentrate on the key aspects of the different properties and methods
of each object. If you need more information, you might want to refer to the Visual
Basic documentation. Where I have included a complete program to illustrate a
technique, you can find the source code on the CD-ROM. Note that you might need
to alter the path to the database in the code or configure the ODBC data source name
prior to running the examples.

The rdoEngine Object

The rdoEngine object is the owner of all other RDO objects. It is essentially the
RDO library and provides the interface between your VB application and ODBC.
ODBC is exposed via its API. RDO places user-friendly wrappers around the API in
the form of RDO properties and methods.

The rdoEngine is responsible for creating the rdoEnvironment and rdoError
objects. It also provides default values for other objects in the RDO hierarchy.

rdoEngine has one event—InfoMessage—which occurs when informational

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

messages (ODBC SQL_SUCCESS_WITH_INFO return codes) are received from
the ODBC driver. This event is triggered once for each set of messages received.
This event replaces the need for the ErrorThreshold and
rdoDefaultErrorThreshold properties, which are retained for backward
compatibility with RDO version 1.

To take advantage of the InfoMessage event, you declare the object using the
WithEvents clause: Private WithEvents rdoEng As rdoEngine.

Once you declare a reference to the rdoEngine object using the WithEvents clause,
you can intercept any messages from the database. Listing 6.1, later in this chapter,
illustrates the use of this technique.

Private Sub rdoEng_InfoMessage ()

Dim sMsg As String
Dim vErr As Variant

' Iterate through all errors
For each vErr in rdoErrors
 sMsg = str$(vErr.Number) & ": " & vErr.Description
 ' Display text of message
 MsgBox "Info - " & sMsg
Next

The rdoEngine object has a number of properties that you use to set default
behaviors of other objects. You can individually override these behaviors when you
create the other objects:

• The DefaultCursorDriver property specifies which kind of cursor driver to
be used by default. Table 6.2 lists the possible values. In general, you will get
better performance for small result sets using the ODBC driver cursor library.
For result sets of more than 100 rows or so, you should use the server cursor.
For optimistic batch processing, use rdUseClientBatch. If your result set will
have only one row, do not use a cursor. The default value is rdUseIfNeeded.

Table 6.2 RDO cursor driver constants.

Constant Description

rdUseIfNeeded Use server side if available; if not, use client side. If
client side is also not available, use none.

rdUseODBC Use the ODBC driver cursor library.

rdUseServer Use server cursor.

rdUseClientBatch Use optimistic batch cursor library.

rdUseNone No cursor. Appropriate only with one row at a time.

• The rdoDefaultPassword is a string containing the password that will be
used when an rdoEnvironment object is created, unless another one is
specified. If not specified, the default is a zero-length string.

• The rdoDefaultUser is a string containing the user name that will be used
when an rdoEnvironment object is created, unless another one is specified. If

not specified, the default is a zero-length string.

• The rdoDefaultLogInTimeOut property is a Long that specifies how many
seconds to wait when logging on to the server before an error is generated. The
default is 15. A value of 0 indicates there is no limit. This value will be used if
you do not specify a LogInTimeout property for the rdoEnvironment object.

• The rdoLocaleID property is a Long in which you specify the language in
which messages should be displayed. If it is not supplied, the Windows locale
will be used. Messages are generated from a locale-specific DLL. If you
specify a locale but the user does not have the correct DLL, rdLocaleEnglish
is used because it does not require a DLL. Table 6.3 shows the valid values.

Table 6.3 Valid RDO locale constants.

Constant Description

rdLocaleChinese Chinese

rdLocaleEnglish English

rdLocaleFrench French

rdLocaleGerman German

rdLocaleItalian Italian

rdLocaleJapanese Japanese

rdLocaleKorean Korean

rdLocaleSimplifiedChinese Simplified Chinese

rdLocaleSpanish Spanish

rdLocaleSystem The Windows locale

• The rdoVersion property returns a string containing the RDO version
number.

The rdoEngine object also supports these two methods:

• rdoCreateEnvironment creates a new rdoEnvironment object and
appends it to the rdoEnvironments collection. The syntax is shown in the
following code segment. The name argument must be unique within the
collection. If the name is not specified, the object will not be appended to the
collection. You must specify the user and password arguments, although you
can reference the defaults from the rdoEngine object. When you create the
rdoEngine object, a default rdoEnvironment object is automatically created,
including the default user and password properties. Listing 6.1, later in this
chapter, provides an example of this method.

 Private WithEvents rdoEng As rdoEngine
 rdoEng.rdoCreateEnvironment (name, user, password)

• The rdoRegisterDataSource essentially duplicates the functionality of the
ODBC Administrator in the Windows Control Panel by adding or updating
ODBC data source information to the Windows Registry. If the data source
name does not exist, it is added; otherwise, it is updated. It is recommended
that you use the ODBC Administrator because the requirements for different
ODBC drivers vary. For more information, see the VB help file.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoEnvironments Collection And rdoEnvironment
Object

The rdoEnvironment object represents a single transaction against a database
within the context of a single user/password combination. All activity against
that database will occur within the context of the rdoEnvironment object. A
default rdoEnvironment object is created when the rdoEngine object is
instantiated. If you need more objects, you use the rdoCreateEnvironment
method of the rdoEngine object. Once the object is created, you can alter its
User and LoginTimeout properties but not the Password property. You can
close any rdoEnvironment object using the Close method except the default
object, which cannot be destroyed.

The Name property of the default rdoEnvironment object is
“Default_Environment”. The user name and password are both empty
strings. If you create another rdoEnvironment object and do not specify its
Name property, it is created as a standalone object (it is not appended to the
collection). The Name property is then determined by the remote data source
and is read-only. This behavior may be an advantage because the object is not
exposed to other in-process DLLs. Once the properties of the standalone object
are set, you can append it to the collection using the Add method. You can use
the Remove method to remove any rdoEnvironment object except the
default.

In ODBC, there is a single environment handle—a memory pointer to the
ODBC session. All rdoEnvironment objects share a single hEnv property,
which is the ODBC environment handle. Because of this, you can manage a
single transaction across multiple rdoConnection objects using the
BeginTrans, CommitTrans, and RollbackTrans methods. Conversely, you
can create multiple rdoEnvironment objects if you need to maintain multiple
simultaneous transactions. If you issue a CommitTrans or a RollbackTrans

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

in an rdoEnvironment object, all rdoConnection objects are affected.

TIP
Warning!
Do not attempt to use ODBC handles (environment, statement, and
connection) unless you fully understand the ODBC API. You must allocate
the handles in a specific order, and many ODBC API functions cannot be
performed until other functions are executed. Arbitrary use of the handles
and API functions can result in program crashes and computer lockups.

As with the rdoEngine object, you can program the rdoEnvironment object
in an event-driven manner. It supports three events: BeginTrans,
CommitTrans, and RollbackTrans. Each of these events is fired after the
corresponding transaction method has completed. To take advantage of these
events, you must declare the rdoEnvironment object using the WithEvents
clause as shown:

Dim rdoEnv WithEvents As rdoEnvironment
' Set a reference to the default object
Set rdoEnv As rdoEnvironments(0)

The CommitTrans event, for example, fires after the CommitTrans method
completes:

Private Sub rdoEnv_CommitTrans()
 MsgBox "Transaction Committed"
End Sub

Listing 6.1, later in this section, illustrates many of the methods and properties
of rdoEnvironment.

The rdoEnvironment object supports a number of properties:

• The CursorDriver property is a Long specifying what type of cursor
to use within the rdoEnvironment. Table 6.2 earlier in the chapter lists
possible values. If CursorDriver is not specified, the rdoEngine
object’s default cursor driver is used.

• The hEnv property is a Long containing the ODBC environment
handle.

• The LoginTimeout property, if specified, determines how many
seconds can pass when attempting to log on to the database before an
error occurs. If not specified, the default value from rdoEngine is used.

• The Password and UserName properties are both strings and specify
the user ID and password for the rdoEnvironment object. If not
specified, these values default to the values from rdoEngine. Once set,
the Password property is write-only; it cannot be read in your code.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoEnvironment object supports several methods:

• The BeginTrans method begins a new transaction, as discussed earlier in this section.
The scope of the transaction is across all rdoConnection objects within the
rdoEnvironment object. If you need multiple transactions, you must create multiple
rdoEnvironment objects. Transaction management is discussed in more detail in
Chapter 11. Listing 6.1 provides an example of a program that manipulates the salary
data of employees in the context of a transaction. The user is allowed to save or discard
changes after all of the salaries are displayed and modified. The application, a
modification of the transaction example in Chapter 5, is shown in Figure 6.3. Although
the application takes advantage of some event-driven concepts, it uses While Wend
loops to determine when an asynchronously called method has completed. Listing 6.2
later in this chapter provides a completely event-driven model.

Listing 6.1 The modification of employee salaries.

Option Explicit
Private WithEvents rEng As rdoEngine
Private WithEvents renvCoriolis As rdoEnvironment
Private WithEvents rconEmp As rdoConnection
Private WithEvents rrsEmp As rdoResultset
Private rqEmpSal As rdoQuery

Private Sub Command1_Click(Index As Integer)

Dim iRtn As Integer
Dim sRaise As String
Dim sMsg As String
Dim sConn As String
Dim cSalary As Currency
Dim cSaveSal() As Currency

Select Case Index
 Case 0

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 ' Create environment
 Set renvCoriolis = rdoEngine.rdoCreateEnvironment _
 ("Emp", "coriolis", "coriolis")
 ' Set properties
 With renvCoriolis
 .CursorDriver = rdUseOdbc
 .LoginTimeout = 10
 ' Create connection
 Set rconEmp = .OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="DSN=Coriolis VB Example;UID=Coriolis;" & _
 "PWD=Coriolis;", Options:=rdAsyncEnable)
 End With

 ' Wait for connection to complete
 While rconEmp.StillConnecting
 DoEvents
 Wend
 ' Set properties of the connection
 With rconEmp
 .QueryTimeout = 10
 ' Create query object
 Set rqEmpSal = .CreateQuery("EmpSelect", _
 "Select * from employee")
 ' Create resultset object
 Set rrsEmp = .OpenResultset("EmpSelect", rdOpenDynamic, _
 rdConcurValues, rdAsyncEnable + rdExecDirect)
 ' Idle until the query is complete
 While rrsEmp.StillExecuting
 DoEvents
 Wend
 End With

 ' Begin transaction
 renvCoriolis.BeginTrans
 ' Scroll through rows
 With rrsEmp
 ' Set up array to save old salaries
 ReDim cSaveSal(rrsEmp.RowCount)

 Do Until .EOF
 txtFields(0) = !emp_no
 txtFields(1) = !emp_fname
 txtFields(2) = !emp_lname
 txtFields(3) = Format$(!emp_Salary, "###,##0.00")
 cSaveSal(rrsEmp.AbsolutePosition) = !emp_Salary
 ' Prompt for changes to salary
 sMsg = "What percent raise for " & !emp_fname & _
 " " & !emp_lname & " making $" & _
 Format$(!emp_Salary, "###,##0.00") & "?"
 sRaise = InputBox$(sMsg, "Raise", "0")
 cSalary = !emp_Salary * (1 + Val(sRaise) / 100)

 If cSalary <> !emp_Salary Then
 ' If changed, edit the record
 .Edit
 !emp_Salary = cSalary
 ' Save the change
 .Update
 End If
 ' Move to next record
 .MoveNext
 Loop
 ' Commit the changes?
 If MsgBox("Save all changes?", vbYesNo + vbQuestion, _
 "Commit or Rollback") = vbYes Then
 renvCoriolis.CommitTrans
 Else
 renvCoriolis.RollbackTrans
 End If
 ' Display changes (if any)
 .MoveFirst

 Do While Not .EOF
 txtFields(0) = !emp_no
 txtFields(1) = !emp_fname
 txtFields(2) = !emp_lname
 txtFields(3) = cSaveSal(rrsEmp.AbsolutePosition)
 txtFields(4) = !emp_Salary
 If MsgBox("Show next record?", _
 vbOKCancel + vbQuestion, _
 "Display Salary Changes") = vbCancel Then
 Exit Do
 End If
 .MoveNext
 Loop
 .Close
 End With
 ' Close the objects
 rqEmpSal.Close
 rconEmp.Close
 renvCoriolis.Close
 Case 1
 End
End Select

End Sub

Private Sub rconEmp_Connect(ByVal ErrorOccurred As Boolean)
Select Case ErrorOccurred
 Case True
 MsgBox "Connection Failed!", vbOKOnly + vbCritical
 Case False
 MsgBox "Connection Succeeded!"
End Select

End Sub

Private Sub rEng_InfoMessage()

Dim sMsg As String
Dim vErr As Variant

For Each vErr In rEng.rdoErrors
 sMsg = Str$(vErr.Number) & _
 ": " & vErr.Description
 MsgBox sMsg, vbOKOnly + vbInformation, "ODBC Message"
Next

End Sub

Private Sub renvCoriolis_BeginTrans()
' Put code here for begin trans event

End Sub

Private Sub renvCoriolis_CommitTrans()
' Put code here for commit trans events
MsgBox "Changes Saved"
End Sub

Private Sub renvCoriolis_RollbackTrans()
' Put code here for rollback events
MsgBox "Changes Discarded"
End Sub

Figure 6.3 This program, from Listing 6.1, provides examples of using various Remote Data
Objects.

• The CommitTrans method commits all changes to the database across the entire
rdoEnvironment object. Likewise, the Roll-backTrans method rolls back all changes
across the entire rdoEnvironment object. If there are several active connections
(rdoConnection objects), the CommitTrans and RollbackTrans methods affect all of
them.

• The OpenConnection method creates a new rdoConnection object, which I discuss
later in this chapter. The syntax of the method is shown in the next code example.
Listing 6.1 has an example of the method being used with a DSN, whereas Listing 6.2
shows a DSN-less connection. In the syntax, dsName is the name of the data source or
is a zero-length string. If you supply the DSN parameter in the connect argument, you
do not need to specify the dsName argument, but you must still specify an empty string,
as shown in Listing 6.1. The Prompt argument is a constant, as listed in Table 6.4, and
controls whether (and to what extent) ODBC connection dialogs are presented to the
user. The read_only argument is set to True if the connection is to be opened as
read-only. If the argument is not specified, the default is False, which makes the data
read-write. Connect is a string specifying connection parameters. If the user ID and

javascript:displayWindow('images/06-03.jpg',477,195)
javascript:displayWindow('images/06-03.jpg',477,195)

password parameters are not supplied, they are taken from the rdoEnvironment object
and the dsName argument must be supplied. The only setting allowed for the Options
argument is the constant rdAsyncEnabled, which causes the connection to be
performed asynchronously. The code example in Listing 6.1 connects in this manner
and then executes a While Wend loop until the connection is established. Be careful
not to attempt to manipulate the rdoConnection object until the connection is
established, or you will cause an error in your application.

rdoEnvironment.OpenConnection (dsName, Prompt, read_only, _
 Connect, Options)

Table 6.4 Valid connection prompt constants.

Constant Description

rdDriverPrompt If no dsName is specified, use default. Otherwise, present
ODBC connect dialog.

rdDriverNoPrompt If not enough connection information, prompt for missing
parameters.

rdDriverComplete If connection includes DSN parameter, prompt for any
missing information. Otherwise, behaves like
rdDriverPrompt.

rdDriverCompleteRequired Behaves like rdDriverComplete except doesn’t allow the
user to change any information already provided.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

DSN-Less Connections

A problem with ODBC is that you can’t always rely on the user PC having the correct ODBC
settings. When you specify a DSN (data source name), the ODBC manager looks into the
Windows Registry for an ODBC configuration matching that name. If it is not found, ODBC
may be able to prompt your user for the connection parameters. However, a better answer may
be to provide a DSN-less connection string. This tells the ODBC manager which database
driver to load and then passes on to that driver the information needed to connect to the
database without relying on a DSN. The parameters you need to supply vary from database to
database. The following code example is a modification of the code shown in Listing 6.1 to
connect to the sample Sybase SQL Anywhere database (the entire listing is on the CD-ROM
in the project file RDOTransactionsNoDSN.VBP):

' Be sure to modify the path!
Set rconEmp = .OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, Connect:="UID=Coriolis;" & _
 "PWD=Coriolis;Driver=Sybase SQL Anywhere 5.0;" & _
 "DBF=C:\Examples\Coriolis VB Example.db;" & _
 "DBN=Coriolis;DSN=''", Options:=rdAsyncEnable)

The equivalent connection with Microsoft SQL Server appears in the next code segment. It is
simpler than the Sybase SQL Anywhere example because my SQL Anywhere server is a
standalone product. (In the preceding example, I need to not only connect to the server, but
also I have to start the database engine.) If you connect to an engine that is already running,
you generally can omit the DBF and DBN parameters and substitute an ENG parameter that
specifies the name of the server.

Listing 6.2, later in this chapter, also performs a DSN-less connection.

Set rconEmp = .OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="UID=Coriolis;PWD=Coriolis;Driver=SQL Server;" & _
 "Server=Test;DSN=''", Options:=rdAsyncEnable)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The rdoConnections Collection And rdoConnection Object

The rdoConnections collection contains all rdoConnection objects within an
rdoEnvironment object. You normally create the rdoConnection object using the
OpenConnection method of the rdoEnvironment object. When you do so, it is automatically
appended to the rdoConnections collection. However, you can also create a standalone
rdoConnection object using the EstablishConnection method (discussed later in this section).
When you do create a standalone rdoConnection object, it is not appended to the collection
automatically. You can use the collection’s Add method to do so.

You can manipulate an rdoConnection object synchronously or asynchronously. It also
supports event-driven techniques. To take advantage of event-driven processing, you must use
the WithEvents keyword when declaring the object variable: Private WithEvents rconEmp
As rdoConnection.

The rdoConnection object generates a half-dozen events that can be valuable in an
asynchronous environment.

RDO Event-Driven Asynchronous Programming

Listing 6.2 is an application that uses Remote Data Objects in a completely event-driven,
asynchronous environment. The application, shown in Figure 6.4, begins by creating an
rdoEnvironment object. Nine textbox controls display data. Four command buttons connect
to the database, run a query, disconnect from the database, and close the application. For the
four navigation buttons, I used the Image control. I use the outer buttons as BOF and EOF
buttons to move to the first and last records. I use the inner two buttons to move backward and
forward one row at a time.

Listing 6.2 The event-driven, asynchronous RDO application.

Option Explicit
Private WithEvents rEng As rdoEngine
Private WithEvents renv As rdoEnvironment
Private WithEvents rcon As rdoConnection
Private WithEvents rrs As rdoResultset
Private rq As rdoQuery
Private Enum query_direction
 first_time = 0
 forward = 1
 backward = 2
End Enum

Private Sub Command1_Click(Index As Integer)

Dim iRtn As Integer
Dim sRaise As String
Dim sMsg As String
Dim sConn As String
Dim cSalary As Currency
Dim cSaveSal() As Currency

Select Case Index
 Case 0
 ' Connect to the database

 Caption = "Connecting …"
 Command1(0).Enabled = False
 ' Be sure to change path in your application!
 Set rcon = renv.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="UID=Coriolis;PWD=Coriolis;" & _
 "Driver=Sybase SQL Anywhere 5.0;" & _
 "DBF=C:\ \Examples\Coriolis VB Example.db;" & _
 "DBN=Coriolis;DSN=''", Options:=rdAsyncEnable)
 Case 1
 ' Run query
 Set rq = rcon.CreateQuery("Test", _
 "Select customer.cust_no, customer.cust_lname, " & _
 "customer.cust_fname," & _
 "item.item_desc, line_item.line_item_no, " & _
 "line_item.line_qty, line_item.line_price, " & _
 "line_item.line_total, orders.ord_no, " & _
 "orders.ord_date " & _
 "From customer, item, line_item, orders " & _
 "Where customer.cust_no = orders.ord_cust_no " & _
 "And line_item.line_ord_no = orders.ord_no " & _
 "And item.item_no = line_item.line_item_no " & _
 "Order By customer.cust_lname, customer.cust_fname, " & _
 "orders.ord_no, line_item.line_no")
 ' Set properties of the connection
 With rcon
 .QueryTimeout = 3
 ' Create resultset object
 Set rrs = .OpenResultset("Test", rdOpenDynamic, _
 rdConcurValues, rdAsyncEnable + rdExecDirect)
 End With
 Case 2
 ' Disconnect
 rcon.Close
 ' Disable movement buttons
 Image1(0).Enabled = False
 Image1(1).Enabled = False
 Image1(2).Enabled = False
 Image1(3).Enabled = False
 ' Enable connect button
 Command1(0).Enabled = True
 Case 3
 End
End Select

End Sub

Private Sub Form_Load()

' Set the query
' Enable/disable command buttons
Command1(1).Enabled = False
Command1(2).Enabled = False

Command1(0).Enabled = True
Command1(3).Enabled = True
Image1(0).Enabled = False
Image1(1).Enabled = False
Image1(2).Enabled = False
Image1(3).Enabled = False

' Force the form to display
Show

' Create environment
Set renv = rdoEngine.rdoCreateEnvironment _
 ("Test", "coriolis", "coriolis")
' Set properties
With renv
 .CursorDriver = rdUseOdbc
 .LoginTimeout = 10
End With

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, _
 UnloadMode As Integer)

' Ensure all objects are closed
rq.Close
rcon.Close
renv.Close

End Sub

Private Sub Image1_Click(Index As Integer)

Select Case Index
 Case 0
 ShowRec backward
 Case 1
 ShowRec forward
 Case 2
 rrs.MoveFirst
 ShowRec first_time
 Case 3
 rrs.MoveLast rdAsyncEnable
 ShowRec first_time
End Select

End Sub

Private Sub rcon_BeforeConnect(ConnectString As String, _
 Prompt As Variant)

Dim sMsg As String
sMsg = "About to connect to the database using" & vbCrLf & _

 ConnectString
MsgBox sMsg, vb0konly + vbInformation

End Sub

Private Sub rcon_Connect(ByVal ErrorOccurred As Boolean)

Select Case ErrorOccurred
 Case True
 ' Connect failed!
 MsgBox "Connection Failed!", vbOKOnly + vbCritical
 Dim sMsg As String
 Dim vErr As Variant
 For Each vErr In rEng.rdoErrors
 sMsg = Str$(vErr.Number) & _
 ": " & vErr.Description
 MsgBox sMsg, vbOKOnly + vbInformation
 Next
 ' Reenable connect button
 Command1(0).Enabled = True
 Caption = "Connect Failed!"
 Case False
 MsgBox "Connection Succeeded!"
 ' Enable query button
 Command1(1).Enabled = True
 Caption = "Connected"
End Select

End Sub

Private Sub rcon_Disconnect()

Dim iCtr As Integer

MsgBox "Disconnected"
' Enable connect button
Command1(0).Enabled = True
' Disable move buttons
Image1(0).Enabled = False
Image1(1).Enabled = False
' Clear all text boxes
For iCtr = 0 To 8
 txtFields(iCtr).Text = ""
Next

End Sub

Private Sub rcon_QueryComplete(ByVal Query As RDO.rdoQuery, _
 ByVal ErrorOccurred As Boolean)

Select Case ErrorOccurred
 Case True
 Dim sMsg As String

 Dim vErr As rdoError
 For Each vErr In rdoErrors
 sMsg = Str$(vErr.Number) & _
 ": " & vErr.Description
 MsgBox sMsg, vbOKOnly + vbInformation, Query.SQL
 Next
 Case False
 MsgBox "Query Successful"
 ' Enable movement buttons
 Image1(0).Enabled = True
 Image1(1).Enabled = True
 Image1(2).Enabled = True
 Image1(3).Enabled = True
 Command1(1).Enabled = False
 Command1(2).Enabled = True
 ' Display first record
 Call ShowRec(first_time)
End Select

End Sub
Private Sub ShowRec(direction As Integer)

Select Case direction
 Case first_time
 ' Do nothing
 Case forward
 If rrs.AbsolutePosition = rrs.RowCount Then Exit Sub
 rrs.MoveNext
 Case backward
 If rrs.AbsolutePosition = 1 Then Exit Sub
 rrs.MovePrevious
End Select
' Display all fields
With rrs
 txtFields(0) = !cust_no
 txtFields(1) = !cust_fname
 txtFields(2) = !cust_lname
 txtFields(3) = !ord_no
 txtFields(4) = !ord_date
 txtFields(5) = !line_item_no
 txtFields(6) = !item_desc
 txtFields(7) = !line_qty
 txtFields(8) = !line_price
End With
End Sub

Private Sub rcon_QueryTimeout(ByVal Query As RDO.rdoQuery, _
 Cancel As Boolean)

' Query timed out
Dim iRtn As IFontDisp
iRtn = MsgBox("The query timed out! Keep working?", _
 vbYesNo + vbQuestion, "Query Error")

If iRtn = vbNo Then
 Cancel = True
Else
 Cancel = False
End If
End Sub

Private Sub rEng_InfoMessage()

' This code illustrates the interception of any informational
' messages from ODBC
Dim sMsg As String
Dim vErr As Variant
For Each vErr In rEng.rdoErrors
 sMsg = Str$(vErr.Number) & _
 ": " & vErr.Description
 MsgBox sMsg, vbOKOnly + vbInformation, "ODBC Message"
Next
End Sub

Private Sub renv_BeginTrans()
' Put code here for begin trans event
' The application does not actually perform updates
End Sub

Private Sub renv_CommitTrans()
' Put code here for commit trans events
MsgBox "Changes Saved"
End Sub

Private Sub renv_RollbackTrans()
' Put code here for commit trans events
MsgBox "Changes Discarded"
End Sub

Figure 6.4 Data is displayed in the event-driven, asynchronous query application.

Of the four command buttons, only Connect and Close are enabled. The Run Query and
Disconnect buttons and the navigation buttons are disabled.

When the user clicks the Connect button, the application attempts to perform a DSN-less
connect to the database. The rdoConnection object’s Connect event is used to determine
whether the connect was successful. If not, all error messages are displayed. If the connection
is successful, the Connect button is disabled and the Run Query button is enabled.

When the user clicks Run Query, the application creates an rdoQuery object composed of a
join of three tables and then attempts to open an rdoResultset object using the rdoQuery
object as the source. The QueryTimeout property is deliberately set to a short interval: three
seconds. If the query does not complete in three seconds, the QueryTimeout event is fired
and the user has the choice of allowing the query to continue working. When the query is
completed, the QueryComplete event of the rdoConnection object is triggered. In this event,
I evaluate whether the query ran successfully. If not, I iterate through all the rdoError

javascript:displayWindow('images/06-04.jpg',753,229)
javascript:displayWindow('images/06-04.jpg',753,229)

objects. If the query was successful, I call a general procedure to display the first record. The
Run Query button is disabled and the Disconnect button is enabled. The navigation buttons
are also enabled.

The user can now use the navigation methods to move forward and backward through the
data. I did not include the capability for updating the data because this is a query-only
application.

If the user clicks the Disconnect button, all objects are closed and the navigation and
Disconnect buttons are disabled. The Connect button is re-enabled.

Throughout the listing, various other events monitor database RDO operations.

All database activities, including the MoveLast method, occur in an asynchronous manner. In
this manner, control returns to the program as soon as database events occur. The use of the
event-driven model replaces the awkward coding in Listing 6.1 where I performed a loop after
calling an asynchronous method waiting for the method to complete.

• The BeforeConnect event is triggered immediately before an attempt is made to
connect to the database. It provides an opportunity to, for example, prevent the
connection from occurring. For example, your application may automatically connect to
the database but need to occasionally work in “offline” mode. The BeforeConnect event
provides an opportunity for you to ask the user whether he or she wants to proceed with
the connect. The two parameters passed to the event are ConnectString and Prompt.
The following example displays the connect string prior to connecting:

 Private Sub rcon_BeforeConnect(ConnectString As String, _
 Prompt As Variant)
 MsgBox ConnectString
 End Sub

• The Connect event is fired immediately after the connect has completed. This can be
valuable when your program needs to know when it is okay to manipulate the connection.
For instance, you do not want to execute a query against the database until you have
successfully connected. The Connect event might also provide an opportunity to display
and evaluate any informational messages added to the rdoErrors collection, as shown in
the following example. In Listing 6.2, I use the Connect event to ensure a successful
connection to the database.

• The Disconnect event is triggered when the connection is successfully closed. You
might place code in this event to perform housecleaning chores such as closing the
rdoEnvironment object. No arguments are passed to this event.

• The QueryComplete event is triggered whenever any query executing within the
rdoConnection object is completed. The completion of a query does not necessarily
indicate it was successful. Therefore, two arguments are sent to the event: Query is a
reference to the query that just completed; ErrorOccurred is a Boolean that returns
True if an error was encountered. If an error was encountered, you should check
messages in the rdoErrors collection. In Listing 6.2, the QueryComplete event
determines whether to display data and enable the navigation buttons in the application.

• The QueryTimeout event is triggered when a query, whether synchronous or
asynchronous, has been running for the number of seconds specified in the
QueryTimeout property. Two arguments are passed: a reference to the query that is
running and a Boolean Cancel that indicates whether to cancel the query. Cancel defaults
to True, so if you don’t code this event, the running query will automatically cancel. If
you set the value to False, the query will continue running for as many seconds as

specified in the QueryTimeout property. The event occurs at the rdoConnection level
for any query within the connection.

• The WillExecute event occurs immediately before a query is to run anywhere in the
rdoConnection. Two arguments are passed: Query is a reference to the query that is
about to execute, and Cancel is a Boolean that allows you to stop the query from running.
The default is False, meaning that the query will not be prevented from running. True
has the effect of canceling the query and will also generate a runtime error indicating that
the query was canceled. You can use this event to prevent an update of the database or to
change the query. An example follows:

 Private Sub rcon_WillExecute (Query As rdoQuery, _
 Cancel As Boolean)
 Dim iRtn As Integer
 ' Change the query
 Query.SQL = "Select * From Employee"
 ' Give the user a chance to cancel the query
 iRtn = MsgBox ("Run the query: " & Query.SQL & _
 "?", vbYesNo + vbQuestion)
 If iRtn = vbNo Then
 ' Cancel the query
 Cancel = True
 End If
 End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoConnection object has a number of properties you use to manipulate
the connection:

• The AsyncCheckInterval property is a Long that specifies how many
milliseconds Visual Basic should wait before polling the database to
determine whether an asynchronous query has completed. The default is
1,000 (1 second). Because Visual Basic must poll the database to
determine whether the query is complete, setting this value too low can
adversely impact performance by increasing network and database
traffic. On the other hand, if the setting is too large, the user may wait
longer for the data. In general, short queries can default to 1 second. For
longer queries, consider increasing this value to minimize the number of
hits on the database server.

• The Connect property specifies the database connection parameters. I
discussed the requirements for this property earlier in the chapter in the
OpenConnection method of the rdoEnvironment object.

• The CursorDriver property specifies the type of cursor to use. If not
specified, the value will default from the rdoEnvironment object’s
CursorDriver property.

• The hDbc property is a Long that contains the ODBC connection
handle. Do not use this handle if you are not familiar with the ODBC
API.

• The LastQueryResults property returns a reference to the
rdoResultset associated with the last query that successfully completed.

• The LoginTimeout property is a Long specifying how many seconds
to allow for logging on to the database server before generating an error.
If not specified, the value will default from the rdoEnvironment object.

• The LogMessages property is a string used to set ODBC logging. If
not set (or set to an empty string), no logging is done. If the value is set
to a valid file path and name, ODBC messages are written to that file.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

You should let only one application at a time perform logging, and you
should minimize the amount of logging you do because ODBC
operations are much slower while performing logging. Setting the
LogMessages property is the same as using the Log function in the
ODBC Administrator applet in the Control Panel.

• The QueryTimeout property specifies how many seconds to wait
before an active query within the connection times out. If not specified,
the value defaults from rdoEnvironment. If the value is larger or
smaller than that permitted by the database, the minimum value allowed
by the database is used instead.

• The RowsAffected property returns the number of rows deleted,
inserted, or updated in the most recent query within the rdoConnection
object.

• The StillExecuting property determines whether an asynchronous
operation is completed. Listing 6.1 showed the use of this property to
determine when a connection was completed, whereas Listing 6.2 used
an event-driven method (Connect) to signal the completion of the
connection. Likewise, Listing 6.1 used this property to determine when
a query had finished, whereas Listing 6.2 used the QueryComplete
event. While this property is False (the asynchronous operation is not
complete), no other properties of the object are available.

• The Transactions property is a Boolean that indicates whether the
connected database supports transaction processing. If this property
returns False, the database does not support transaction processing and
the use of the BeginTrans, CommitTrans, and RollbackTrans
methods will have no effect.

• The UpdateOperation property is used for optimistic batch updates
within the connection. It is a Long set to either rdOperationUpdate
(use an Update statement for each row being changed) or
rdOperationDelIns (use a Delete statement followed by an Insert).
Generally, you are better off using rdOperationUpdate because it
entails less work on the database server and less network traffic.
However, if you need to change the primary key of a row, most
databases require that you delete the original row and add a new row.

• The Version property returns the ODBC version number to which the
ODBC driver conforms as a string. Although you may be using ODBC
version 3.5, if the underlying ODBC driver conforms to ODBC version
2, this property will reflect version 2.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoConnection object supports several methods:

• The BeginTrans, CommitTrans, and RollbackTrans methods perform transaction
management chores, as discussed earlier in the chapter when I discussed the rdoEnvironment
object. Although you can manipulate transactions at the connection level, the scope is
environment-wide.

• The Cancel method is used to cancel an asynchronous connection. You can only invoke this
method while the StillExecuting property is True.

• The CreateQuery method is used to create a new rdoQuery object and add it to the
rdoQueries collection. If you create an rdoQuery object using the DIM statement (as I do in
Listings 6.1 and 6.2), the object is not automatically appended to the collection. The rdoQuery
object is not associated with any rdoConnection object until you set the ActiveConnection
property of the rdoQuery. The syntax for the method is shown in the following code example.
The Name argument is the Name property to be assigned to the object, and the optional SQL
argument is the SQL property to be assigned to the object. If the arguments are not set when the
object is created, they must be set prior to using the object (that is, before executing the query).

 rdoConnection.CreateQuery Name [,SQL]

TIP
When To Prepare A Statement
A good rule of thumb when determining whether to prepare a statement is that the amount of
benefit derived is inversely proportional to how well the database is maintained. When preparing a
query, the database’s query optimizer uses various statistics to plan an access path. If these
statistics are not up-to-date, the preparation process could actually hurt the query performance. If
you don’t prepare a statement—in other words, if the statement is executed dynamically—many
RDBMSs use an optimization strategy more akin to generalized rules. Check your specific
database’s documentation for more details.

• The Close method closes the rdoConnection object.

• The EstablishConnection method is used to connect to the server (if you did not do so when
you created the rdoConnection object). The syntax follows. The arguments are the same as
those for the OpenConnection method of the rdoEnvironment object, discussed earlier in this
chapter.

 rdoConnection.EstablishConnection [prompt, read_only, options]

• The Execute method runs a specified query, including update queries, against the database.
The syntax appears in the next code example. Source is a string containing either an SQL

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

statement or the name of an rdoQuery object. For specifying an rdoQuery object, the name is
case-sensitive. The Options argument can contain one or both of the following constants:
rdAsyncEnable causes the operation to run asynchronously. rdExecDirect causes the query to
run without first being prepared on the database. In this context, preparation is similar to
compilation. If the query will run only once or if it is a short query, it will usually run marginally
faster if you specify rdExecDirect. If the query is likely to run several times or if it is longer in
duration (more than three seconds or so), you might get somewhat faster performance by not
specifying rdExecDirect. You can execute row-returning queries and stored procedures using
Execute; however, it is not a good idea because there is no way to get the return values. Instead,
you should use an rdoResultset for these types of tasks. Listing 6.3, later in this chapter, uses
this method to execute an action query.

 rdoConnection.Execute Source, Options

NOTE
The source argument of an rdoResultset object can contain more than one SQL statement with
some cursor models. Server-side cursors do not allow more than one statement, but depending on
the ODBC driver, client-side cursors may allow the use of more than one statement. See your
ODBC driver documentation for more details.

• The OpenResultset method is similar to DAO’s OpenRecordset. It creates a new
rdoResultset object using the syntax shown in the next code example. source is either an SQL
statement or the Name property of an existing rdoQuery object. In both Listings 6.1 and 6.2, I
illustrate this method using an existing rdoQuery object as the data source. source is the only
mandatory argument. type is a Long with which you specify the type of result set to open, as
listed in Table 6.5. locktype is used in multiuser environments for con-currency control. I
discuss more advanced aspects of transaction management—including concurrency issues—in
Chapter 11. Valid locktype constants are shown in Table 6.6. option is a Long in which you
may specify the constants rdAsyncEnable or rdExecDirect. rdAsyncEnable causes the result
set to be opened asynchronously. rdExecDirect causes the statement to be executed directly
instead of first being prepared on the database.

 Set resultset = rdoConnection.OpenResultset _
 (source[, type, locktype, option])

Table 6.5 Valid rdoResultset type constants.

Constant Description

rdOpenForwardOnly (Default) Open a forward-only-type result set.

rdOpenKeySet Open a keyset-type result set.

rdOpenDynamic Open a dynamic-type result set.

rdOpenStatic Open a static-type result set.

Table 6.6 Valid rdoResultset lockedit constants.

Constant Description

rdConcurReadOnly (Default) Use read-only.*

rdConcurLock Use pessimistic concurrency.

rdConcurRowVer Use optimistic concurrency based on row IDs.

rdConcurValues Use optimistic concurrency based on row values.*

rdConcurBatch Use optimistic batch updating.

*For some databases, these are the only valid lock types for static-type result sets.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

More On RDO Result Set Types

As with DAO record sets, you want to choose the RDO result set type that is
most efficient while still meeting your requirements.

The forward-only-type result set allows only forward movement through the
result set. It is most useful when you need to quickly access certain data with
no dynamic forward and backward searching. You cannot update any rows.
Membership in the result set is not fixed.

The keyset-type result set is updatable and movement forward and backward is
unrestricted. You can use columns from more than one table. Membership in
the result set is fixed.

A static-type result set has fixed membership of the rows and columns.
Changes made by other users are not detected until the object is closed and
reopened or until it is refreshed.

More On Concurrency And Locking

I discussed some of the issues involved in concurrency management as they
relate to DAO in Chapter 5. For RDO, the issues are similar, as are your
options.

When you open a result set as read-only, there are no concurrency issues, of
course, because you will not be updating the data.

The safest locking is pessimistic. When you use it, the entire page of the row
being updated is locked as soon as it is placed into edit mode. However, no
other user will be able to access any other row on that database page.
Further, if too many pages are locked, the database begins to run out of
resources, in which case it might escalate the lock to a table lock, where the
entire table is locked. You can also encounter a situation called a deadly

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

embrace where two processes lock each other out. For instance, if one user
has page 1 locked, the database might not release that lock until it can access
page 2. Another user might have page 2 locked, and the database cannot
release it until it can access page 1. The two processes wait until one lock
times out, and the database terminates one of the transactions. In a
worst-case scenario, the DBA might have to manually end a transaction.

Note that, unlike with Jet, in a true ODBC environment, the size of the page
is a function of both the ODBC driver and the back-end database. With some
databases, the page size may be 2K (2,048 bytes), whereas with others, the
size might be 4K. For still others, the page size might be an option set when
the database was created. Some databases support true row-level locking,
which means only the row being affected gets locked. Again, the ODBC
driver might not fully support this feature. Check your database or ODBC
documentation for more details.

With optimistic locking, the page is not locked until the row is about to be
updated. Unfortunately, you cannot guarantee that another user hasn’t
modified the row since you retrieved it. If you invoke a certain type of lock
and the ODBC driver does not support it, another level of locking is
substituted. ODBC will generate an informational message that is appended
to the rdoErrors collection.

With rdConcurRowVer, ODBC will attempt to use a row identifier, such as
a timestamp column (if available), to determine whether the row has
changed. If another row identifier is not available, only the row’s primary
key is used, which does not guarantee that changes made by other users will
be detected. My recommendation is to add a timestamp column when
practical and use this option where concurrency is an issue.

rdConcurValues causes a column-by-column comparison of all values on
the row to be updated. If any values are different than when the row was
retrieved, another user has modified the row. A trappable error is then
generated. This feature is a safer option than rdConcurRowVer when a
timestamp column is not available. However, because the database has to do
extra work, there is a performance penalty with rdConcurValues.

You might want to use rdConcurBatch for performance reasons. All the
updates are batched together and sent to the database if the database and
ODBC driver support it. (I discuss batch updates in more detail later in this
chapter.) Even if your database does not support processing of more than one
update at a time, you might still want to use rdConcurBatch. To do so, set
the BatchSize property to 1, which causes the updates to be sent one at a
time. The advantage is that you can use the UpdateCriteria property to
fine-tune your Where clause. I discuss these properties later in the chapter
when I discuss the rdoResultset object. See Listing 6.3, later in this chapter,
for some examples of batch updating.

If an update fails because another user has altered a record, a trappable error
occurs. You can set the current row’s Bookmark property to itself
(rdoResultset.Bookmark = rdoResultset.Bookmark), which changes the
row to reflect the changes made by the other user. When you do so, you lose

any changes that your program made (though you can save them to some
variables first).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoResultsets Connection And rdoResultset Object

The rdoResultsets collection contains all rdoResultset objects within an rdoEnvironment
object. You manipulate rdoResultset in much the same manner that you manipulate the
Recordset object under DAO. It contains the rdoColumns collection. Because rdoColumns
is the default property, you can specify a column name, omitting the reference to the collection
and simply providing the Name property of the appropriate rdoColumn object.

When you create an rdoResultset object, it is automatically appended to the rdoResultsets
collection. It is removed when you close it. You can append the result set to a different
collection by changing the ActiveConnection property to another valid rdoConnection
object. If you set this property to Nothing, the rdoResultset is removed from the collection
but does not free its resources.

The rdoResultset object is a representation of all rows returned from a query. Even if the
query returns no rows, the result set is still created (the BOF and EOF properties will be
False).

You can create an rdoResultset object using the OpenResultset method of the
rdoConnection, rdoQuery, or rdoTable objects. I discussed the use of this method as well as
implications for certain arguments earlier in the chapter in the rdoConnection section.

As with several other RDO objects, you can manipulate the rdo-Resultset object in an
event-driven manner if you create a reference to it using the WithEvents clause. Note that
because a number of procedures will be referencing the object, you should declare it at the
module level. Although you can declare it using the Dim keyword, I prefer the use of Private.
At the module level, the two keywords are synonymous, but Private is more precise: Private
WithEvents rrs As rdoResultset.

The events that the rdoResultset object supports follow:

• The Associate event is triggered after you use the ActiveConnection property to
associate the result set with a new rdoConnection object. You might want to place
some code in this event to initialize the result set, perhaps with a new query.
Conversely, the Disassociate event is triggered when an rdoResultset object is set to

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Nothing and is disassociated from an rdoConnection object. The WillAssociate event
is triggered immediately before a result set is associated with a new connection. The
WillDisassociate event occurs immediately before a result set is to be disassociated
from a connection.

• The ResultsChanged event happens after any use of the MoreResults method, even
if the method returns False (that is, there are no new results).

• The ResultCurrencyChanged event is essentially the same as DAO’s Reposition
event. It is triggered by any change in the current position with the rdoResultset.
• The RowStatusChanged event is triggered immediately after any edit, delete, or
insert. You can ascertain the actual status of the row using the Status property.

• The WillUpdateRows event occurs immediately before any update to the database is
to occur. You can place your own code in this event to override the default behavior of
RDO. It has one argument, ReturnCode, as shown in the following sample code. You
use it to tell RDO what you have done or simply to modify RDO’s behavior. If you set
the ReturnCode argument to rdUpdateSuccessful, RDO will not attempt to perform
the updates itself and will set the status of all rows and columns to rdRowUnModified
and rdColUnModified. If you set the ReturnCode to rdUpdateWithCollisions, RDO
will also not attempt to update the database. However, it will not change the status of
the rows or columns either; it is your program’s responsibility to do so.
rdUpdateWithCollisions gives you an opportunity to prevent an update without
changing row and column statuses, and you normally use it when you are performing
optimistic batch updates. (If doing so, it is important to modify row and column statuses
in code for those updates that were successful.) rdUpdateFailed tells RDO that the
update failed. RDO will not attempt to perform the update and will not modify any
column or row statuses. However, RDO will generate a runtime error, which you would
trap in your Update method. The default is rdUpdateNotHandled, which tells RDO to
go ahead and handle the update using its own rules. This event provides a good place to
perform data validation when you are not using the Remote Data control.

 Private Sub object.WillUpdateRows(ReturnCode as Integer)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoResultset object has a rich set of properties you can use to monitor and
manipulate the result set:

• The AbsolutePosition property returns the current record number within the
result set. You can also use this property to set the current row to a particular
row number, as shown in the next code segment. Note that unlike DAO’s
AbsolutePosition property, which is zero-based, RDO’s AbsolutePosition
property is one-based: You cannot use this property to move within a
dynamic-type or forward-only-type result set. If there are no rows,
AbsolutePosition is -1. If no record is current, then AbsolutePosition is
undefined, and attempting to reference it will result in an error. You can avoid
this problem by checking the Bookmarkable property. If it is True, the
AbsolutePosition property should be valid.

 ' Move to the third row
 rrs.AbsolutePosition = 3

• The ActiveConnection property returns a reference to the rdoCon-nection
object to which this rdoResultset belongs. Setting this property to Nothing
disassociates the result set from the connection. See my discussion of the
Associate event earlier in this section for more information.

• The BatchCollisionCount property returns the number of records that did not
complete the last batch update. A collision in a batch update occurs when you
attempt to update a record that has been altered since you retrieved it. This can
only happen in a multiuser environment or when your application opens
multiple record sets on the same data. Use this property along with the
BatchCollisionRows property, which is an array of bookmarks of those records
on which collisions occurred. This combination of properties allows your
application to move to each row and correct the problem. Once the problem is
rectified, you can invoke the Update method again. If there are any more
collisions, these two properties (BatchCollisionCount and
BatchCollisionRows) are repopulated. Those rows that are successfully

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

updated have their row and column statuses changed so RDO will not attempt to
update them again. Listing 6.3 shows batch updating and the resolution of
collisions using the BatchCollisionCount, BatchCollisions, and related
properties and methods. Figure 6.5 shows the application. The application
simulates a second user by creating a new query object in another connection
and environment. It sends a single action query to the database using the
Execute method to alter a row, thus forcing a collision to occur. The application
refreshes the row in question to display the values as changed by the other user,
which effectively loses your changes. Another method to see the new values is
to access the rdoColumn object’s BatchConflictValue property.

Listing 6.3 The RDO batch update demonstration program.

Option Explicit
Dim WithEvents rEng As rdoEngine
Dim WithEvents rEnv1 As rdoEnvironment
Dim WithEvents rEnv2 As rdoEnvironment
Dim WithEvents rCon1 As rdoConnection
Dim WithEvents rCon2 As rdoConnection
Dim rq1 As rdoQuery
Dim rq2 As rdoQuery
Dim WithEvents rrsEmp1 As rdoResultset

Private Sub cmdUpdate_Click()
Dim sConn As String
Static cRaise As Currency
Dim sMsg As String

If cRaise = 0 Then
 cRaise = 1
Else
 ' So the user can change the data back
 cRaise = cRaise * -1
End If

' In order to do batch updating, set the default cursor
lbStatus = "Creating RDO Engine …"
rdoEngine.rdoDefaultCursorDriver = rdUseClientBatch

' Use default environment for first environment
lbStatus = "Creating 2 Environment Objects …"
Set rEnv1 = rdoEngine.rdoEnvironments(0)
' Create second environment
Set rEnv2 = rdoEngine.rdoCreateEnvironment("Env2", _
 "Coriolis", "Coriolis")
' Now, connect to the database
' Be sure to set your own path!
lbStatus = "Connecting to the database …"
Set rCon1 = rEnv1.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _

 Connect:="UID=Coriolis;PWD=Coriolis;" & _
 "Driver=Sybase SQL Anywhere 5.0;" & _
 "DBF=C:\ \Examples\Coriolis VB Example.db;" & _
 "DBN=Coriolis;DSN=''", Options:=rdAsyncEnable)

' Wait for connection
Do While rCon1.StillConnecting
 DoEvents
Loop

' Make second connection
Set rCon2 = rEnv2.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="UID=Coriolis;PWD=Coriolis;" & _
 "Driver=Sybase SQL Anywhere 5.0;" & _
 "DBF=C:\ \Examples\Coriolis VB Example.db;" & _
 "DBN=Coriolis;DSN=''", Options:=rdAsyncEnable)

' Wait for connection
Do While rCon2.StillConnecting
 DoEvents
Loop

' Create the query object
lbStatus = "Opening Result Set …"
Set rq1 = rCon1.CreateQuery("Emp", _
 "Select * From Employee")

' Set properties of the connection
With rCon1
 .QueryTimeout = 3
 ' Create resultset objects
 Set rrsEmp1 = .OpenResultset("Emp", rdOpenDynamic, _
 rdConcurBatch, rdAsyncEnable)
 ' Wait for result set
 Do While rrsEmp1.StillExecuting
 DoEvents
 Loop
End With

With rrsEmp1
 lbStatus = "Editing Records …"
 ' Move through all records
 Do While Not .EOF
 ProgressBar1.Value = .PercentPosition
 Label5.Caption = Str$(.PercentPosition)
 Text1 = !emp_no & " " & LTrim(!emp_fname) & _
 !emp_lname
 Text2 = !emp_salary
 DoEvents

 ' Put the record in edit mode
 .Edit
 ' Give them a raise!
 !emp_salary = !emp_salary + cRaise
 Text3 = !emp_salary
 ' This is a local update — the database
 ' is not getting updated yet!
 .Update
 ' Scroll to next record
 .MoveNext
 Loop

 ' Simulate a second user changing a record
 lbStatus = "Simulating a second user …"
 Set rq2 = rCon2.CreateQuery("emp2", _
 "update employee set emp_salary = emp_salary + 3" & _
 " where emp_no = 101")

 rq2.Execute rdAsyncEnable
 ' Wait for it to complete
 Do While rq2.StillExecuting
 DoEvents
 Loop
 rCon2.CommitTrans
 rq2.Close
 rCon2.Close

 ' Perform the batch update to the database
 lbStatus = "Batch updating …"
 rrsEmp1.BatchSize = 1
 rrsEmp1.BatchUpdate False, False
 ' Check to see if any collisions
 If .BatchCollisionCount > 0 Then
 ' Move to first collision to demonstrate
 ' use of the batchcollisions array
 .Bookmark = .BatchCollisionRows(0)
 Text1 = !emp_no & " " & LTrim(!emp_fname) & _
 " " & !emp_lname
 Text2 = ""
 Text3 = !emp_salary
 If MsgBox("Collision Detected. See changes made?", _
 vbYesNo + vbQuestion) = vbYes Then
 ' Also see the BatchConflictValue of the rdoColumn
 .Bookmark = .Bookmark
 Text4 = !emp_salary
 Else
 sMsg = Str$(.BatchCollisionCount) & " records " & _
 "have been altered by another user." & vbCrLf & _
 "Force updates anyway?"
 ' Give user opportunity to force updates

 If MsgBox(sMsg, vbYesNo & vbQuestion) = vbYes Then _
 ' True forces the update
 .BatchUpdate False, True
 End If
 End If
 End If
 ' Close the rdoResultset
 .Close
End With

' Close rdoConnection and rdoEnvironment
rCon1.Close
rEnv1.Close
lbStatus = "RDO objects closed"
End Sub

Private Sub Command1_Click()

End

End Sub

Figure 6.5 The RDO batch update sample program detecting a collision with another
user.

• The BatchSize property controls how many statements will be sent to the
server at a time during a batch update. The default is 15. Some databases or
ODBC drivers do not support sending more than one statement at a time. I use
this property in Listing 6.3.

• The BOF and EOF properties are similar to the DAO counterparts. If the
current record is before the first record, BOF will return True. Likewise, if the
current record is after the last record, EOF returns True. If both values are
True, then there are no rows (and the RowCount property is equal to 0). If
either value is True, there is no current record and attempting to access any data
results in a trappable error.

• The Bookmark property is a reference to the current row. All result sets
except forward-only-type support the Bookmark property. You can save a
reference to the current row by saving the value of this property to a variable of
type Variant. The Bookmarkable property tells you whether you can reference
the Bookmark. You can also change the current record by setting the
Bookmark property to a previously saved value. This method is preferred over
using the AbsolutePosition property. The following code segment saves a
Bookmark, moves to the first row, and then moves back to the saved position.
Listing 6.3 also illustrates some uses of the property.

 Dim vBookMark As Variant
 ' Manipulate the result set
 With rrs

javascript:displayWindow('images/06-05.jpg',577,243)
javascript:displayWindow('images/06-05.jpg',577,243)

 vBookmark = .Bookmark
 .MoveFirst
 .Bookmark = vBookMark
 End With

NOTE
If you set the Bookmark property to the current Bookmark, it has the effect
of refreshing the current record. This feature is most useful when another user
has changed a row that is currently being edited. The row will be changed to
reflect that user’s changes, but any changes you have made will be lost.

• The EditMode property returns a Long indicating the edit mode state of the
current record. rdEditNone indicates the current row is not being edited.
rdEditInProgress indicates that the row is being edited and that the current row
is in the copy buffer. rdEditAdd indicates that a new row has been added. The
row in the copy buffer has not been saved to the database.

• The hStmt property returns a Long containing the ODBC statement handle.

• The LastModified property returns the Bookmark of the most recently
added or changed row. You cannot get a Bookmark reference to a deleted row.
If no rows have been added or modified, this property contains zero. The
following example illustrates the movement to the most recently modified row:

 rrs.Bookmark = rrs.LastModified

• The LockType property is used to set or return the concurrency locking type
for the result set. See my discussion of the OpenResultset method earlier in this
chapter where I discuss concurrency settings.

• The LockEdits property returns a Boolean indicating whether the current
locking is pessimistic (True) or optimistic (False). Use the LockType property
to manipulate the locking.

• The Name property is a string containing the first 255 characters of the SQL
statement. If the row source is a query object, the Name property is equal to the
Name of the rdoQuery object.

• The PercentPosition property is a Single with which you gauge
approximately where you are in the result set. For instance, if there are 200 rows
and you are displaying the 50th, the property will be equal to 25 (25 percent).
You can also use this property to set the current row, although it is not precise.
The following example will set the current row to be approximately 75 percent
of the way through the result set. For more precise movement, use the
AbsolutePosition or Bookmark properties. On the other hand, if you are
updating a long series of records, PercentPosition may be useful to maintain a
progress bar for the user, as is also shown in the code example.

 ' Move 75% of the way through the result set
 rrs.PercentPosition = 75
 ' pbStatus is a progress bar
 With rrs
 Do Until .EOF
 .Edit
 !Emp_Salary = !Emp_Salary * 1.08

 pbStatus.Value = .PercentPosition
 DoEvents
 .MoveNext
 Loop
 End With

NOTE
In Listing 6.3, I attempted to use the PercentPosition property to keep a status
bar up-to-date as I moved through 35 records. For each record, the value never
changed from 50. For larger result sets, it might be more accurate.

• The Restartable property returns a Boolean that is True if the database
supports the re-execution of the same query (via the Requery method).

• The RowCount property returns a Long telling you how many rows are in
the current result set. RowCount will return -1 to indicate an error. Unlike in
DAO, the value of RowCount is guaranteed to be accurate. However, when you
reference it, the result set invokes a MoveLast method if necessary to determine
the number of rows. Avoid referencing this property if you do not absolutely
need to know how many rows there are. If you do, consider invoking the
MoveLast method yourself so that you can do it asynchronously. (Note that
some ODBC drivers are not capable of returning a row count. An invalid result
set might return a RowCount of 0 instead of -1.)

• The Status property is a Long that returns a constant indicating the status of
the current row or column (when accessing the rdoColumn object). These
constants are itemized in Table 6.7. You can also set this property to override
the status given by RDO. You might want to do this when managing your own
updates, as I discussed in “More On Concurrency And Locking” earlier in this
chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Table 6.7 Valid row and column Status constants.

Constant Description

rdRowUnModified No updates or adds of this row have been done or are
pending.

rdRowModified The current row or column has been modified.

rdRowNew The current row or column has been inserted.

rdRowDeleted The current row or column has been deleted.

rdRowDBDeleted The row has been deleted in the result set and in the
database.

• The StillExecuting property returns True while an asynchronous
operation is executing. You cannot reference any other property of the
result set until the asynchronous operation is complete. You also cannot
access any method except Cancel. This chapter contains several
examples of the use of this property, including Listing 6.3. Note,
however, that you might want to take an event-driven approach, as I
discussed earlier in this section.

• The Transactions property returns a Boolean that is True if the
database and driver support transaction processing (that is, results can be
committed or rolled back). If transactions are not supported, the
BeginTrans, CommitTrans, and RollbackTrans methods have no
effect.

• The Type property returns the type of result set, as listed in Table 6.5.

• The Updatable property is a Boolean that returns True if the current
result set can be updated. Just because the result set is updatable does
not mean that all columns are updatable. Some columns may not be
updatable. Check individual columns within the rdoColumns
collection. Any number of reasons dictate why a result set is not
updatable. If it is opened read-only or is a forward-only type, the rows

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

cannot be updated. If the columns returned are not sufficient to form a
WHERE clause, the result set probably will not be updatable. For
instance, you generally require a primary key to perform an update. If
your result set does not include a primary key, the result set is probably
not updatable.

• The UpdateCriteria property is used with optimistic batch updates to
set how the WHERE clause will be constructed in the SQL UPDATE
statement. Possible values are listed in Table 6.8. In general, you want
to use the list of restrictive update criteria that will guarantee the
integrity of your data. The more restrictive the criteria (such as
rdCriteriaAllCols), the more resources are required. Using
rdCriteriaKey probably does not make sense in a multiuser
environment because it does not help at all to ensure that another user
has modified a row while you are editing it. rdCriteriaAllCols is an
absolute guarantee of detecting any changes because you are comparing
all columns as you read them to their present values on the database.
This comparison is expensive, however. If you have a timestamp
column, rdCriteriaTimeStamp is a good compromise because any
changes by another user will alter the timestamp. If you do not care
about the columns you are not updating, then rdCriteriaUpdCols is a
reasonable choice.

NOTE
My copy of Microsoft’s Help file switched the explanations of the
rdCriteriaAllCols and rdCriteriaUpdCols.

Assume you are updating the balance on a bank customer’s record. You
certainly do not want to update the balance if, in the meantime, another
user has updated the balance. Perhaps you don’t care that another user
has updated information such as an address. In such a case, you would
use rdCriteriaUpdCols. Assuming the customer’s balance is 300 and
you want to update it to 500, your UPDATE statement sent to the server
will look something like the following:

 UPDATE CUSTOMER
 SET BALANCE = 500
 WHERE CUST_NO = 10284 AND BALANCE = 300 ;

Table 6.8 Valid concurrency UpdateCriteria constants.

Constant Description

rdCriteriaKey Use the primary key for the WHERE clause.

rdCriteriaAllCols Use all columns in the WHERE clause.

rdCriteriaUpdCols Use the primary key and those columns being
updated for the WHERE clause.

rdCriteriaTimeStamp Use the timestamp column in the WHERE clause.

• The UpdateOperation property specifies how updates are to occur.
The default is rdOperationUpdate, which species that updates will be

done with the SQL UPDATE statement. rdOperationDelIns causes
two statements to be generated—a DELETE of the original row and an
INSERT of the new row. Generally, you want to use UPDATE, but if
for some reason you need to alter the primary key of a record, most
databases require that you do so by deleting the original row and then
inserting a new row.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoResultset has a number of methods that you use to manipulate data:

• The AddNew method creates a new row in an updatable result set. If
you attempt to add a row to a result set that is not updatable, no error
occurs until you attempt to save the row to the database. Note that when
you create a new row, the current row remains current. You need to
move to the new row using the LastModified property. Also note that if
you move off the new row without updating the database (with the
Update or BatchUpdate methods), any changes made to the row are
lost. You can cancel a pending AddNew with the CancelUpdate
method. The following example creates a new row for the result set rrs
and then moves to it so it can be edited:

 With rrs
 .AddNew
 .Bookmark = .LastModified
 End With

• The Cancel method cancels a currently executing asynchronous
operation. While an asynchronous operation is running (see
StillExecuting earlier in this section), the only method that you can use
is Cancel.
• The CancelUpdate method undoes any changes pending from the
copy buffer after an AddNew or Edit operation. You can use the
EditMode property to determine if there are any pending changes that
can be canceled. When there is nothing to cancel, the CancelUpdate
method is ignored. The CancelBatch method cancels all pending
changes in a result set opened using the ClientBatch cursor library.

• The Close method closes the result set and removes it from the
rdoResultsets collection.

• The Delete method deletes the current row. Once it is deleted, you
must move to a valid row in the result set. Once a row is deleted, it

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

cannot be referenced. The only way to undelete the row is in the context
of a single transaction using the RollbackTrans method. The following
example deletes the current row. It then checks the status of the EOF
property to make sure that the row wasn’t the last one in the result set. If
it was the last row, a MoveLast is performed; otherwise, a MoveNext is
performed:

 With rrs
 .Delete
 If .EOF Then
 .MoveLast
 Else
 .MoveNext
 End If
 End With

• The Edit method copies the current row to the copy buffer, enabling it
to be edited by the user or by the program. You must use the Update or
BatchUpdate methods to save the changes to the database before
moving off the row or the changes will be lost. Note that if the result set
uses pessimistic locking, the database page where the rows reside on the
database is locked as soon as you invoke the Edit method. The lock is
not released until you save the change or cancel the edit. Moving to
another record without first saving the changes causes the changes to be
lost.

• The GetClipString method is similar to GetRows (which I discuss
next) except that it returns the data as a delimited string. The syntax is
shown in the next code example. The Rows argument specifies how
many rows to return. The Col_delimiter is an optional Variant that
specifies what character to use to delimit columns. vbTab is the default.
Row_delimiter is also an optional Variant used to delimit rows in the
string. The default is vbCr. The Null argument is an optional Variant
with a default of an empty string that is used to specify what value to
return when a Null column is encountered. This function is most useful
for populating grid controls that support the Clip method. The Ad Hoc
Report Writer sample application that I discuss at the end of this chapter
uses this method to populate a grid control.

 ResulsetString = object.GetClipString (Rows, _
 Col_delimiter, Row_delimiter, Null)

• The GetRows method moves one or more rows from the result set into
a two-dimensional array, where the first dimension specifies the column
within the result set and the second dimension denotes the row. You
must first declare a variable of type Variant, as shown in the following
example. In invoking the method, specify the number of rows to copy, as
also shown in the example. If there are not enough rows to satisfy the
request, RDO copies only those rows that are available. Therefore, to
determine how many rows were returned, you need to use the UBound
function on the array.

 Dim vArray As Variant
 ' Get 100 rows
 vArray = rrs.GetRows (100)
 ' Display how many were actually copies
 MsgBox UBound (vArray, 2) + 1

• The MoreResults method is used when the data source of the result
set contains more than one SQL SELECT statement. This method
retrieves the rows from the next SQL statement.

• The Move method moves a specified number of rows forward or
backward in the result set. The syntax is shown in the following code
segment. The rows argument specifies how many rows to move. If it is
negative, RDO will scroll backwards. The from argument, which is
optional, evaluates to the Bookmark of a row from which you want to
scroll:

 rrs.Move rows[, from]

• There are four other move methods: MoveNext scrolls to the next row;
MovePrevious scrolls to the prior row; and MoveFirst and MoveLast
move to the first and last rows.

• The Requery method is used to re-execute the current SQL SELECT,
which has the effect of refreshing the result set to show any changes
made by other users. When you use this method, all saved Bookmarks
are invalid. The rdoResultset scrolls to the first row, as when you open a
new result set. The method has an optional argument, rdAsyncEnable,
to cause the method to execute asynchronously.

• The Update method saves the changes made to the current record to
the database unless you use the ClientBatch cursor library, in which
case the changes are queued until you invoke the BatchUpdate method.
Listing 6.3 contains examples of using both methods.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Referencing rdoResultset Columns

Every rdoResultset has a collection of rdoColumns. When manipulating the result set in code,
you reference the individual rdoColumn objects:

txtFields(0).Text = rrsEmp.rdoColumns("Emp_ID").Value

The code snippet references the rdoColumn object by name, which is actually the column name
from the SQL SELECT. (You can also reference the object by its ordinal position within the
collection.) rdoColumns is the default property of the rdoResultset object, so the explicit
reference is not necessary. Likewise, Value is the default property of the rdoColumn object and
does not have to be explicitly referenced. The following line of code is simpler to read and
somewhat faster to resolve and execute:

txtFields(0).Text = rrsEmp!Emp_ID

Using the exclamation (!) operator in this manner is called reference by implication. The
reference to the column’s parent object, rdoColumns, is implied.

The rdoColumns Collection And rdoColumn Object

The rdoColumn object represents a column within a record set, query, or table. The rdoColumn
objects within an rdoColumns collection are created automatically when you create an
rdoResultset or rdoTable. Although you can use an rdoTable object’s rdoColumns collection
to map the underlying database table, you cannot use it (or any RDO methods) to manipulate the
table’s structures. You need to use DDL in an action query to modify a table structure.

Like rdoResultset, rdoEngine, rdoEnvironment, and rdoConnection, the rdoColumn object
supports some event-driven processing. Specifically, it supports two events that you can use
before or after a value has changed. To take advantage of this behavior, you need to declare a
reference to the object using the WithEvents qualifier: Private WithEvents rcolEmp As
rdoColumn.

• The WillChangeData event is triggered immediately before a column value is going to
be changed. Two arguments are passed to the event, as shown in the following code
example. The NewValue argument indicates the new value of the column that will be

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

modified. You can set the Cancel argument to True, which has the effect of preventing the
change from happening. By default, this value is False. If you prevent a change, RDO
triggers a trappable error.

 Private Sub rcolEmp_WillChangeData (NewValue As Variant, _
 Cancel As Boolean)

• The DataChanged event occurs immediately after the data has been updated to the
database.

The rdoColumn object has some 16 properties that you use to manipulate data and the object
itself. As with the DAO Field object, some properties are more pertinent when dealing with
tables, whereas others are more pertinent when dealing with queries and result sets. The Name
property is the name of the underlying database column.

A number of properties tell you about the nature of the column. Listing 6.4 illustrates many of
them in use. To try this yourself, create a form with an array of textbox controls named txtFields.
The first textbox will display and update the value in the first column, the second textbox
corresponds to the second column, and so on. As written, this routine is very generic and can be
used to perform basic validation on almost any result set. The listing loops through all of the
textbox controls and compares their contents to the requirements of the corresponding column of
the result set. I have highlighted the lines of interest.

Listing 6.4 A generic routine to edit the contents of textboxes against the data requirements of
table columns.

' rrs is a result set
' txtFields is an array of textbox controls
Dim iCtr As Integer
Dim vTest As Variant
With rrs
 For iCtr = 0 to 8
 If .rdoColumns(iCtr).KeyColumn = True Then
 MsgBox "Cannot Update Primary Key!"
 txtFields(iCtr).SetFocus
 Exit Sub
 ElseIf .rdoColumns(iCtr).Updatable = False Then
 MsgBox "Cannot Update This Field!"
 txtFields(iCtr).SetFocus
 Exit Sub
 Else
 ' Verify the type of data required
 Select Case .rdoColumns(iCtr).Type
 Case rdTypeChar, rdTypeVarChar, rdTypeLongVarChar
 ' Column is character data
 If .rdoColumns(iCtr).AllowZeroLength Then
 ' Empty String okay
 .rdoColumns(iCtr).Value = txtFields(iCtr)
 Else
 ' Use null if necessary
 If len(txtFields(iCtr)) = 0 Then
 .rdoColumns(iCtr).Value = Null
 Else
 .rdoColumns(iCtr).Value = txtFields(iCtr)
 End If

 End If
 Case Else
 ' Data is non-character (no dates on this table)
 vTest = txtFields(iCtr).Text
 If IsNumeric(vTest) Then
 ' Contains a number
 .rdoColumns(iCtr).Value = txtFields(iCtr)
 ElseIf Len(txtFields(iCtr)) > 0 Then
 ' Contains non-numeric data
 MsgBox "Invalid Value: " & txtFields(iCtr)
 txtFields(iCtr).SetFocus
 Exit Sub
 Else
 ' Does not contain a number - Can it be null?
 If .rdoColumns(iCtr).Required Then
 ' Null not allowed
 MsgBox "Value Required!"
 txtFields(iCtr).SetFocus
 Exit Sub
 Else
 .rdoColumns(iCtr).Value = Null
 End If
 End If
 End Select
 End If
 Next
End With

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The code first checks the KeyColumn property, which returns True if the
column is part of the primary key. Most databases do not allow you to update
the primary key, and I have disallowed any maintenance to it. After that, I
check the Updatable column. This value is also a Boolean that will be True if
the column can be updated.

Next, I evaluate the Type property in a Select Case construct. This property is
a Long containing one of the constants listed in Table 6.9. These are the valid
data types for a column. In the listing, I look for columns that are a character
data type and handle those differently than numeric data types. For purposes of
brevity, I did not evaluate whether the column’s data type was, for instance,
date or time. You can add those tests easily enough. If the data type is
character, I next check the AllowZeroLength property. This is a Boolean that
is True when character data (Char and VarChar) can be a zero-length string.
If the value is False, you must specify Null when there is no data. In the
listing, if Null is not allowed and the text box is empty, I generate an error
message.

Table 6.9 Valid rdoColumn Type constants.

Constant Description

rdTypeCHAR Fixed-length character (see Size property)

rdTypeNUMERIC Numeric data with precision and scale such as
“Numeric (11, 2)”

rdTypeDECIMAL Numeric data with precision and scale such as
“Numeric (11, 2)”

rdTypeINTEGER Integer with range of approximately +/- 2.1
billion

rdTypeSMALLINT Integer with range of -32,768 to +32,767

rdTypeFLOAT Signed 8-byte floating-point number

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

rdTypeREAL Signed 4-byte floating-point number

rdTypeDOUBLE Signed 8-byte floating-point number

rdTypeDATE Date

rdTypeTIME Time

rdTypeTIMESTAMP Timestamp (date and time)

rdTypeVARCHAR Variable-length character with maximum
length of 255

rdTypeLONGVARCHAR - Variable-length character; maximum length
set by database or driver

rdTypeBINARY Fixed-length binary data with maximum
length of 255

rdTypeVARBINARY Variable-length binary data with maximum
length of 255

rdTypeLONGVARBINARY Variable-length binary data; maximum length
set by database or driver

rdTypeBIGINT Signed, 12-byte integer

rdTypeTINYINT Signed, 1-byte integer with range of -256 to
+255

rdTypeBIT Single binary digit

If the column’s data type is numeric, I then make sure a number is entered into
the textbox. If there is non-numeric data, a message is generated. If the text
box is empty, I then check the Required property, which returns True if the
column cannot be Null.

The Value property, of course, returns or sets the value of the column.
Although I did not use it in the listing, you may find the Size property useful in
your edits. It returns the maximum size (in bytes) of the underlying column.
This would be a valid edit of character data:

If Len(txtFields(iCtr)) > .rdoColumns(iCtr).Size Then

The Attributes property combines several other properties and may contain
one or more constants. rdFixedColumn indicates a fixed-length column,
whereas rdVariableColumn indicates a variable-length column.
rdAutoIncrColumn indicates that the column is an auto-incrementing
column, usually associated with the primary key. rdUpdatableColumn
indicates that the column can be changed. rdTimeStampColumn indicates a
timestamp column. To test for any single attribute, you should use the And
operator: If rrs!emp_no. Attributes And rdUpdatableColumn Then….

The BatchConflictValue property is useful when a batch collision occurs (see
Listing 6.3 and the discussion of batch updates earlier in this chapter). The
OriginalValue is similar except that it provides the value of the column before
it was altered by the user or application.

The Status property indicates whether the column has been modified as a
constant, as listed in Table 6.7 earlier in this chapter.

The SourceColumn and SourceTable properties return string variables
containing the names of the column and table from which the data in the
column is derived.

The ChunkRequired property is a Boolean that returns True when you must
use the GetChunk and AppendChunk methods to access binary and long
character data from a column. The BindThreshold property returns the largest
number of bytes of data that can automatically be bound to a column without
using the GetChunk method. You can also set this property to the largest
column size that you want to be automatically bound.

The rdoColumn object has only three methods.

The GetChunk and AppendChunk methods are used with binary data or very
long character data (rdTypeLONGVARCHAR). GetChunk is used to
iteratively retrieve a “chunk” of data at a time, perhaps to read a Microsoft
Word document that has been stored in a table. Likewise, the AppendChunk
method appends a chunk at a time to a column. The syntax for each is shown
in the next code segment. bytes is the number of bytes to read with each
iteration. If there are not enough bytes left in the column to fill the buffer, only
the remainder of the column is read. The datasource argument is the variable
from which you are reading to append to the column. You use the ColumnSize
method to return the actual size of the binary data stored in the column.

Dim vChunk As Variant
vChunk = recordset!column.GetChunk (bytes)
recordset!column.AppendChunk datasource

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoParameters Collection And rdoParameter Object

The rdoParameters collection contains all parameters of a query. You can use the
rdoParameter object as a placeholder in stored procedures or in queries. The overall
operation is similar to using DAO’s Parameter objects. Parameters are implicitly created
when you place question marks in your query or call to a stored procedure. The parameter
can be input, output, or both. An input parameter supplies a value to a query (as in a
WHERE clause) or stored procedure. An output parameter is used where a stored
procedure will return results. RDO creates an rdoParameter object for each question mark
(?) it sees in an rdoQuery object’s SQL property.

With a stored procedure, you must use the CALL keyword to execute the procedure on the
database. I created the following simple stored procedure to compute the power of a
number. Although the following syntax is fairly generic, your database’s syntax may differ
slightly:

CREATE PROCEDURE raise_no
(IN r INTEGER, IN p INTEGER, OUT rp INTEGER)
BEGIN
 SELECT power (r, p) INTO rp ;
END

In this example, the stored procedure expects two input arguments, r and p. It raises the
number r to the power of p and passes the result to the output argument rp. To call this
from Visual Basic, you need to create an SQL statement that looks like the following:

CALL raise_no (?, ?, ?)

In Listing 6.5, I provide a listing for the RDO parameters application that you see running
in Figure 6.6. The application allows you to test both parameterized stored procedures and
queries. I have highlighted the lines of code that call the raise_no stored procedure.
Although not terribly complex, the application illustrates both the methodology of calling

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

stored procedures from Visual Basic as well as how parameters are created and used. (I
discuss stored procedures in greater depth in later chapters.)

Listing 6.5 The RDO parameters demonstration program.

Option Explicit
Dim WithEvents reng As rdoEngine
Dim WithEvents renv As rdoEnvironment
Dim WithEvents rcon As rdoConnection
Dim WithEvents rrs As rdoResultset
Dim rq As rdoQuery

Private Sub Command1_Click(Index As Integer)

Dim iRoot As Integer
Dim iPower As Integer
Dim iCtr As Integer
Dim sSQL As String

Select Case Index
 Case 0 ' Stored procedure
 iRoot = Val(txtRoot)
 iPower = Val(txtPower)
 sSQL = "Call raise_no (?, ?, ?)"
 Set rq = Nothing
 Set rq = rcon.CreateQuery("SP", sSQL)
 rq.rdoParameters(2).Direction = rdParamOutput
 rq.rdoParameters(1).Direction = rdParamInput
 rq.rdoParameters(0).Direction = rdParamInput
 rq.rdoParameters(0).Type = rdTypeINTEGER
 rq.rdoParameters(1).Type = rdTypeINTEGER
 rq.rdoParameters(2).Type = rdTypeINTEGER
 rq(0) = iRoot
 rq(1) = iPower
 rcon.Execute ("SP")
 While rcon.StillExecuting
 DoEvents
 Wend
 txtResult = rq.rdoParameters(2).Value
 Case 1 ' Parameter query
 Set rq = Nothing
 Set rrs = Nothing
 sSQL = "Select min(emp_salary), max(emp_salary), " & _
 "avg(emp_salary), sum (emp_salary) from " & _
 "employee where emp_gender = ? and emp_dept_no = ?" & _
 "group by emp_gender, emp_dept_no "
 Set rq = rcon.CreateQuery("PARM", sSQL)
 rq(0) = txtParms(0)
 rq(1) = txtParms(1)
 Set rrs = rcon.OpenResultset("PARM")
 While rcon.StillExecuting

 DoEvents
 Wend
 For iCtr = 0 To 3
 txtSalary(iCtr) = rrs.rdoColumns(iCtr).Value
 Next
 Case 2 ' Close
 End
End Select

End Sub

Private Sub Form_Load()

Dim sCaption As String
Dim sSlash As String * 1

' Connect to database
Show
sCaption = Caption
Caption = Caption & " Connecting …"
Screen.MousePointer = vbHourglass

' Create environment
Set renv = rdoEngine.rdoCreateEnvironment _
 ("VB", "coriolis", "coriolis")
 ' Set properties
 With renv
 .CursorDriver = rdUseOdbc
 .LoginTimeout = 10
 ' Create connection
 Set rcon = .OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="DSN=Coriolis VB Example;UID=Coriolis;" & _
 "PWD=Coriolis;", Options:=rdAsyncEnable)
 End With

' Wait for connection to complete
While rcon.StillConnecting
 DoEvents
 If sSlash = "/" Then
 sSlash = "\"
 Else
 sSlash = "/"
 End If
 Caption = Caption & sSlash
Wend
Caption = sCaption
Screen.MousePointer = vbDefault

End Sub

Figure 6.6 The RDO parameters demonstration program.

When the rdoQuery object is created using the preceding syntax for the SQL property,
RDO creates three parameters—one for each question mark placeholder. The Name
properties of each parameter are simply Parameter1, Parameter2, and so on. I use the
Direction property to explicitly tell RDO whether the parameter will be used for input or
output. Normally, RDO can ascertain this information by itself. Other possible values are
rdParamInputOutput and rdParamReturnValue. I also specify the data type of each
parameter using the Type property. Possible values are listed in Table 6.9 earlier in this
chapter. Again, this is normally not necessary. In the next two lines of code, I set the Value
property of the input parameters. Because rdoParameters is the default property of the
rdoQuery object and Value is the default property of the rdoParameter object, I
simplified the syntax as shown, omitting the property names. For illustration purposes, I
explicitly reference the properties when I set the return result from the procedure.

Queries work much like their DAO parameter counterparts. Place a question mark in the
query wherever you desire a parameter to be filled in at runtime. The form allows the user
to supply a gender and department number and use those values as parameter values when
creating the result set. The application then determines various summary salary
information and displays it.

The rdoTables Collection And rdoTable Object

Microsoft discourages the use of the rdoTables collection and rdoTable object. They are
maintained for backward compatibility, and all the information and methods that they
provide are supported by other objects. rdoTable provides a definition of a table or view
in a query or result set. To reference it, you must first use the Refresh method of the
collection.

The Name property is equivalent to the SourceTable property in an rdoColumn object.
The Type and Updatable properties are similarly available from rdoColumn. The
RowCount property is available from the result set.

The only method the object supports is the OpenResultset method, which is provided by
other objects, such as rdoConnection.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/06-06.jpg',548,438)
javascript:displayWindow('images/06-06.jpg',548,438)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The rdoPreparedStatements Collection And
rdoPreparedStatement Object

Like rdoTables, rdoPreparedStatements and rdoPreparedStatement are provided
for backward compatibility only. All their properties and methods are provided by
rdoQuery. Further, the requirements for ODBC functionality to use
rdoPreparedStatement are more stringent than they are for rdoQuery. If using
rdoPreparedStatement, you should consider converting. The effort is little more
involved than a simple search and replace in your code.

The Remote Data Control

RDO provides a much cleaner, simpler method for developing database applications
than does DAO while retaining a high degree of both familiarity and compatibility.
The use of the Remote Data control is analogous to the DAO Data control. Its use
provides some loss in flexibility but provides an even simpler development scenario.

To use the Remote Data control, you must add it as a component from the Project
menu. Once you have done so, it appears on the toolbox and can be used in a manner
similar to that for the Data control.

The control generates only four events. The Error event works much like the Data
control’s Error summary event except it provides more information, as shown in the
following syntax. The Error event is triggered when a database error is encountered
while no VB code is running. The Number and Description arguments are the error
number and error descriptions from the Err object. The Scode argument is the ODBC
return code. Source is the source of the error. HelpFile and HelpContext refer to the
help file and context ID that provide more information about the error. CancelDisplay
allows you to display the error (rdDataErrDisplay) or proceed without displaying the
error (rdDataErrContinue). The default value is rdDataErrDisplay.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Private Sub MSRDC1_Error(Number As Long, Description As _
 String, Scode As Long, Source As String, HelpFile As _
 String, HelpContext As Long, CancelDisplay As Boolean)

The QueryCompleted event occurs after a query has completed executing, whether
asynchronously or synchronously. It is most useful, of course, during asynchronous
operations. You use this event as you would use the rdoConnection except that it
does not provide information about the query itself.

The Reposition event is triggered after a new row becomes the current row, regardless
of what caused the row to display (such as a user clicking one of the move buttons).
The RowCurrencyChange event of the rdoResultset is also triggered.

The Validate event is perhaps the most useful of the four events generated by the
Remote Data control. It occurs before any operation that would cause the current row
to no longer be the current row. In other words, if the user or application scrolls to a
new row, this event is triggered first. Likewise, if the result set is closed, this event is
triggered first. The event is also fired prior to the Update method. This gives you an
opportunity to validate any changes made by the user as well as to cancel the pending
operation that triggered the event. The syntax is shown in the next code example.
Action tells you what operation is pending that caused this event to be triggered. If
you change the value to rdActionCancel, the operation will be canceled. Possible
values are listed in Table 6.10.

Table 6.10 Remote Data control Validation event Action constants.

Constant Description

rdActionCancel Cancel the operation when the Sub exits.

rdActionMoveFirst MoveFirst method.

rdActionMovePrevious MovePrevious method.

rdActionMoveNext MoveNext method.

rdActionMoveLast MoveLast method.

rdActionAddNew AddNew method.

rdActionUpdate Update operation (not UpdateRow).

rdActionDelete Delete method.

rdActionFind Find method (not implemented).

rdActionBookmark The Bookmark property has been set.

rdActionClose Close method.

rdActionUnload The form is being unloaded.

rdActionUpdateAddNew A new row was inserted into the result set.

rdActionUpdateModified The current row changed.

rdActionRefresh Refresh method executed.

rdActionCancelUpdate Update canceled.

rdActionBeginTransact BeginTrans method.

rdActionCommitTransact CommitTrans method.

rdActionRollbackTransact RollbackTrans method

rdActionNewParameters Change in parameters or order of columns or
rows.

rdActionNewSQL SQL statement changed.

Private Sub MSRDC1_Validate (Action As Integer, _
 Reserved As Integer)

When the Validate event fires, you should check to see whether any bound data has
changed. If so, you should perform your business rule edits (I discuss this at length
under the Validate event in Chapter 5) and cancel the operation that triggered the
event if there is a data problem. If the Remote Data control moves to another row, the
changes to the current record are made automatically.

The Remote Data control has a number of properties that mostly parallel those of other
RDO objects, such as Connect, BatchCollisionRows, and Resultset. The two
properties that are not derived from other RDO objects are BOFAction and
EOFAction, which return or set the action to take when BOF or EOF is True. For
BOFAction, the value rdMoveFirst, which is the default, causes the first record to
remain the first record when a MovePrevious is attempted. Similarly, rdMoveLast
for EOFAction causes the last record to remain the last record when a MoveNext is
issued. rdBOF causes a move before the first record, triggering a Validate event on
the first row and a Reposition event on the now invalid row. rdEOF behaves
similarly for EOFAction. Additionally, you can set EOFAction to rdAddNew, which
causes the AddNew method to be invoked.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Remote Data control has a number of methods derived from other RDO
objects: BeginTrans, CommitTrans, RollbackTrans, and Cancel. Other
methods include the following:

• The Refresh method causes the result set to be closed and reopened,
similar to the Requery method of rdoResultset. You will normally use
this method either in a multiuser environment or when the parameters
being passed to a parameterized result set have changed.

• The UpdateControls method causes all bound controls to be
repopulated with columns from the result set. This is basically an
“undo” method. If the user has changed some value in bound controls
before the result set has been updated, this method will cause all of the
bound controls to revert to their original values.

• The UpdateRow method is essentially the same as the rdoResultset
Update method except that the Validate event is not triggered. If the
ClientBatch cursor library is being used, the local result set is updated
but the database is not updated until you invoke the result set’s
BatchUpdate method.

Remote Data control result sets must be either keyset type or static type.

Bonus: The RDO Ad Hoc Report Writer

Included on the CD-ROM is the RDO Ad Hoc Report Writer application. The
source code is not printed here in order to save a few square miles of the rain
forest. The running application is shown in Figure 6.7. I urge you to start it and
study some of the code. It connects to the specified database and then retrieves
a list of tables. You can click on any two tables and list their columns in the
listboxes shown in the figure. Use the two combo box controls to specify how
the two tables are to be joined. Select which columns you want to display in
the report. You can even do a self-join by selecting the same table for both
listboxes. When ready, press the Build button to build and display the SQL

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

SELECT statement. If you want, you can then alter the SELECT statement in
the textbox. Otherwise, press the Run button to execute the select. The results
appear in the grid control at the top of the form. I will expand upon this
application in future chapters.

Figure 6.7 The RDO Ad Hoc Report Writer.

Note that you will have to alter the SELECT statement that retrieves the table
and column names. For instance, to run this application on an Oracle database,
change the table select statement to either of the following:

SELECT table_name FROM user_tables
' Or you can use the following
SELECT table_name
FROM all_tables
WHERE creator = 'CORIOLIS'

An examination of the listing will show that the choice to limit selects to only
two tables was arbitrary. The code will work for three, four, or however many
tables. Simply change the number of subscripts for the sActTables variable
and change the loop counters in the BuildQuery procedure. You will need to
devise a way to show more listboxes or simply display all of the columns in
one listbox, similar to the query facility in Visual Basic’s Visual Data
Manager.

Where To Go From Here

In this chapter, I have provided guidance on the use of RDO, including
numerous code examples and as much real-world advice as I could fit into one
chapter. If you are doing pure ODBC development and do not want to consider
ADO, you might want to move ahead to Chapter 11 where I discuss advanced
database concepts. Otherwise, read Chapters 7 and 8 where I introduce ADO
and OLE DB and then cover techniques to migrate from RDO to ADO.

You may also want to review Chapter 5, if you have not already done so, for
some DAO concepts not covered in this chapter. Many or most of them are
equally applicable to RDO. Likewise, take a look at Chapter 4 if you have not
done so yet because I spent some additional time discussing the Remote Data
control, including building an application with it.

Previous Table of Contents Next

javascript:displayWindow('images/06-07.jpg',634,544)
javascript:displayWindow('images/06-07.jpg',634,544)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 7
Introducing ADO And OLE DB
Key Topics:

• Microsoft Data Access Components

• Overview of OLE DB

• Overview of ADO

• Event-driven programming and ADO

• Using the Active Data control

• Using ADO schema objects

• Transaction management with ADO

• Concurrency management with ADO

In this chapter, I will introduce you to the use of the Active Data Objects
(ADO) data model, as well as the OLE DB technologies upon which it sits. I
will guide you through most of the essential aspects of ADO development. In
subsequent chapters, I will guide you through more advanced application of
these techniques into a scalable network or Web-based model.

Microsoft Data Access Components

Microsoft Data Access Components (MDAC) is the umbrella over Microsoft’s
COM-based database development initiatives. MDAC consists of Active Data
Objects (ADO), Remote Data Services (RDS), and OLE DB. Strictly speaking,
Microsoft also includes ODBC under MDAC. MDAC is common to all
Microsoft development tools and is likely to be embraced by other tool
vendors.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

With VB6 comes MDAC 2.0, which added an event-driven environment much
like RDO’s event-driven paradigm. However, MDAC is evolving rapidly, and
Microsoft is likely to release functional improvements from time to time. A
good page to bookmark in your browser is www.microsoft.com/data/ado,
where you can keep an eye on the latest trends. You should be able to
download and incorporate into VB new releases of MDAC as they occur.

To appreciate why Microsoft introduced MDAC, we need to back up a step
and take a look at data access in general.

Universal Data Access

Data warehouses and similar systems seek to make available all corporate data
in a central repository where it can be analyzed for the purpose of making
more informed business decisions. This often involves copying data from
disparate sources such as Access, Oracle, and Excel into a centralized
database. The concept is called Universal Data Storage (UDS). Finding all
business data and then getting it into a central repository is no trivial
undertaking. It also does not guarantee that all the information is accessible
because often, data is stored in unstructured and inaccessible formats such as
email messages and Web pages.

A central underpinning of Microsoft’s Universal Data Access (UDA) model is
to not copy the data into a central location but rather to devise a methodology
to access it in its native format. In other words, if you have an Employee table
stored on a relational database, you should be able to dynamically join it to
your email server to find all messages from “John Smith” whose subject is
“Widget Sales.”

UDA seeks to provide a high-performance interface to relational and
nonrelational data sources in a common manner. It is an evolutionary step
from ODBC, DAO, and RDO, but UDA will not replace any of those
technologies soon.

Recall that in 1990, Bill Gates made a speech at Comdex where he espoused a
“document-centric” way of computing. Under this scenario, a user works on a
document, not knowing or caring what applications actually build the
document. The document might have some text created by Word,
computations performed by Excel, and graphics created by PowerPoint. The
“shell” that the user is in might well be your Visual Basic application. The first
incarnation of this thrust was Dynamic Data Exchange (DDE). DDE evolved
into, but was not replaced by, Object Linking and Embedding (OLE), now
redubbed ActiveX.

Because all computing and all documents eventually deal with data, UDA is a
logical follow-up to Gates’s document-centric thrust: The user deals with data,
not knowing or caring where it is coming from either. UDA seeks to blur or
make invisible the distinction between data in a local Microsoft SQL Server
database and data on a Web page across the world. To the user, it is all the
same. MDAC takes care of the details of massaging and merging that data
behind the scenes.

http://www.itknowledge.com/reference/standard/1576102823/ch07/www.microsoft.com/data/ado

Goals Of MDAC

Microsoft has espoused several goals for its MDAC efforts:

• Provide the programming interface to create data-bound Web pages in
Internet Explorer 4.0 and above.

• Provide the programming interface to create dataware middle-tier
components in client/server applications, particularly on Internet
Information Server (IIS) 4.0 and above.

• Integrate the remoting services previously provided by the Active
Data Connector (ADC), which is now a part of ADO.

Active Data Objects

You will sometimes see the “Active” in ADO called “ActiveX.” The two
terms are synonymous, and I use the simpler word “Active.” ADO is to OLE
DB what RDO is to ODBC. It is essentially a low-overhead wrapper around
the OLE DB API. It adds key support for building client/server applications
residing on traditional networks or on Web-based networks, including the
Internet.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

OLE DB

OLE DB can be considered analogous to ODBC. It provides an interface to
applications that make disparate data sources look as though they were the
same data source. It logically organizes structured or unstructured data into
rows and columns so that it can be accessed in a common way (such as via
SQL SELECT statements).

An OLE DB data consumer is an application that uses OLE DB-provided data.
A data provider is any software component that exposes its data via an OLE
DB interface. A service provider is an OLE DB component that does not
actually own any data but provides some other service. By definition, an OLE
DB service provider is both a data consumer and a data provider. For instance,
a query processor that sits between your application and the OLE DB provider
reacts to data requests from your program. It sends a query to the database and
receives the results. In that aspect, it is a data consumer. Once the data is
received, it sends the data to your application and thus also acts as a data
provider.

The very nature of OLE DB is to create the data interface in a
component-based manner. Providers and consumers are components under
COM and DCOM. Their relationship is shown in Figure 7.1. OLE DB defines
these components:

• Enumerator—Searches for available data sources and other
enumerators and is used by consumers that are not customized to a
single data source.

• Data Source object—A component that contains the mechanism to
connect to a database and through which you will manage transactions,
manipulate record sets, and so on. The data source is analogous to the
RDO environment and the DAO workspace.

• Session object—A representation of the current database connection,

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

roughly analogous to the RDO connection and DAO database or
connection objects.

• Transaction object—Allows you to work with the database in terms of
a transaction or logical unit of work.

• Command object—Used to execute SQL commands; roughly
analogous to the RDO and DAO query objects. (In OLE DB, an SQL
command is termed a text command.)

• Rowset object—The object with which you manipulate and view data.
It is the equivalent of the DAO record set and the RDO row set.

• Error object—Contains information about database errors not
occurring as a result of code errors and is akin to the DAO and RDO
error objects.

Figure 7.1 ADO as it relates to the application, OLE DB, and the database.

By and large, your application does not need to understand the inner workings
of OLE DB any more than it needs to understand the complexities of the
ODBC API. These objects can be exposed if you want. However, ADO places
a programmatic wrapper around OLE DB, making your task easier.

ADO Overview

ADO allows your application to access any data that is exposed via an OLE
DB interface. Further, your application can freely relate any OLE DB data
source to any other OLE DB data source. Figure 7.1 shows the relationship of
the application (including Internet-based applications) to ADO and OLE DB.

ADO MD

ADO MD (multidimensional) allows your application to access
multidimensional data for any OLE DB for which there is an MD interface.
Multidimensional data is often used in decision-analysis systems and seeks to
“roll up” or summarize data at various meaningful levels. For instance, assume
you are analyzing sales and customer data. You might summarize sales at
various levels: region, state or province, month, and product. You would want
to be able to cut across each of these elements at any level of detail, such as
“sales in the northeast for 1999.” You might then want to “drill down” by
state, product, month, or all three. You can see where this takes on a
multidimensional aspect, and you can think of it as roughly akin to a Visual
Basic multidimensional array.

ADO And RDS

javascript:displayWindow('images/07-01.jpg',500,587)
javascript:displayWindow('images/07-01.jpg',500,587)

Remote Data Services (RDS) is a development model where the client
application never physically connects to the database. All data access occurs
through an intermediary such as Internet Information Server (IIS) or Microsoft
Transaction Server (MTS). Instead of the traditional two-tiered application,
these applications are three-tiered. Once a separate product, RDS is
incorporated into ADO.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

ADO Data Types

ADO specifies a number of data provider-specific data types. Not all data
types will apply to all data providers. (In fact, not all data types specified in
ADO are exposed to Visual Basic.) For a complete list, see the
DataTypeEnum Enum structure in the object browser. Table 7.1 lists the
most common data types you will encounter.

Table 7.1 Valid ADO data types.

Constant Description

adBigInt 8-byte signed integer

adBinary Binary

adBoolean Boolean

adBSTR Null-terminated Unicode string

adChar Fixed-length string

adCurrency Currency

adDate Date stored as Double where the whole part is the
number of days since December 30, 1899, and the
fractional part is the fraction of a day

adDBDate Date as yyyymmdd

adDBTime Time as hhmmss

adDBTimeStamp Date and time stamp as yyyymmddhhmmss plus a
fraction in billionths

adDecimal Number with fixed precision and scale

adDouble Double

adEmpty No value

adError 32-bit error code

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

adGUID Globally unique identifier (GUID)

adInteger 4-byte signed integer (Long)

adLongVarBinary Long binary value (Parameter object only)

adLongVarChar Long string value (Parameter object only)

adLongVarWChar Long null-terminated string value (Parameter object
only)

adNumeric Number with fixed precision and scale

adSingle Single

adSmallInt Integer

adTinyInt 1-byte signed integer

adUnsignedBigInt 8-byte unsigned integer

adUnsignedInt 4-byte unsigned integer

adUnsignedSmallInt 2-byte unsigned integer

adUnsignedTinyInt 1-byte unsigned integer

adUserDefined User-defined variable

adVarBinary Binary value (Parameter object only)

adVarChar Variable-length string value (Parameter object only)

adVariant Automation Variant

adVarWChar Null-terminated Unicode string (Parameter object
only)

adWChar Null-terminated Unicode string

Although most of these data types have VB equivalents, some do not. Either
way, these ADO data types help you to interpret or set the underlying data.

Using ADO Objects

Figure 7.2 shows the relationship of ADO objects to one another. Notice that
the relationships are not hierarchical. In fact, you can program using the
RecordSet and Field objects alone. Also, note that there are only four
collections: Errors, Properties, Fields, and Parameters. The Command,
RecordSet, and Connection objects are all standalone. Finally, note there is
no equivalent to the DBEngine or rdoEngine objects in DAO and RDO.
There is no overall “owner” of other ADO objects. Instead, each Connection
object, for instance, has its own Errors collection.

Figure 7.2 The ADO object model. For simplicity, the relationship between
Parameter and Properties is omitted.

The ADO objects shown in Figure 7.2 are briefly explained here:

• The Connection object represents a connection to a database. Note

javascript:displayWindow('images/07-02.jpg',547,340)
javascript:displayWindow('images/07-02.jpg',547,340)

that the database may or may not be a relational source such as Oracle.
It can be any OLE DB data source, such as email, an unstructured text
file, or legacy data from a mainframe.

• The Command object represents an SQL statement such as a
SELECT or UPDATE or some other data provider-specific command.

• The Parameter object is much like its DAO and RDO counterparts.
You use it to specify variable values in queries and so on.

• The RecordSet object is used to view and manipulate data much like
DAO’s RecordSet and RDO’s rdoResultSet.
• The Field object represents a field or a column in a ResultSet.
• The Error object is used to retrieve and handle error conditions from
the database.

• The Property object represents a characteristic of various ADO
objects. Typically, the Property object is used to represent properties of
ADO objects that are nonstandard ADO properties. For instance, the
Connection object will have somewhat different properties based on
whether you are connected to SQL Server or Oracle.

To use ADO objects, you must make a reference to the ADO library, unless
you are using the ActiveData control. There are actually two libraries:
MSADO15.DLL and MSADOR15.DLL. The latter is a scaled-down version
of the former, containing only the RecordSet and Field objects.

In the following pages, I outline the use of ADO, using many of the same
application types that I used in Chapters 5 and 6.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The ADO Event Model

Like RDO, ADO supports an event-driven access model. The Connect and RecordSet
objects support events. To gain access to their events, you must declare them using the
WithEvents clause:

Dim WithEvents acon As Connection
Dim WithEvents ars As RecordSet

Most events are fired immediately before or after an operation such as a query. Those
events triggered immediately before an operation allow you to examine, modify, or halt
the operation to occur (such as connecting to a database). They usually begin with Will
(such as Will-Connect). Those events triggered immediately after completion are most
valuable in asynchronous operations or in determining if there were any errors. They
usually are appended with Complete (such as ConnectComplete). ADO defines two
families of events: Connection events occur when transactions begin, are committed, are
rolled back, or when a Command or Connection begins or ends; RecordSet events are
events that happen when changes are made to a record and when you navigate through
records.

ADO provides a good deal more information when events are triggered than do DAO or
RDO. Nearly all events pass to the application a status flag, adStatus. The possible
values of adStatus are contained in EventStatusEnum. adStatusOK indicates that the
operation completed without errors (although some events still generate warning
messages), and adStatusErrorsOccurred signifies that there were errors during the
operation. If adStatus is set to adStatusCantDeny, you are warned that you cannot
cancel the pending event. Otherwise, you can set this property to adStatusCancel to
cancel the operation that is about to occur. This option is applicable only to Will events,
of course. Finally, you can set the property to adStatusUnwantedEvent, which tells
ADO not to notify you of subsequent occurrences of the event.

For events where errors can occur, you will also be passed pError, which is a reference

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

to an Error object describing the error. If there was an error, you should iterate through
the Errors collection, as discussed later in this chapter in the section “The Errors
Collection And Error Object.” If there was no error, then this value is Nothing. You
should also iterate through the Errors collection whenever the Connection object’s
InfoMessage event is triggered.

Some of the RecordSet object’s events pass adReason, which denotes the reason the
event occurred. Typically, you are passed a reason code if, for instance, the user moves to
another record. The possible values are enumerated in EventReasonEnum. Typical
constants are adRsnMove, adRsnAddNew, and adRsnClose. All 15 constants currently
defined are listed in the object browser; search on EventReasonEnum.

I discuss the specifics of the RecordSet events in “The RecordSet Object” later in this
chapter, and the Connection events in the following section.

The Connection Object

The Connection object represents an open connection to a data source. If you were to
operate on an Oracle database and perform a join to an SQL Server database, you would
have two independent Connection objects. Each Connection object has an Errors
collection, which is appropriate because two independent database connections can each
generate a unique set of errors. Contrast that setup with DAO or RDO, where the Errors
(or rdoErrors) collections are a function of the DBEngine or rdoEngine objects. If you
were to simultaneously execute two different queries on two different databases under
RDO, say, things would get interesting if they both generated errors. More to the point, if
you were connected to both Oracle and SQL Server in an RDO session, any sequence of
errors overlays the most recent sequence of errors. If SQL Server generated an error 1/10
of a second after Oracle, it wins: You would never see the Oracle errors. Under ADO,
each connection maintains its own error information, solving this dilemma.

The Connection object also has a Properties collection, which I discuss later in this
chapter.

Closing a connection breaks the open connection to the data source, but you need to set
the object to Nothing to completely eliminate it from memory (Set acon = Nothing).

The Connection object is similar to the rdoEngine object. This is true for the events
generated as well. The following examples show the syntax for each of the events
supported by the Connection object:

Private Sub acon1_BeginTransComplete _
 (ByVal TransactionLevel As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_CommitTransComplete _
 (ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_ConnectComplete _

 (ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_Disconnect _
 (adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_ExecuteComplete _
 (ByVal RecordsAffected As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_InfoMessage(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_RollbackTransComplete _
 (ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_WillConnect(ConnectionString As String, _
 UserID As String, Password As String, Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

Private Sub acon1_WillExecute(Source As String, _
 CursorType As ADODB.CursorTypeEnum, _
 LockType As ADODB.LockTypeEnum, Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The InfoMessage event is similar to its RDO counterpart. It is triggered whenever an operation
has completed successfully but the data provider has returned additional information. In ODBC,
the additional information might be an SQL warning.

The BeginTransComplete, CommitTransComplete, and Rollback-TransComplete events are
triggered after a transaction has begun, after a transaction has been committed, or after a
transaction has been rolled back. The TransactionLevel is discussed under IsolationLevel later
in this section. Use these events for any transaction handling that your application requires and to
intercept any errors.

ConnectComplete and DisconnectComplete are especially valuable in asynchronous
operations, notifying you when the connect and disconnect operations are completed.

The WillConnect event occurs immediately before an attempt to connect to the database.
ConnectionString contains the ConnectString property of the Connect object. Likewise,
UserID, Password, and Options contain other connection parameters. You can modify any of
these parameters at this point.

The ExecuteComplete event is triggered when a command has completed execution.
RecordsAffected returns the number of records affected by the command, and pRecordSet
returns a reference to the record set created by the command, if any. If the command ran
successfully but did not return any records, the record set will be empty.

Use the Connection object’s properties as described here:

• The Attributes property specifies whether the connection performs retaining commits or
aborts. A retaining commit (adXactCommit-Retaining) implicitly starts a new transaction
whenever a CommitTrans is performed. A retaining abort (adXactAbort-Retaining)
starts a new transaction whenever a RollbackTrans is performed. You can set these
properties, but not all providers support this. The default is to not perform retaining
commits or aborts, which is also my recommendation because it needlessly extends the
duration of a transaction.

• The CommandTimeOut property defines, in seconds, how long to wait while a
command is executing before timing out. If a command times out, ADO cancels the
command and generates an error. The default is 30 seconds. A value of 0 means there is no
timeout (the command will execute until completed). For most online processing, my
recommendation is to set this value much lower than 30. The nature of online processing is

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

that few records are affected and any lengthy duration is indicative of a larger
problem—either with your command or with the database itself. If your command is the
cause of a lengthy execution, you need to tune it. If the source of the problem is the
database, an excessively lengthy command only compounds the problem. Your DBA needs
to investigate a database problem. Balance my advice with some common sense. If you are
executing a command over the Internet, the vagaries of traffic will make the performance
of your commands less predictable, so you will want to account for that. The
ConnectionTimeOut property is similar except it sets how long to wait before an error
occurs when attempting to connect to a data source. The default is 15 seconds, which is
reasonable.

• The ConnectString property is much like RDO’s Connect property. It contains the
information necessary to connect to and log on to the database. Visual Basic recognizes
only four arguments in the connect string. Any other arguments are passed directly to the
data source.

Using The Connect String

The ADO connect string, contained in the Connect object’s ConnectString and the ActiveData
control’s ConnectionString properties, is how you specify various parameters for connecting
to the data source. ADO recognizes only four parameters within the connect string. Any others
are passed through to the OLE DB provider without ADO attempting to interpret them. The
four parameters are:

• Provider specifies the name of the OLE DB provider. If supplied, this is the only
parameter allowed.

• FileName specifies the name of a file containing connection information. This
argument is mutually exclusive with any other ADO connect-string parameter.

• Remote Provider is used in RDS connections to specify the name of a remote
provider. If used, the only other parameter allowed is Remote Server.

• Remote Server is used to specify the path of the server in an RDS connection. If used,
the only other parameter allowed is Remote Provider.

With Visual Basic, Microsoft delivers OLE DB providers for Oracle, SQL Server, Jet, Active
Directory Service, Microsoft Index Server, and ODBC. Microsoft and other vendors will be
developing OLE DB providers for other data sources, and you might want to bookmark the
page www.microsoft.com/data to keep track of new developments. In the meantime, ODBC is a
near-universal access point for relational databases. The Microsoft OLE DB provider for
ODBC allows you to connect to any ODBC data source. To specify the connection to an ODBC
data source, set the Provider argument equal to “MSDASQL”. This is the default provider, so
even if it’s omitted, ADO will attempt to connect to an ODBC data source. Other parameters in
the connect string are database and driver dependent. The following snippet of code creates two
Connection objects and then connects to the database. Each uses the Microsoft OLE DB
provider for ODBC. The first uses a traditional DSN connection, but the second uses a
DSN-less connection:

Set aCon1 = New Connection
aCon1.Open ("PROVIDER=MSDASQL; dsn=Coriolis VB Example;" & _
"uid=coriolis; pwd=coriolis;")
 Set aCon2 = New Connection
aCon2.Open ("UID=Coriolis; PWD=Coriolis;" & _
 "Driver=Sybase SQL Anywhere 5.0;" & _
 "DBF=C:\ Examples\Coriolis VB Example.db;" & _
 "DBN=Coriolis;")

http://www.itknowledge.com/reference/standard/1576102823/ch07/www.microsoft.com/data

As with RDO, the exact parameters may vary from database driver to database driver.

You can specify a Database= argument with either a DSN or DSN-less connection. For the
former, the DSN already implies the database (as defined in the ODBC setup). Specifying a
different database has the effect of altering the DSN’s definition.

Microsoft also delivers an OLE DB driver for Jet, which you would normally use when you
need to join an ISAM data source for which no OLE DB provider exists to another OLE DB
data source. The provider name is Microsoft.Jet.OLEDB.3.51. (Microsoft may have delivered
a Jet 4.0 version by the time this book is printed.) For Microsoft SQL Server, the provider name
is SQLOLEDB. For Oracle, use MSDAORA. For the specifics of these and other OLE DB
provider connection strings, see the Visual Basic help file (for OLE DB providers provided by
Microsoft) or the vendor’s documentation.

• The CursorLocation property determines where a cursor is to be located (similar to how
you set the cursor library under RDO). You can set this value at any time on a Connection
but it is read-only on an open RecordSet object. The value adUseClient specifies that a
local cursor will be used; in other words, ADO will manage the cursor. This provides some
flexibility in that the client-side cursor often has features not supported by a server-side
cursor. The value adUseClientBatch is synonymous. If you are using RDS, you can only
specify adUseClient. adUseServer specifies that the server will manage the cursor. For
larger record sets, this is more efficient and the cursor is more sensitive to changes made
by other users. However, you lose the flexibility of the client-side cursor. My
recommendation is that if you are generating a large result set, you should use the
server-side cursor. Normally, you will do this when generating a report. You should not be
creating large record sets in the online transaction environment. Note that adUseNone is
obsolete and is retained for backward compatibility only.

• The DefaultDatabase property is not available with all OLE DB providers and is not
available with RDS. It specifies a default database for the Connection. This has
implications when you join together two different data sources where you would normally
have to qualify object names with the database name. Specifying a default database allows
you to omit this information.

• The IsolationLevel property can be set at any time but does not take effect until the next
transaction begins. The property specifies the isolation level of the cursor. Isolation can be
considered similar to variable scope in Visual Basic; it specifies how “visible” a cursor is.
Table 7.2 summarizes the possible values. Note that RDS permits only
adXactUnspecified. You will normally want to retain the default values. For instance,
adXactCursorStability specifies that you will use “cursor stability,” meaning that you
cannot see changes made in other transactions until they have been made permanent
(committed). You normally would not want to see any changes until they are committed to
the database. Even more, not specifying cursor stability has a devastating impact on
performance at the database level because of all the extra work the database has to do. The
opposite of adXactCursorStability is adXactReadUncommitted (these two constants are
mutually exclusive), which does allow you to see changes made in other transactions even
if they have not been committed. adXactIsolated specifies that the cursor essentially
works oblivious to and invisible from all other transactions. Although there are few
instances where you would need to use this option, it necessitates the adXactChaos
constant, which is also on by default. adXactChaos specifies that the transaction cannot
overwrite pending changes from more highly isolated transactions.

Table 7.2 Valid IsolationLevel constants.

Constant Description

adXactUnspecified Provider is using a different isolation level, but the level cannot be
determined.

adXactChaos (Default.) Cannot overwrite pending changes from more highly
isolated transactions.

adXactBrowse Can view changes in uncommitted transactions.

adXactReadUncommitted Same as adXactBrowse.

adXactCursorStability (Default.) Can see changes in other transactions only after they
have been committed.

adXactReadCommitted Same as adXactCursorStability.

adXactRepeatableRead Cannot see changes made in other transactions, but you can
requery to refresh the record set with those changes.

adXactIsolated Transactions are isolated from other transactions.

adXactSerializable Same as adXactIsolated.

• The Mode property specifies the read and write permissions. You can only set it before
making the connection to the data source. For RDS, it must be adModeUnknown. The
other constants are listed in Table 7.3.

Table 7.3 Valid Mode constants.

Constant Description

adModeUnknown Permissions have not been or cannot be set.

adModeRead Read-only.

adModeWrite Write-only.

adModeReadWrite Read and write.

adModeShareDenyRead Others are denied read permission.

adModeShareDenyWrite Others are denied write permission.

adModeShareExclusive No one else can access the data source.

adModeShareDenyNone No one can open the connection with any permissions.

• The State property is used to determine the current state of the connection.
adStateClosed indicates that it is closed, and ad-StateOpen indicates that it is open.
adStateExecuting and adStateConnecting indicate that an asynchronous command
execution or connection is in process.

The Connection object supports eight methods, most of which are similar to their RDO
counterparts:

• The BeginTrans, CommitTrans, and RollbackTrans methods are used in transaction
management. Unlike with RDO, if the object does not support transactions, calling one of
these methods does cause an error. If the provider supports transactions, the Properties
collection will have an object named Transaction DDL. If this property is not present,
transactions are not supported. I discuss transaction and concurrency management in
Chapter 11. Use BeginTrans to begin a transaction. CommitTrans makes all changes to
the record set during the current transaction permanent on the database and begins a new
transaction. RollBackTrans undoes all changes to the record set during the current
transaction and begins a new transaction.

• Cancel cancels the current asynchronous operation (either an Execute or a Connect).
• The Execute method is used to execute a Command object. If the command is a
row-returning query, the results must be assigned to a RecordSet object. In the following
code snippet, the first example is used for non-row-returning queries, and the second is for
queries that do return rows. The CommandText argument is an SQL statement, table
name, stored procedure, or some other provider-specific command text. The

RecordsAffected property is a Long returning how many records were affected by the
command. If there was an error, this value will be -1. The Options argument specifies how
to interpret CommandText and whether to perform the operation asynchronously. Table
7.4 lists possible values.

 connection.Execute CommandText, RecordsAffected, Options
 Set recordset = connection.Execute _
 (CommandText, RecordsAffected, Options)

Table 7.4 Valid Execute constants.

Constant Description

adCmdText Evaluate CommandText as a command, such as an SQL
statement.

adCmdTable Generate an SQL query returning all rows from the table named in
CommandText.

adCmdTableDirect Return all rows from the table named in CommandText.

adCmdTable CommandText is a table name.

adCmdStoredProc CommandText is a stored procedure.

adCmdUnknown Type of command in CommandText is not known.

adExecuteAsync Execute asynchronously.

adFetchAsync Remaining rows after the initial quantity specified in the
CacheSize property should be fetched asynchronously.

• Open is used to establish a connection to a data source. Under RDS, the connection is
not actually made until a RecordSet is opened. The syntax is shown in the following code
snippet. ConnectionString was described earlier in this section in “Using The Connect
String.” UserID and Password specify the user ID and password for the connection. You
may set Option to adAsyncConnect to cause the connection to occur asynchronously. All
the arguments are optional.

 connection.Open ConnectionString, UserID, Password, Option

• The OpenSchema method has no counterpart in DAO or RDO. It is used to return
schema information from the database. You can think of a schema as a schematic of the
database; it is the layout of tables and columns. The next code example shows the syntax
for the method. When executed, it returns a RecordSet of type static-cursor, which is
read-only. The query_type parameter is one of the constants listed in Table 7.5. The
criteria argument is a further refinement of the query_type, as also shown in Table 7.5.
(Only the more commonly used query types are shown; refer to the VB help file for a
complete listing.) You specify criteria in the form of an array, as shown in the code
example. Figure 7.3 shows an application, which you can find on the CD-ROM, that opens
two schemas using the adSchemas query type, as shown in the next example. The code
does not specify a criteria argument, so all the tables are brought back. Notice that the first
two text boxes show the table name and type. The second two, which are from the second
command in the code example, show only views. This command is the basis for further
refining the Ad Hoc Report Writer project from Chapter 6. You will use the OpenSchema
method to retrieve information from the database and help automate the process of
constructing reports.

 Set arsSchema(1) = acon.OpenSchema(adSchemaTables)
 Set arsSchema(2) = acon.OpenSchema _

 (adSchemaTables, Array(Empty, Empty, Empty, "VIEW"))

Table 7.5 OpenSchema query types and optional criteria.

Query Type Criteria

adSchemaColumns TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

adSchemaForeignKeys PK_TABLE_CATALOG

PK_TABLE_SCHEMA

PK_TABLE_NAME

FK_TABLE_CATALOG

FK_TABLE_SCHEMA

FK_TABLE_NAME

adSchemaPrimaryKeys PK_TABLE_CATALOG

PK_TABLE_SCHEMA

PK_TABLE_NAME

adSchemaProcedures PROCEDURE_CATALOG

PROCEDURE_SCHEMA

PROCEDURE_NAME

PARAMETER_TYPE

adSchemaTables TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

TABLE_TYPE

adSchemaViews TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

Figure 7.3 The ADO Open Schema demonstration program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/07-03.jpg',476,234)
javascript:displayWindow('images/07-03.jpg',476,234)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

You can see the beginning of the ad hoc report writer in the application shown in
Figure 7.4. After connecting, the user clicks the Tables or the Views button. The
left-hand listbox is filled in with the names of all tables on the database. This is
done with the following code:

Set arsSchema(1) = acon.OpenSchema _
 (adSchemaTables, Array(Empty, Empty, Empty, "TABLE"))
Call Showtables

Figure 7.4 This screen allows the display of all the columns in any table.

The code then loops through the RecordSet and populates the listbox:

Private Sub Showtables()
lbTables.Clear
Do While Not arsSchema(1).EOF
 lbTables.AddItem arsSchema(1)!Table_Name
 arsSchema(1).MoveNext
Loop
End Sub

The View button works in a similar manner. Once the listbox is filled, the user
can click any table, and the second list box is filled with all the columns on that
table using this short piece of code:

Private Sub lbTables_Click()

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-04.jpg',485,386)
javascript:displayWindow('images/07-04.jpg',485,386)

Dim sTable As String
sTable = lbTables.Text
If sTable = "" Then Exit Sub
' Retrieve the column names
Set arsSchema(2) = acon.OpenSchema _
 (adSchemaColumns, Array(Empty, Empty, sTable, Empty))
lbColumns.Clear
Do Until arsSchema(2).EOF
 lbColumns.AddItem arsSchema(2)!Column_Name
 arsSchema(2).MoveNext
Loop
End Sub

The Properties Collection And Property Object

The Connection, Command, RecordSet, and Field objects all have a Properties
collection containing provider-specific Property objects. (The Parameter object,
when present, also has a Properties collection.) Figure 7.5 shows an application,
contained on the CD-ROM, that iterates through each of the four Properties
collections and lists their names in listboxes on each tab page. When you click
any property, the application returns its value in the textbox. With the Field
object, each Field in the RecordSet is listed, along with its Properties collection.
If you click the Field name itself, its value is listed.

Figure 7.5 The ADO Properties demonstration program.

The code to iterate through the properties is not terribly complex. The following
example iterates through each of the Field objects (afld) in a RecordSet (ars)
and, for each, iterates through each Property object (aprop):

For Each afld In ars.Fields
 lbProp(3).AddItem afld.Name
 For Each aprop In afld.Properties
 lbProp(3).AddItem _
 "-" & afld.Name & " : " & aprop.Name
 Next
Next

Each Property object has four properties itself. The Name property identifies the
property. In Figure 7.5, I have clicked the BaseTableName property; the textbox
shows that the Value is employee. The Attributes property is one or more of the
constants listed in Table 7.6.

Table 7.6 Valid Attributes constants for Property objects.

javascript:displayWindow('images/07-05.jpg',665,603)
javascript:displayWindow('images/07-05.jpg',665,603)

Constant Description

adPropNotSupported Indicates that the property is not supported by the
provider.

adPropRequired Value of this property must be set before data source is
initialized.

adPropOptional Value of this property does not need to be set before
data source is initialized.

adPropRead Property can be read.

adPropWrite Property can be written to.

The Errors Collection And Error Object

The Errors collection, consisting of Error objects, is much like its DAO and
RDO counterparts. Any time a provider (data source) error occurs, the collection
is cleared and one or more new Error objects is placed into the collection. Some
provider messages are added to the Errors collection but do not halt program
execution. Any time you perform an action that might result in an error or
warning, you should first invoke the Clear method of the collection to clear any
entries. Following the database operation, you should check the collection’s
Count property to ensure there were no messages. The following code example
illustrates this:

Set acon = New ADODB.Connection
' Clear any errors
acon.Errors.Clear
' Make new connection
acon.Open sCon
If acon.Errors.Count > 0 Then
 ' Message from the data provider
 Call ShowErrors(acon.Errors)
End If

Private Sub ShowErrors(errs As Errors)
Dim aErr As Error
Dim sMsg As String
For Each aErr In errs
sMsg = "Message from the data provider:" & vbCr & _
 aErr.Number & "-" & aErr.Description & vbCr & _
 "SQL State:" & aErr.SQLState & vbCr & _
 "Native: " & aErr.NativeError & vbCr & _
 "Source: " & aErr.Source MsgBox sMsg
Next

End Sub

The code example generates a message box similar to what is shown in Figure
7.6.

Figure 7.6 Message from the data source provider being displayed to the user.

ADO errors themselves are not entered into the Errors collection; they are
handled by Visual Basic’s normal runtime error-handling system.

The Error object has several properties and no methods. The Number property is
similar to the Err object’s Number property and uniquely identifies the error (or
warning) condition. Conversely, the NativeError property is the data provider’s
own error code. SQLState corresponds to the ODBC SQL state, as documented
in the ANSI SQL standards. It is a five-character string, which is enumerated in
your ODBC driver documentation. The Description property comes from either
ADO or the data source provider itself and is a short description of the error
condition. The Source property is the name of the object in which the error was
generated. Generally, this is the data provider itself. Figure 7.7 shows the text
returned from a data provider for an invalid SELECT. (The sample Properties
program on the CD-ROM deliberately invokes an error and then recovers to “fix”
the problem.)

Figure 7.7 Error message detailing an invalid SELECT statement.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/07-06.jpg',302,152)
javascript:displayWindow('images/07-06.jpg',302,152)
javascript:displayWindow('images/07-07.jpg',419,152)
javascript:displayWindow('images/07-07.jpg',419,152)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Command Object

The Command object is much like the DAO QueryDef and RDO rdoQuery
objects. It essentially represents a command to be executed by the data
provider—typically but not necessarily an SQL statement. If the command is
parameterized, the Command object has a Parameters collection.

The Command object has several properties:

• The ActiveConnection object is used to associate the Command object
with a Connection object. You can’t execute a command outside of the
context of a valid connection. Optionally, you can specify a connecting
string (see the ConnectString property of the Connect object earlier in
this chapter) in which case ADO will create a Connect object but will not
assign it to a variable. Setting ActiveConnection to Nothing
disassociates it from a Connection. Conversely, if you close the
connection, ADO sets the Command object’s ActiveConnection
property to Nothing automatically. The following example sets the
ActiveConnection property of acmd, an existing Command, to the
previously opened Connection acon:

 acmd.ActiveConnection = acon

• The CommandText property is a string containing the command to be
executed. The command might be an SQL statement, a stored procedure, a
table name, or some other command recognized by the data provider. The
following example sets the CommandText property to an SQL SELECT
statement:

 acmd.CommandText = "Select * from employee"

• The CommandTimeOut property is a long with a default of 30 that
specifies how long the command can execute before generating an error.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

A value of 0 specifies that there is no timeout.

• The CommandType property is one of the values listed in Table 7.7
and tells ADO how to interpret the CommandText property. For SQL
statements, you will normally set this property to adCmdText or simply
leave it at its default of adCmdUnknown. adExecuteNo-Records
indicates that the command is an action query (for example, an UPDATE
statement) that returns no rows. It must be combined with adCmdText or
adCmdStoredProc. If any rows are returned, they are discarded. With
adCmdTable, the data provider attempts to generate a query that will
return all columns and rows from the table name specified in the
CommandText property.

Table 7.7 Valid CommandType constants.

Constant Description

adCmdText CommandText is a command such, as an SQL
statement.

adCmdTable Generate an SQL query returning all rows from the
table named in CommandText.

adCmdTableDirect Return all rows from the table named in
CommandText.

adCmdStoredProc CommandText is a stored procedure.

adCmdUnknown (Default) The type of command in the CommandText
property is not known.

adCommandFile CommandText is a saved (persisted) RecordSet.

adExecuteNoRecords CommandText is a command or stored procedure that
does not return rows.

• The Prepared property is a Boolean that, if set to True, causes the data
provider to prepare (compile) the command before first running it. For
short, one-time commands, it generally doesn’t make sense to prepare the
command because this also takes time. For longer-running commands or
if the command will be executed repeatedly, preparing it first probably
makes sense. Not all providers support command preparation. The data
provider may or may not generate an error if it doesn’t support
preparation.

• The State property indicates the current state of the object.
adStateClosed indicates that it is closed, whereas adStateOpen indicates
that it is open. adStateExecuting indicates that an asynchronously
executing command is still executing.

To execute a Command, use its Execute method, which I discussed earlier in
this chapter in the section “The Connection Object.” As noted, you can use a
record-returning command to create a RecordSet. If the command is executed
asynchronously, you can use the Cancel method while it is executing to halt it.

Use the CreateParameter method to create a new Parameter object using the
syntax shown in the next code example. You must manually append the
Parameter to the Parameters collection, at which time ADO will validate it.
The Type argument specifies the data type of the parameter, as listed in Table

7.1 earlier in this chapter. The Direction argument is used in the same manner
as the DAO and RDO Direction counterpart; it sets whether a parameter is
input, output, or both. See the Direction property of the Parameter object for
more information. The Size argument specifies a maximum length or size where
the data type is variable length. The Value argument sets the actual data value
stored in the parameter as an optional Variant.

Set parameter = command.CreateParameter (Name, Type, _
 Direction, Size, Value)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Parameters Collection And Parameter Object

The Parameters collection and Parameter object work similarly to their DAO and RDO
counterparts. Parameters represents all the parameters or arguments to a query or stored
procedure. See “The rdoParameters Collection And rdoParameter Object” in Chapter
6 for a generalized discussion of parameterized queries and stored procedures.

Each Parameter object has a Properties collection, as discussed earlier in this chapter.

Listing 7.1 shows a query being constructed with five parameters. (The running
application is shown in Figure 7.8 and is included on the CD-ROM.) The CommandText
property of the Command object has five question marks, each of which represents a
placeholder for a parameter. ADO expects, then, that five parameters will be supplied,
and it generates an error if there are not enough parameters.

Listing 7.1 Using parameters in ADO.

Private Sub cmdRun_Click()
Dim sSex As String * 1
Dim iCtr As Integer

If Option1 Then
 sSex = "M"
Else
 sSex = "F"
End If

' New command object
Set acmd = New Command
acmd.CommandText = _
 "Select emp_no, emp_fname, emp_lname, " & _
 "emp_ssn, emp_dob, emp_dept_no, " & _

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 "emp_salary, emp_gender " & _
 "From employee " & _
 "Where emp_gender = ? " & _
 "and emp_salary between ? and ? " & _
 "and emp_dept_no between ? and ? " & _
 "order by emp_lname, emp_fname"
acmd.ActiveConnection = acon
' Create Parms and Set Values
Set aparm(0) = acmd.CreateParameter("Sex", adChar, _
 adParamInput, 1, sSex)
Set aparm(1) = acmd.CreateParameter("SalFrom", adNumeric, _
 adParamInput, , Val(txtSalFrom))
Set aparm(2) = acmd.CreateParameter("SalTo", adNumeric, _
 adParamInput, , Val(txtSalTo))
Set aparm(3) = acmd.CreateParameter("DeptFrom", adNumeric, _
 adParamInput, , Val(txtDeptFrom))
Set aparm(4) = acmd.CreateParameter("DeptTo", adNumeric, _
 adParamInput, , Val(txtDeptTo))
' Append the parameters
For iCtr = 0 To 4
 acmd.Parameters.Append aparm(iCtr)
Next
' New RecordSet
Set ars = New Recordset
ars.Open acmd, , adOpenDynamic, adLockOptimistic, adCmdText
Call ShowRecs

End Sub

Figure 7.8 A parameterized query screen.

Unfortunately, ADO does not automatically create the Parameter objects as do DAO
and RDO. You use the CreateParameter method of the Command object to create the
five needed parameters (previously declared as an array of type Parameter). In each, an
appropriate data type is supplied. The Direction is set to adParamInput, indicating that
the parameter is an input parameter. This could have been omitted; it is more appropriate
for stored procedures. I also supplied the value of the parameter, but I could have been
supplied it after the fact as well (aparm(0).Value = sSex). After the parameters are
created, I append them to the Parameters collection and then execute the query creating
an output RecordSet.

• The Attributes property is used to describe the Parameter. It can be one or
more of the following constants: adParamSigned indicates that the Parameter
accepts signed numbers; adParamNullable indicates that the Parameter can
accept Null values; and adParamLong indicates that the Parameter can accept
very long binary or character data with the AppendChunk method.

javascript:displayWindow('images/07-08.jpg',482,370)
javascript:displayWindow('images/07-08.jpg',482,370)

• The Direction property is used to specify the type of Parameter, particularly for
stored procedures. Normally, the data provider can determine the direction of the
Parameter but, if it can’t, you need to specify the Direction yourself. You can do
this as part of the CreateParameter method (as I did in Listing 7.1) or after the
parameter has been created using the syntax parameter.Direction = constant,
where constant is equal to one of the following values: adParamInput for input
parameters; adParamOutput for output parameters; adParamInputOutput for
parameters that are both input and output; and adParamReturnValue for
parameters that are used as return values (such as the number of rows returned
from a stored procedure). adParamUnknown indicates that the Direction is
unknown.

• The NumericScale property sets the scale of numeric values, whereas Precision
sets the precision of numeric values. Certain SQL numeric data types such as
adNumeric (see Table 7.1) require that you set the precision and scale of the
number. Scale refers to how many digits are in the number, and precision refers to
how many of those digits are to the right of the decimal point. A number with a
precision of 11 and a scale of 2 is 11 digits wide with 2 of those digits to the right
of the decimal.

• The Size property sets the maximum width of character data types, such as
adVarChar. ADO reserves memory based on this property, so it is important that
you set this property correctly to prevent program errors.

• The Type property specifies the data type of the Parameter object, as listed in
Table 7.1. Note that the VB documentation specifies some data types that you are
not likely to encounter. Use the object browser to see a complete listing.

• The Value property sets or returns the actual value of the Parameter. Its data
type is Variant so that you can use any underlying data type.

The Parameter object has only one method: AppendChunk. The syntax for the method
is parameter.AppendChunk data, where data is the data you are appending to the
Value property of the Parameter. The first time you call this method, any data in the
Parameter is overwritten. Subsequent calls add data to the end of the existing data. You
use this method when you need to move large amounts of character or binary data into a
Parameter. When you use this method, be sure that the Attributes property has
adParamLong set.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The RecordSet Object

The RecordSet object is the ADO object with which you will interact the
most. It represents a set of records from the data provider and provides the
ability to scroll through the records as well as add, edit, and delete them.
Where RDO refers to rows and columns, ADO uses the terms records and
fields, much like DAO.

NOTE
The CD-ROM has a number of applications that illustrate the use of
RecordSet objects. Figure 7.9 shows an employee maintenance application
running. The application is capable of opening multiple maintenance forms
within an MDI form. On the CD-ROM, the application name is
ADOEmployeeMaint. I expand upon these concepts in the next several
chapters, so I leave it until then to dissect and discuss the applications
themselves.

Figure 7.9 The employee maintenance application.

The RecordSet object has two collections: Properties and Fields. The Field
objects work in essentially the same manner as they do with DAO and RDO
(where they are called rdoColumns). The default property of the RecordSet is
the Fields collection, and the default property of individual Field objects is
Value. You can use shorthand to reference the value of any field using the
familiar exclamation-point convention:

ars!emp_no

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/07-09.jpg',892,661)
javascript:displayWindow('images/07-09.jpg',892,661)

To move through a set of records, you use a cursor. ADO provides four types:

• The dynamic cursor allows unrestricted movement forward and
backward through the RecordSet. Depending on the data provider, you
may or may not be able to use bookmarks to move.

• The keyset cursor is similar to the dynamic cursor except that it
prevents access to records that other users have added, and it prevents
manipulation of records that other users have deleted. (A record can be
deleted from the database after you have retrieved it into your
RecordSet).
• The static cursor creates a nonupdatable RecordSet that allows
unrestricted movement but does not see changes made by other users.
You would normally use this type of cursor when building reports.

• The forward-only cursor is identical to the dynamic cursor except that
you can only move forward through the RecordSet.

You want to use the cursor model that meets your needs while using the least
amount of resources. For instance, if you only need to loop through the records
once, then the forward-only cursor is more efficient than the dynamic cursor.
Note that not all cursor types are supported by all data providers.

Set the cursor type before opening the RecordSet or when you use the Open
method.

If you have used DAO RecordSet objects or RDO ResultSet objects, then you
should be pretty comfortable with the ADO RecordSet. There are some
differences, but they are outweighed by the similarities.

NOTE
In DAO and RDO, moving to a new record or row without first saving your
changes causes those changes to be lost. ADO, however, automatically saves
your changes when you move to a new record. To not save the changes, you
must explicity call the CancelUpdate method.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The RecordSet object supports a number of events that are useful, especially when performing
asynchronous operations. I discussed some generalities about ADO events earlier in this chapter
in the section “The ADO Event Model.” In all RecordSet events, pRecordSet is passed as a
reference to the RecordSet for which the event occurred. The syntax of each event follows:

Private Sub ars_EndOfRecordset(fMoreData As Boolean, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_FetchComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_FieldChangeComplete(ByVal cFields As Long, _
 ByVal Fields As Variant, ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_MoveComplete _
 (ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_RecordChangeComplete _
 (ByVal adReason As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_RecordsetChangeComplete _
 (ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_WillChangeField(ByVal cFields As Long, _
 ByVal Fields As Variant, adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_WillChangeRecord _
 (ByVal adReason As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_WillChangeRecordset _
 (ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

Private Sub ars_WillMove _
 (ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

• The EndOfRecordSet event is triggered by an attempt to move beyond the end of the
RecordSet. There is no corresponding BeginningOfRecordSet event. It is conceivable
that, while in this event procedure, you could add more records to the RecordSet. If so, set
fMoreData to True.

• FetchComplete is called whenever a fetch operation has completed. FetchProgress is
called periodically during an asynchronous fetch operation. Progress is a count of how
many records have been fetched into the RecordSet so far, and MaxProgress is an
estimate of how many records are expected to be fetched.

• The FieldChangeComplete event is called after a Field object in a RecordSet has been
changed. The WillChangeField event is called before the Field is changed. The Fields
argument is an array containing those Field objects that will be or were changed, and
cFields is a count of the number of objects in the array.

• MoveComplete is triggered at the end of any Move operation, such as MoveFirst or
MoveNext. This is where you want to place any code that updates the screen based on the
now current record. The WillMove event is triggered immediately before any of the
following methods: AddNew, Bookmark, Delete, Move, MoveFirst, MoveLast,
MoveNext, MovePrevious, Open, Requery, and Resync. Unless adStatus is set to
adStatusCantDeny, you can cancel the operation by setting adStatus to adStatusCancel.
The WillMove event is where you normally place any final edits of data changes.

• The RecordChangeComplete event is called immediately after one or more records in
the RecordSet are changed, whereas the WillChangeRecord event is called immediately
before one or more records are changed. The following methods trigger these events:
AddNew, CancelBatch, CancelUpdate, Delete, Update, and UpdateBatch. cRecords
indicates how many records will be or were changed.

• The RecordSetChangeComplete event is called after a RecordSet has been changed

due to the Close, Filter, Open, Requery, or Resync method. The WillChangeRecordSet
is called immediately before those methods.

The RecordSet object has a number of properties that help you monitor or manipulate it:

• The PageSize property allows you to break your RecordSet set into logical pages. For
instance, if you had a screen that displayed 20 records at a time, you might set this property
to 20. PageSize sets or returns the number of records in a logical page. The default is 10.
This allows you to take advantage of the AbsolutePage property. By setting this property,
you cause the RecordSet to scroll to the first record of the specified page. PageCount
returns the total number of pages in the RecordSet. Note that the last page might not be
full (there could be fewer records on it than specified in PageSize). The following example
sets a page size of 20 and then moves to page 3. The current record will then be 41, which
is the first record on page 3.

 ' Set page size
 ars.PageSize = 20
 ' Move to page 3
 ars.AbsolutePage = 3

• The AbsolutePosition property is a one-based reference to the current record number. It
can also be one of the following constants: adPosBOF indicates that BOF is True;
adPosEOF indicates that EOF is True; and adPosUnknown indicates the RecordSet is
empty or that the provider does not provide this property. adPosUnknown is equal to -1,
which makes it compatible with DAO record sets and RDO result sets where -1 indicates
no records or rows. Also, see the RecordCount property later in this section.

• BOF and EOF are Booleans that, if True, indicate the current record is before the
beginning of the RecordSet or after the end. If there are no records, both properties will be
True.

• Bookmark is a variant with which you can record the current record and return to it in
the same way as in DAO and RDO. If you use the Clone method on the RecordSet, the
new RecordSet inherits all the saved bookmarks as well. You can use bookmarks between
the two RecordSet objects interchangeably. The following code example illustrates saving
a bookmark and then scrolling to it:

 Dim vBookMark As Variant
 vBookMark = ars.Bookmark
 ' Move to the last record
 ars.MoveLast
 ' Move to saved position
 ars.Bookmark = vBookMark

• The CacheSize property sets the number of records that are buffered locally (at the
client). The property can be set at any time but only affects the next retrieves. For instance,
if you set CacheSize to 20 records, when the RecordSet is opened, the first 20 records are
read and cached locally. When you attempt to move to the 21st record, another set of 20
records is read. You can use the Resync method to force records already cached to reflect
changes made by other users.

• CursorLocation specifies where the cursor is to be located. adUseServer specifies that
the server’s cursor services are to be used. This specification can be more efficient but may
not have all the functionality of client-side cursors. adUseClient specifies that the cursor
will be maintained locally. You may find that with certain data providers, the
AbsolutePosition and RecordCount properties are unavailable if you use adUseServer.

• The CursorType property sets the RecordSet type as discussed at the beginning of this
section. Valid values are adOpenForwardOnly, adOpenKeySet, adOpenDynamic, and

adOpenStatic. If you will be performing batch updates, you must use either
adOpenStatic or adOpenKeySet.
• The EditMode property is used to return the edit mode of the current record.
adEditNone indicates that there is no edit in progress. adEditDelete indicates that the
current record has been deleted, and adEditAdd indicates that the current record is new.
adEdit-InProgress indicates that the current record is being edited, but the changes have
not been saved.

• The Filter property is a variant that you can use to filter which records in the RecordSet
can become current. Setting the property to an empty string (“”) or to adEditNone
removes any filtering. When a filter is in place, properties such as AbsolutePosition reflect
the filter. You can set the filter to a criteria string using comparison operators such as
“EMP_LNAME = ‘Smith’” and you can join those comparisons together using Boolean
operators such as And and Or. There are some restrictions on how you nest these (see the
VB help file for more details). You can also set Filter to an array of Bookmarks. Finally,
you can set it to one of the constants in Table 7.8.

Table 7.8 Valid Filter constants.

Constant Description

adFilterNone Remove the current filter.

adFilterPendingRecords For batch mode, view only records changed but not yet saved to
the server.

adFilterAffectedRecords View only records affected by the last CancelBatch, Delete,
Resync, or UpdateBatch method.

adFilterFetchedRecords View only the most recently cached records.

adFilterConflictingRecords View records that failed the last UpdateBatch attempt.

• The LockType property sets the type of record locking. adLock-ReadOnly, the default,
specifies that the records cannot be altered. adLockPessimistic specifies that a record will
be locked as soon as it is edited. adLockOptimistic specifies that a record is only locked
when it is updated. adLockBatchOptimistic specifies that records will not be locked when
edited and that the updates will be done in batch mode (and locked at that time).
Pessimistic locking, of course, has a tendency to create lock escalations on the server, so it
is not generally recommended. Optimistic locking, on the other hand, raises concurrency
issues that I address at more length in Chapter 11. Note that the details of how locking is
implemented may vary based on the provider. Note also that you cannot use
adLockPessimistic for local cursors.

• Use the MaxRecords property before the RecordSet is open to restrict the number of
records retrieved.

• The RecordCount property returns the number of records in the RecordSet. If the
RecordSet does not support approximate positioning or bookmarks, then referencing this
property will cause all records to be retrieved in order to determine an accurate record
count. If this property is equal to -1, then ADO cannot determine the number of records.
The following code example displays the current record number as well as record count:

 txtRecCount = ars.AbsolutePosition & " of " &
 ars.RecordCount

• The Sort property is available only when adUseClient is set for CursorLocation. It
allows you to specify a Field object Name to sort the results by. The RecordSet will be
accessed in that order. You can optionally specify the direction of the sort by appending
ASCENDING or DESCENDING. The following code example sorts a RecordSet of
employee records by salary in descending order:

 If ars.CursorLocation = adUseClient Then
 ars.Sort = "emp_salary DESCENDING"
 End if

• The State property is used to determine the current state of the RecordSet. Possible
values are adStateClosed, adStateOpen, adState-Connecting, adStateExecuting, or
adStateFetching.

• Status returns status information about the current record. It will contain one or more of
the constants listed in Table 7.9.

Table 7.9 Valid Filter constants.

Constant Description

adRecOK The record was successfully updated.

adRecNew The record is new.

adRecModified The record was modified.

adRecDeleted The record was deleted.

adRecUnmodified The record was not modified.

adRecInvalid The record was not saved because its bookmark is invalid.

adRecMultipleChanges The record was not saved because it would have affected
multiple records.

adRecPendingChanges The record was not saved because it refers to a pending insert.

adRecCanceled The record was not saved because the operation was canceled.

adRecCantRelease The new record was not saved because of existing record locks.

adRecConcurrencyViolation The record was not saved because optimistic concurrency was in
use.

adRecIntegrityViolation The record was not saved because the user violated integrity
constraints.

adRecMaxChangesExceeded The record was not saved because there were too many pending
changes.

adRecObjectOpen The record was not saved because of a conflict with an open
storage object.

adRecOutOfMemory The record was not saved because the computer has run out of
memory.

adRecPermissionDenied The record was not saved because the user has insufficient
permissions.

adRecSchemaViolation The record was not saved because it violates the structure of the
underlying database.

adRecDBDeleted The record has already been deleted from the data source.

• The Source property indicates the source of the RecordSet. It can be an SQL statement,
a table name, a stored procedure, a file name (for a saved RecordSet), or a Command
object. If using the latter, reference the object itself, not the Name property of the object,
as shown in Listing 7.1.

The RecordSet methods are similar to those available in DAO and RDO:

• Use the Move methods to move through the RecordSet. MoveFirst, MoveLast,
MoveNext, and MovePrevious scroll to the first, last, next, and prior records. The Move
method allows you to move an absolute number of records forward or backward. Specify

as an argument the number of records to move. A negative number scrolls backward. You
can optionally specify a starting point from which to move (the default is to move from the
current record). Specify a valid Bookmark as a starting point. Alternatively, you can
specify one of the following constants: adBookmarkFirst or adBookMark-Last, both of
which cause moving to start from the first or last record.

• Not well documented is the Find method, which is similar to the Find method available
in the DAO Jet workspace. The syntax is shown in the following code. criteria is a string
containing the field name to be searched, the comparison operator to use (=, >, <>, and so
on), and the value to be searched for (for example, “emp_salary < 90000”). You can also
use Like for pattern searches. SkipRows specifies how many rows to bypass from the
starting position before searching. If you specify 5, for example, the search will begin on
the sixth row after the starting position. The default is 0. Specifying a negative number will
cause the search to begin before the starting position. searchDirection specifies in what
direction to search. adSearchBackward causes the search to occur backward from the
starting position. The default is adSearchForward. start specifies the position from which
to start searching. The default is the current record. However, you can also specify a saved
bookmark from which to start searching.

 ' Syntax of the Find method
 Find (criteria, SkipRows, searchDirection, start)
 ' Example of searching for all last names beginning with S
 ars.Find ("emp_lname like 'S_*'")

• Use the Requery method to re-execute the RecordSet; it is the equivalent of closing and
reopening it. Use the Resync method to refresh records in the RecordSet to reflect the
changes of any other users. You can optionally specify two arguments: AffectRecords and
ReSyncValues. AffectRecords defaults to adAffectAll to refresh the entire RecordSet.
You can specify instead adAffectCurrent, which refreshes only the current record, or
adAffectGroup, which refreshes the records that meet the current Filter condition. For
ReSyncValues, specify either adResyncAllValues, which causes any pending updates to
be canceled, or adResyncUnderlyingValues, which specifies that changes are not
overwritten and pending updates are not canceled. Note that using the Resync method does
not retrieve rows added by other users. Also, note that if a row in the current RecordSet
has been deleted by another user, an error will be generated and added to Errors.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The RecordSet object’s editing facilities, outlined in the following list, are much like those found
in DAO and RDO, with some enhancements. If you are in batch mode, records aren’t saved to the
database until you call the UpdateBatch method. While in batch mode, calls to the Update
method save the changes within the RecordSet itself. If you scroll from one record to another,
ADO automatically invokes the Update method.

• Use AddNew to add a new record. You can optionally specify the Fields and Values
arguments. Fields allows you to specify which Field objects of the RecordSet will be made
available for editing. You can specify either the Name properties or the ordinal numbers of
each of the Field objects in an array. If you specify Fields, you can also specify Values as
an array of values to place into each of the objects in Fields. The items in Values must
correspond positionally to the Field objects and must be equal in number. The following
example illustrates:

 ars.AddNew Array("emp_lname", "emp_fname", "emp_salary"), _
 Array ("Smith", "John", 23000)

• Delete is used to delete the current record. If you specify the argument adAffectGroup,
all the records that meet the current Filter criteria are deleted.

• Update saves any changes made in the current record. You can also set values using the
optional Fields and Values arguments, as in the AddNew method. When Update is called,
the current record remains current.

• UpdateBatch is used to update the database with pending changes. The argument
adAffectCurrent causes only the current record to be updated to the database.
adAffectGroup causes only changes to records that meet the Filter condition to be updated
to the database. adAffectAll is the default and causes changes to all records to be updated to
the database. If there are any batch collisions, a message is added to the Errors collection.
Use the Filter and Status properties to find those records with conflicts.

• The CancelUpdate and CancelBatch methods cancel pending changes. With
CancelBatch, you can add an optional argument to specify which changes are to be
canceled. Use adAffectCurrent, adAffectGroup, or adAffectAll.
• You can save the RecordSet as a file, a process known as persisting, using the Save
method. If the Filter property is set, only filtered records are saved to the file. The file is not
closed until the RecordSet is closed. Repeated calls to Save cause the records to be
appended to the file. The syntax for the method is shown in the next code snippet. The

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

FileName argument is self-explanatory. The default for PersistFormat is adPersistADTG,
which specifies a RecordSet format. It is currently the only value that can be specified, but
Microsoft has placed it the PersistFormatEnum structure, indicating that other formats will
be added in the future. The speculation is that these additions will include formats such as
reports or other formatted data. A saved RecordSet can be opened later using the Open
method of the RecordSet.

 RecordSet.Save FileName, PersistFormat

• The Clone method creates a copy of the RecordSet, including all saved bookmarks. You
can optionally specify adLockReadOnly to make the cloned RecordSet read-only.
Otherwise, the cloned RecordSet has the same locking as the original. When the cloned
RecordSet is opened, the current record is the first record. The following example creates a
cloned RecordSet:

 Dim arsClone As RecordSet
 ' Clone the original RecordSet
 Set arsClone = ars.Clone

• The final method of the RecordSet object is Supports, whose record set features the
currently open RecordSet supports. You pass it an argument of type CursorOptionEnum,
and the method returns True or False to determine if the feature is supported. Note that
these features are largely a function of the type of CursorLocation, the type of
CursorType, and the data provider itself. Also, note that the Supports method does not
guarantee that the feature is available under all circumstances. For example, a RecordSet
may return True for adUpdate, indicating that there is nothing in the type and location of
the cursor that would preclude updates. However, the nature of the data in the RecordSet
set, such as a multiple table join, may mean that some fields will not be updatable. The
following example illustrates the Supports method by testing whether the MovePrevious
method is supported:

 If ars.Supports (adMovePrevious) Then
 MsgBox "Can Move Previous"
 Else
 MsgBox "Can Not Move Previous"
 End If

• Constants that you can pass are adAddNew, adApproxPosition, adBookMark,
adDelete, adFind, adHoldRecords, adMovePrevious, adNotify, adResync, adUpdate,
and adUpdateBatch. Most of these are self-explanatory. The adApproxPosition tests
whether the RecordSet supports the AbsolutePosition and AbsolutePage properties.
adHoldRecords indicates that you can retrieve more records without committing any
pending changes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Fields Collection And Field Object

The Fields collection represents all the fields in a RecordSet. The individual
Field objects represent the individual fields in the RecordSet. Each Field
object contains basic information about the field, such as its value, data type,
and size. The Field object contains the Properties collection, as noted earlier
in this chapter in the section “The Properties Collection And Property
Object.”

• The Name property is the name of the Field as stored on the database
or as specified in the command that retrieved the data.

• The Type property contains a constant indicating the basic data type
of the field as listed in Table 7.1. The DefinedSize property of the Field
object contains its maximum width in bytes and is typically used for
character fields, such as adVarChar. The ActualSize property returns
the number of bytes actually stored in the Field. The Precision property
returns the number of digits in numeric fields, such as adNumeric,
whereas the NumericScale property returns the number of digits to the
right of the decimal point.

• The Attributes property is one or more constants that describe
characteristics of the Field. Some of the more common Attributes
constants include adFldUpdatable, which indicates that the Field can
be updated; adFldFixed indicates that the Field is fixed width;
adFldIsNullable indicates that the Field can contain Null values;
adFldLong indicates that the Field is a long binary field on which you
can use the AppendChunk and GetChunk methods; and
adFldRowVersion indicates that the Field object contains a time or
date stamp, usually for concurrency purposes. Other constants are used
less often but are documented in the Visual Basic help file under
“Attributes.”

• The Value property lists the current value of the Field, whereas the

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

OriginalValue property contains the value of the Field when first
retrieved from the database. The UnderlyingValue property retrieves
the current value as stored on the database. This is a concern if another
user has changed the record after you retrieved the RecordSet. I discuss
this and other concurrency issues in Chapter 11.

The Field object has only two methods, AppendChunk and GetChunk,
which are both used to manipulate long binary and character data fields.

Use GetChunk to make iterative calls to retrieve data from a Field and store it
in a variable. Assume that you have a Field object named “emp_picture” that
contains a bitmap picture of an employee. The following example will retrieve
the contents of the Field using a buffer size of 2,048 bytes. Once the contents
are read, you can display the bitmap.

Dim vBuffer As Variant
Dim vPic As Variant
Dim lFldSize As Long

' Size of the Field
lFldSize = ars!emp_picture.ActualSize
Do Until lFldSize < 1
 ' Read a chunk
 vBuffer = ars!emp_picture.GetChunk (2048)
 lFldSize = lFldSize – 2048
 ' Append chunk to variable
 vPic = vPic & vBuffer
Loop

The AppendChunk method appends data to a Field object. See the
AppendChunk method in the “The Properties Collection and Property
object” earlier in this chapter.

Other ADO Objects

ADO supports three objects used in Remote Data Services: the
RDS.DataControl object, the RDS.DataSpace object, and the
RDSServe.DataFactory object.

The Active Data Control

Like RDO and DAO, ADO provides a data control, which you can draw on
your form to simplify programming. In practice, it is almost identical to the
Remote Data control. To use it, you must add it as a component via the
Project|Components menu. Select the Microsoft ADO Data Control 6.0.

Figure 7.10 shows an application that was quickly assembled using the Active
Data control. It is included on the CD-ROM as ADOData-Control.

Figure 7.10 An application built using the Active Data control.

The Active Data control supports the same events as the RecordSet. It also has
an Error event triggered when an entry is made to the Errors collection. It
does not have a Validation event as does the intrinsic Data control; instead,
use the WillMove event.

The Active Data control supports the Refresh method, which rebuilds the
RecordSet. Its properties are basically those of the Connection object, and the
control can be considered a surrogate for the Connection object. Some
RecordSet properties are also exposed directly in the Active Data control, but
most RecordSet properties and all RecordSet methods are exposed via the
RecordSet property of the control itself.

The main advantage of the Active Data control is the same as that of the
Remote Data control and the intrinsic Data control: simplicity of programming
at the expense of some flexibility in application design. The biggest
convenience is the fact that you can bind other controls directly to the Active
Data control.

Where To Go From Here

This chapter presented a fairly detailed overview of OLE DB and ADO. You
should be fairly comfortable with ADO development. If you plan to convert
existing DAO or RDO applications to ADO, I encourage you to read Chapter
8. For developing an ADO application from scratch, Chapters 9 and 10 expand
on the concepts covered in this chapter. For more advanced database
techniques, read Chapter 11. Finally, after covering those materials, I move
you into the realm of multitiered applications and Internet-based development
in Chapters 12 and beyond.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/07-10.jpg',953,541)
javascript:displayWindow('images/07-10.jpg',953,541)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 8
Converting To ADO
Key Topics:

• ADO vs. RDO and DAO

• Converting from DAO to ADO

• Converting from RDO to ADO

• Whether or not to convert to ADO

In the last chapter, I covered the key aspects of client/server development with
ADO. In prior chapters, I discussed development with DAO and RDO and
took the time to compare and contrast the three data models. ADO offers VB
developers a solid platform on which to develop client/server applications and,
in many cases, may be superior to DAO or RDO. This chapter will help you
convert existing applications from DAO or RDO to ADO.

ADO Compared To DAO And RDO

As I discussed earlier in the book, DAO was Visual Basic’s first relational data
access tool. RDO was an event-driven, object-oriented follow-up to DAO that
offered a much more streamlined and powerful approach to database
development—but it came at the expense of not being an ideal ISAM
development tool. ADO is more akin to RDO than it is to DAO, and RDO
developers will have less trouble converting. In particular, DAO developers
who have done extensive work with Jet (such as replicas) may have an uphill
battle in converting to ADO. Microsoft has attempted to incorporate the
functionality of both DAO and RDO into ADO, but you may find it difficult at
first to locate the property or method you are looking for. Also, unlike

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

DAO/RDO, ADO is nonhierarchical, which may be a hurdle for some VB
developers. ADO does not include all DAO functionality.

My recommendations on whether to convert are based on three questions:

• Does ADO support your current functionality? For DAO Jet
developers, the answer may well be no. Carefully review your DAO
application. If you are performing tasks such as replication via the Jet
engine, it is probably wise to wait until ADO evolves more. For DAO
ODBCDirect applications, ADO probably does include all needed
functionality. RDO applications should have little or no problem in
terms of losing functionality.

• Does ADO give you any technical advantages? Assuming the answer
to the first question is yes, you might want to consider any advantages
that ADO provides and factor those into your decision. Clearly, ADO is
the wave of the future in terms of data access via Microsoft
development tools and possibly non-Microsoft tools as well. ADO
provides the capability of accessing relational and nonrelational data
sources in a relatively transparent manner. ADO also simplifies the data
model while providing a more robust asynchronous, event-driven
programming environment. This is a big boon to DAO ODBCDirect
developers who will benefit immediately by having access to
data-source-driven events. There should also be a definite performance
boost in ADO applications over DAO ODBCDirect. RDO developers
may or may not see an immediate improvement in performance
(although that should also come in time) but will benefit from the
simpler data model and more elegant event model.

• Does it make economic sense to convert to ADO? This is really a
two-part question. I am not a fan of technology for technology’s sake. If
your present application works and fills your current and future business
needs, why change it? On the other hand, if you need to scale your
application or migrate it to multitier models, DAO will leave you with
no options, and RDO will probably restrict your room for growth. Also,
consider the likelihood of having to do more development. Although
RDO, say, may suffice to meet your needs, ADO may offer enough
advantages in terms of productivity that outweigh the very real
economic impact of converting.

ADO References

With DAO and RDO, you need to add a reference to the DAO or RDO library
in order to access the data objects in code. With ADO, there are actually two
libraries. MSADO15.DLL, the Microsoft Active Data Objects 2.0 library, is
the one that you will use most often. You can use MSADOR15.DLL, the
Microsoft Active Data Objects 2.0 Recordset library, instead when you only
need record set functionality. This “lightweight” library includes the
Recordset and Field objects only.

ADO Objects

Although ADO has a nonhierarchical object structure, many of the objects in

ADO, RDO, and DAO are roughly analogous to each other, as summarized in
Table 8.1.

Table 8.1 DAO, RDO, and ADO object cross-reference.

DAO RDO ADO

DBEngine rdoEngine N/A

Error rdoError Error

Property N/A Property

Workspace rdoEnvironment N/A

Database rdoConnection Connection

Connection rdoConnection Connection

Container N/A N/A

Document N/A N/A

QueryDef rdoQuery Command

Field rdoColumn Field

Parameter rdoParameter Parameter

Recordset rdoResultSet Recordset

TableDef rdoTable N/A

Index N/A N/A

User N/A N/A

Group N/A N/A

N/A rdoPreparedStatement N/A

ADO has no object analogous to the DBEngine or rdoEngine objects.
Connection objects are independent and thus do not need the equivalent of the
Workspace or rdoEnvironment objects. Properties, methods, and events of
those objects are largely part of the Connection or, in some cases, Recordset
object.

ADO Events

Like RDO, ADO permits event-driven, asynchronous communications.
However, these events are entirely in the context of the Connection and
Recordset objects. ADO’s events are a superset of those provided by RDO.
Events related to the connection to the data source (including transactions) are
largely within the Connection object. Events related to the data itself are
within the Recordset object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

ADO Properties And Methods

As noted earlier, many DAO methods and properties that are unique to the Jet
engine are entirely missing from ADO (although they may be added at some future
point). Methods and properties that apply to ODBCDirect and RDO are present in
ADO, although you might initially have difficulty finding them. For instance, ADO
does not have a BatchCollisions property; it relies instead on the Filter property,
which allows you to filter out all but those records that failed the most recent batch
update. As a pleasant surprise, some DAO Jet functionality not present in
ODBCDirect or RDO has been added to ADO. Most notable is a Find method.

TIP
Use Common Sense
Before you start your conversion, back up all of your files. It may seem obvious,
but you should never test on production data.

Active Data Control

The Active Data control is largely compatible with the intrinsic Data control and
the Remote Data control. You will have to add the control to your project and
respecify its properties, but that is a minimal investment. You will also want to
seek out Data control events, such as Validate, and move that code to their ADO
equivalents. Before making that investment in time, however, consider creating a
DataEnvironment object or even a data-aware class to act as the data source for
your bound controls. I discuss these techniques in the next two chapters. Also be
aware that some grid controls are not compatible with ADO. Instead, use controls
such as the Hierarchical FlexGrid control, which specifically say “OLEDB” in their
description.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Converting The Application

If you have read this far in the chapter, you are probably ready to take the leap. To
illustrate the process of converting DAO and RDO applications, I am going to use
the sample batch update demonstration programs from Chapters 5 (DAO) and 6
(RDO). I will use the Parameter Query project from Chapter 5 as well. You might
want to follow along as I outline a straightforward methodology for converting. Of
necessity, these applications are not as large as what you may be converting, but
there is enough DAO- and RDO-specific functionality in each to provide overall
guidance.

Some of the techniques are simple brute-force search and replace. Microsoft or
some third party may develop an approach that is more elegant, but I am taking the
attitude of just “getting it over and done with.” Follow these simple steps:

1. Save your project and all modules to new names or to a new directory.

2. Add a reference to the ADO library.

3. Remove the reference to the DAO or RDO library.

4. Globally replace all DAO/RDO variables with their ADO equivalents
using Table 8.1 as a starting point. Modify declarations for the Connect and
Recordset objects to include the WithEvents clause.

5. For DAO/RDO objects not represented in ADO:

a. Globally replace references to the engine objects with an
appropriate Connection object.

b. If using only one Workspace or rdoEnvironment object, globally
replace it with a reference to a Connection object.

6. Evaluate all RDO events and determine their ADO equivalents. Move
code from the RDO events to the new ADO events and delete references to
the RDO events.

7. Replace connection strings with their ADO equivalents (see Chapter 7).

8. Scan through the code, looking for any obvious mistakes in methods or
property uses. Correct as many as you can.

9. Step through the code, letting the compiler alert you to remaining syntax
problems.

10. Exercise all aspects of the program to shake out any remaining bugs or
problems.

Once your application is working, let it “settle down” by running it for a few
weeks. You might want to eventually modify code to take advantage of ADO
functionality. For instance, if you were using the StillExecuting property in DAO
to test for the completion of asynchronous operations, consider taking advantage of
ADO events to accomplish the same purpose in a more streamlined manner.

Converting The DAO Application

For the DAO to ADO conversion test, I use two applications from Chapter 5. I
chose the batch transaction program (DAOBatchUpdate on the CD-ROM) because

it exploits enough different methods and properties of DAO to be a valid example
while being short enough to discuss within the space of this chapter. I also chose
the parameter query application (QDefParmRSDemo on the CD-ROM) because it
illustrates the use of Parameter objects and also because it uses the QueryDef and
DBEngine objects not used in the batch update program.

The Batch Update Application

The first step is to remove the reference to DAO and add a reference to the
Microsoft Active Data Objects 2.0 library. If you refer to the code, you will see
four DAO objects declared in the cmdUpdate_Click event:

Dim wrkEmp As Workspace
Dim conEmp As Connection
Dim rsEmp As Recordset
Dim rsemp2 As Recordset

The two Recordset objects are easy. Globally replace rsemp with arsEmp.
Globally replace conEmp with aConEmp. Delete the wrkEmp declaration.

As you will recall, a Workspace represents a database session. In ADO, the
Connection object largely replaces this function. You need to find all places where
wrkEmp is used and replace it with a reference to the Connection object,
conEmp. The code has four such references.

Next, you want to replace all connection strings. The code has just one:

sConn = "ODBC;DSN=Coriolis VB Example;UID=Coriolis;" & _
 "PWD=Coriolis;Database=Coriolis;"

The ADO connect string for an ODBC data source, which is what you will handle
when converting from RDO or DAO/ODBCDirect, is straightforward. See Chapter
7 for details about the Connection object’s Open method. For this example, you
can simply replace the ODBC; in the DAO connection string with
PROVIDER=MSDASQL;, which is a reference to the Microsoft ODBC data
provider. You can probably do a simple global replace in larger projects. The
revised connect string now looks like this:

sConn = "PROVIDER=MSDASQL;DSN=Coriolis VB Example;" & _
 "UID=Coriolis;PWD=Coriolis"

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Note that I also deleted the DATABASE= parameter as unnecessary. You can actually simply
omit the PROVIDER argument because the default is MSDASQL. For DSN-less
connections, you can generally get away with simply deleting the ODBC argument.

At this point, you are probably 60 percent converted. Unfortunately, the remaining 40 percent
of the work is a bit tougher. You need to scan through your code for the most flagrant uses of
DAO objects, properties, and methods that have no one-to-one equivalency in ADO. The
most obvious are uses of the Workspace object. In the code sample, the following lines of
code immediately jump out:

' Create the workspace
 Set aconEmp = CreateWorkspace("ODBCWorkspace", _
 "Coriolis", "Coriolis", dbUseODBC)
' In order to do batch updating, set the default cursor
' driver prior to opening the connection.
 aconEmp.DefaultCursorDriver = dbUseClientBatchCursor

Note that the Workspace variable has been renamed to a Connection variable. The
CreateWorkspace method is entirely unnecessary; its main purpose here is to establish an
ODBC environment, sans Jet, which is the default under ADO anyway. Delete any references
to creating a Workspace object. The DefaultCursorDriver property also has no equivalent
in ADO. You will specify these types of properties when you open the Recordset objects.
Delete that line.

Other Workspace properties that you may need to deal with are isolation levels and timeout
values. You will set these at the Connect object level now. Workspace methods that you
need to spot are OpenDatabase (which you will replace with Open at the Recordset level),
OpenConnection (which you will replace with Open at the Connection level), and Close
(which you will simply delete).

The next several lines of code look like this:

' Now, open the connection to the employee table
sConn = "PROVIDER=MSDASQL;DSN=Coriolis VB Example;" & _

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 "UID=Coriolis;PWD=Coriolis"
Set aconEmp = aconEmp.OpenConnection("CorEmp", _
 dbDriverNoPrompt, False, sConn)
' Make sure the proper locking is set
' and open the record set
Set arsEmp = aconEmp.OpenRecordset _
 ("SELECT * FROM EMPLOYEE", dbOpenDynaset, 0, _
 dbOptimisticBatch)

You will alter the code as shown here:

' Now, open the connection
sConn = "PROVIDER=MSDASQL;DSN=Coriolis VB Example;" & _
 "UID=Coriolis;PWD=Coriolis"
Set aconEmp = New Connection
aconEmp.Open sConn
' Select from the employee table
Set arsEmp = New Recordset
arsEmp.Open "SELECT * FROM EMPLOYEE", aconEmp, _
 adOpenKeySet, adLockBatchOptimistic, adCmdText

In ADO, before you open an object, you will add the new Set…New lines of code as you did
previously with aconEmp and arsEmp. Change the OpenConnection method to the Open
method of aconEmp as shown. You can add the adConnectAsync option later, if you want,
to have the connection open asynchronously. For the time being, you are merely replacing the
existing code’s functionality without enhancing it. Next, you need to replace the Workspace
object’s OpenRecordSet method with the Open method of arsEmp. The dbOpenDynaset
argument becomes adOpenKeySet. Add the adLockBatchOptimistic argument to take into
account that the DAO Workspace had a default of using batch updates. Also, add the
adCmdText to make explicit that the Source of the Recordset is an SQL command.

NOTE
I did not use the more intuitive adOpenDynamic type of Recordset because it does not
support batch updating. For batch updating, you must use either adOpenKeySet or
adOpenStatic.

If it is easier for you, you can instead set the CursorType and LockType properties of the
Recordset objects to adOpenKeySet and adLockBatchOptimistic prior to opening the
Recordset objects.

Later in the code, another Recordset was opened. The line of code now looks like this:

Set arsEmp2 = aconEmp.OpenRecordset _
 ("SELECT * FROM EMPLOYEE", dbOpenDynaset, 0, _
 dbOptimisticBatch)

Replace it with these two lines of code using the same reasoning that applied earlier:

Set arsEmp2 = New Recordset
arsEmp2.Open "SELECT * FROM EMPLOYEE", aconemp, adOpenKeySet, _
 adLockBatchOptimistic, adCmdText

That pretty much takes care of any references to the Workspace object.

Next, scan through the code for uses of the Recordset objects. Happily, most of the methods
and properties will work as is. A few key methods to spot are the following:

• Update—If your code specifies the dbUpdateBatch argument, replace the method
with UpdateBatch. Unfortunately, there is currently no ADO equivalent to the Force
argument of DAO’s Update method to force updates to the database in the event of
collisions.

• CancelUpdate—If doing batch updates, replace this method with the CancelBatch
method.

• Edit—Delete any lines that use this method. The Recordset is placed into edit mode
automatically any time you make changes to the record.

Also, look for properties that have been replaced. For instance, Bookmarkable is replaced by
the ADO Supports method:

arsEmp.Supports (adBookmark)

The BatchSize property has been omitted from ADO. BatchCollisionCount and
BatchCollisions have been replaced by the Filter property. The example has a section of
code that looks like this:

If .BatchCollisionCount > 0 Then
' Move to first collision to demonstrate
' use of the batchcollisions array
 .Bookmark = .BatchCollisions(0)
 sMsg = Str$(.BatchCollisionCount) & " records " & _
 "have been altered by another user."
 MsgBox sMsg
End If

Instead, set the Filter property to look for any batch collisions and then use the RecordCount
property to see how many there are:

' Check to see if any collisions
 arsEmp.Filter = adFilterConflictingRecords
 If arsEmp.RecordCount > 0 Then
 arsEmp.MoveFirst
 sMsg = arsEmp.RecordCount & " records " & _
 "have been altered by another user."
 MsgBox sMsg
 End If

By and large, that takes care of the changes needed to run the application. If your application
uses the DBEngine, QueryDef, or Parameter objects, you need to make additional
modifications. I discuss these in the next section.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Parameter Query Application

The application from Chapter 5 used Microsoft Jet but would have worked just as well in
an ODBCDirect workspace. It employs the Database, QueryDef, Recordset, and
Parameter DAO objects.

Let’s use an approach similar to how you converted the batch update project. The first step,
of course, is to save all the files under new names so that you don’t ruin the existing
project. Next, you remove the reference to DAO and add a reference to ADO using the
References option on VB’s Project menu.

The next step is to change object references to their ADO counterparts or, where there is
no counterpart, to the object that provides the closest match in functionality. The object
declarations in the existing project follow:

Dim dbCoriolis As Database
Dim qdfDeptGenEmpSal As QueryDef
Dim rsReport As Recordset

Note that there is no explicit Parameter declaration because these objects are created
dynamically by DAO when the QueryDef object is created.

Globally change all references of dbCoriolis to aconCoriolis. Change the data type to
Connection. Globally change qdfDeptGenEmpSal to acmdDeptGenEmpSal and the
data type to Command. Change rsReport to arsReport. Add the WithEvents clause to
the Connection and Recordset declarations:

Dim WithEvents aconCoriolis As Connection
Dim acmdDeptGenEmpSal As Command
Dim WithEvents arsReport As Recordset

Note that in order to use the WithEvents clause, you move the declarations to the General
section of the form module.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

You must modify the connection string next. The current string and connection to the
database look like the following:

sCoriolis = "c:\examples\coriolis.mdb"
Set aconCoriolis = OpenDatabase(sCoriolis)

Change these lines of code to this:

sCoriolis = "DSN=VB Coriolis Example"
aconCoriolis.Open sCoriolis, "Coriolis", "Coriolis"

You use a variation on the Connect object’s Open method this time by specifying the user
and password as separate arguments. You also let the data provider default to MSADSQL
instead of explicitly specifying it.

The QueryDef object dynamically created parameters by using the Jet version of a
parameterized query:

Set acmdDeptGenEmpSal = _
 aconCoriolis.CreateCommand("", _
 "PARAMETERS Dept Integer, Gender Char ; " & _
 "SELECT EMP_DEPT_NO, EMP_GENDER, EMP_NO, EMP_FNAME, " & _
 "EMP_LNAME, EMP_SALARY FROM EMPLOYEE " & _
 "WHERE EMP_DEPT_NO = [Dept] " & _
 "AND EMP_GENDER = [Gender] " & _
 "ORDER BY EMP_DEPT_NO, EMP_LNAME, EMP_FNAME")

You need to convert this to the more generic ODBC version (using question marks as
placeholders) and create a Command object. First, you declare a new object. Next, you set
its ActiveConnection and CommandText properties as shown:

Set acmdDeptGenEmpSal = New Command
acmdDeptGenEmpSal.ActiveConnection = aconCoriolis
acmdDeptGenEmpSal.CommandText = adCmdText
acmdDeptGenEmpSal.CommandText = _
 "SELECT EMP_DEPT_NO, EMP_GENDER, EMP_NO, EMP_FNAME, " & _
 "EMP_LNAME, EMP_SALARY FROM EMPLOYEE " & _
 "WHERE EMP_DEPT_NO = ? "AND EMP_GENDER = ? " & _
 "ORDER BY EMP_DEPT_NO, EMP_LNAME, EMP_FNAME

You do not have to explicitly create Parameter objects. ADO will do that for you
automatically. If you do it, the code will execute somewhat faster. On the CD-ROM, I
created the application both ways (with and without explicit declarations). If you open the
project on the CD-ROM, you will see that the explicit declarations and references are
commented out.

However, because you might choose to explicitly create the objects yourself, the following
code example shows you how. First, create two objects for the two placeholders in the
command text:

Dim aparmDept As Parameter

Dim aparmSex As Parameter

Next, code the actual Create statements:

Set aparmDept = acmdDeptGenEmpSal.CreateParameter
Set aparmSex = acmdDeptGenEmpSal.CreateParameter

You next code the data types and directions of the parameters. Strictly speaking, the data
provider can normally determine this on its own, but it is good practice to be explicit:

aparmDept.Type = adInteger
aparmDept.Direction = adParamInput
aparmSex.Type = adChar
aparmSex.Direction = adParamInput
aparmSex.Size = 1
acmdDeptGenEmpSal.Parameters.Append aparmDept
acmdDeptGenEmpSal.Parameters.Append aparmSex

The code uses the InputBox function to prompt for what department and sex to search for
and then assigns those values as shown:

acmdDeptGenEmpSal.Parameters("Dept") = iDept
acmdDeptGenEmpSal.Parameters("Gender") = sGender

Parameter objects aren’t named in ADO (technically, the names are Param1, Param2,
and so on). Simply change the Name property of the Parameters collection to the
corresponding ordinal position:

acmdDeptGenEmpSal.Parameters(0) = iDept
acmdDeptGenEmpSal.Parameters(1) = sGender

The only other change of significance is where you open the Recordset. Under DAO, it
looked like the next example after making the global changes:

' Set arsReport = _
' acmdDeptGenEmpSal.OpenRecordset(dbOpenSnapshot)

You change it to the ADO format as shown here:

Set arsReport = New Recordset
arsReport.CursorLocation = adUseClient
arsReport.Open acmdDeptGenEmpSal, , _
 adOpenForwardOnly, adLockReadOnly

The Open method of the Recordset references the previously created Command object.
You specify the local cursor library to ensure the record count is accurate. You delete the
MoveLast method in the DAO code sample, which was merely used to ensure the
RecordCount property was accurate. You also clean up the code listing where it looped
through the resulting Recordset. The DAO code sample looped through a For Next loop.
You change that to a Do Until loop, which is somewhat easier to follow:

' Display the results
With arsReport
 Do Until .EOF
 txtFields(0).Text = !EMP_DEPT_NO
 txtFields(1).Text = !Emp_Gender
 txtFields(2).Text = !Emp_No
 txtFields(3).Text = !Emp_FName
 txtFields(4).Text = !Emp_LName
 txtFields(5).Text = !Emp_Salary
 ' Display More?
 If MsgBox("Display More?", vbYesNo + vbQuestion) = vbNo
 Then
 Exit Do
 End If
 arsReport.MoveNext
 Loop
End With

The CD-ROM includes a second version of this project, which populates a grid control,
which is a more natural presentation of the results. The user is prompted for parameter
values via textboxes instead of input boxes. The application is shown in Figure 8.1.

Figure 8.1 The parameterized query application converted to ADO.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/08-01.jpg',418,285)
javascript:displayWindow('images/08-01.jpg',418,285)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

DAO To ADO Summary

The process of converting from DAO to ADO is not tough, particularly if you are
already using an ODBCDirect data model. Still, although the completed ADO
application should function in an equivalent fashion to its DAO predecessor, it does
not take advantage of ADO’s event-driven model and quite possibly does not take
advantage of asynchronous communication. Once your project is up and running, give
it some time to settle down—to shake out any bugs you may have introduced. Then,
review the code, looking for opportunities to streamline your projects, move code to
event procedures, take advantage of asynchronous communications, and so on.

Converting The RDO Application

RDO applications are relatively straightforward to convert to ADO. The basic
principles remain the same as in DAO: Back up your work; globally replace RDO
objects with their ADO equivalents; eyeball the code for obvious changes; step
through the code to catch any other problems; and test thoroughly.

In one sense, the conversion is more complex than DAO in that, with this application
at least, there is an event-driven environment from which to convert. On the other
hand, the converted application will be a fully asynchronous, event-driven project
unlike the converted DAO applications.

For this example, I chose the ad hoc report writer example because it uses just about
all of the RDO objects that you probably have used. The project also takes advantage
of the asynchronous communication opportunities available in RDO as well as the
event-driven model presented in RDO.

You start, as you might guess by my timid nature and fear of unemployment, by
backing up all of the work. You then save all the files to new names and begin the
surgery in earnest.

First, go to VB’s Project menu and change the reference to the Microsoft Remote Data

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Objects library to Microsoft Active Data Objects 2.0. Next, you examine variable
declarations. The application declares five module-level RDO objects:

Private WithEvents reng As rdoEngine
Private WithEvents renv As rdoEnvironment
Private WithEvents rcon As rdoConnection
Private WithEvents rrs As rdoResultset
Private rq As rdoQuery

As in DAO, there are no ADO equivalents to the rdoEngine or rdoEnvironment
objects. The properties and methods of these objects have been largely migrated to the
Connection object. Do a global replace of reng and renv with acon. Do the same for
the rcon object variable. Delete the rdoEngine and rdoEnvironment declarations.
Change rdoConnection to Connection, and change rdoResultSet to Recordset.
Globally replace rq with acmd, and change rdoQuery to Command. Your
module-level declarations should now look like the following example:

Private WithEvents acon As Connection
Private WithEvents ars As Recordset
Private acmd As Command

Do a global replacement of all occurrences of RDO. with ADODB.. This is to adjust
those events that declare RDO objects as arguments. Finally, do a global replace of
rdoError with Error.

A scan through the code of this application will show that it makes extensive use of
RDO collections. Many times, there are no ADO equivalents because Connection and
Recordset objects tend to be standalone. You will adjust for this as you go through the
code. In the cmdChoice_Click event, you see these lines of code to connect to the
database:

Set acon = rdoEnvironments(0)
acon.CursorDriver = rdUseClientBatch
Set acon = acon.OpenConnection(dsname:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="DSN=Coriolis VB Example;UID=Coriolis;" & _
 "PWD=Coriolis;",Options:=rdAsyncEnable)
acon.QueryTimeout = Val(Text1)
Call WaitConn

Begin by changing the acon assignment to New Connection. The next line of code is
intended to use a local cursor library. The property name is now CursorLocation and
the value is adUseClient. You need to modify the connection by invoking the Open
method of acon and using the now-familiar connection string. Alternatively, you
could set the ConnectionString property of the object or simply pass the DSN, user
ID, and password as separate arguments to the Open method, as shown in the
following example. Notice that you also specify that the open should occur
asynchronously. The QueryTimeout property is replaced by the CommandTimeout
property. The revised code now looks like the following:

Set acon = New Connection

acon.CursorLocation = adUseClient
acon.Open "Coriolis VB Example", "Coriolis", "Coriolis", _
 adConnectAsync
acon.CommandTimeout = Val(Text1)
Call WaitConn

The call to the WaitConn event is meant to flash a message on the form while still
connecting. This seems reasonable. The gut of the code in the event is the following
line:

While acon.StillConnecting

The StillConnecting property is replaced by the State property. Replace the one line
of code with the following:

While acon.State = adStateConnecting

Using the While construct, of course, is decidedly non-asynchronous. An
asynchronous approach would be to delete the code and move the BuildTableList call
to the acon_ConnectComplete event.

The next line of code is to the BuildTableList procedure, which creates a query
statement:

sQuery = "Select distinct creator || '.' || tname " & _
 from sys.syscolumns "

The query had been constructed that way to illustrate the DISTINCT keyword. A
more direct approach is to query the SYS.SYSTABLE table directly:

select user_name || ' ' || table_name
from sys.systable, sys.sysuserperms
where user_id = creator
order by user_name, table_name

Unfortunately, the specific query—in this case, to retrieve table names and the names
of their creators—varies highly from database to database. A better answer is to take
advantage of ADO’s OpenSchema method.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The code passes the query to a procedure that actually creates the Recordset. What you do
instead is replace the code and create the Recordset right in the BuildTableList procedure. The
entire code block that you seek to replace follows:

Dim sQuery As String

If Check1(0).Value = vbChecked Then
 sWhere = "'coriolis'"
End If
If Check1(1).Value = vbChecked Then
 If Len(sWhere) > 0 Then
 sWhere = sWhere + ","
 End If
 sWhere = sWhere & "'DBO'"
End If
If Check1(2).Value = vbChecked Then
 If Len(sWhere) > 0 Then
 sWhere = sWhere + ","
 End If
 sWhere = sWhere & "'SYS'"
End If
If Len(sWhere) > 0 Then
 If Check1(3).Value = vbChecked Then
 sWhere = ""
 Else
 sWhere = " Where creator in (" & sWhere & ") "
 End If
Else
 MsgBox "You must select a table owner!"
 Exit Sub
End If

' Build the query
sQuery = "Select distinct creator || '.' || tname " & _

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 from sys.syscolumns "

If Len(sWhere) > 0 Then
 sQuery = sQuery & sWhere
End If
Call SetResultSet(sQuery)

A good chunk of the code concerns building the WHERE clause to determine which
CREATOR to look for. In ADO, the creator is known as the TABLE_SCHEMA. You can use
those criteria when you use the OpenSchema method. You change the sWhere variable to an
array of four elements (0 to 3) and move the lines of code to clear the listboxes in the application
to this procedure. This gives you the ability to specify different schemas and iteratively add the
tables to the listboxes. The owner names are still hard-coded at this point. You can refine that in
Chapter 9 by using the adSchemaSchemata schema, which will return a list of all schemas. The
refined code now looks like the following:

For iCtr = 0 To 1
 lbTables(iCtr).Clear
Next
sWhere(0) = "Coriolis"
sWhere(1) = "DBO"
sWhere(2) = "SYS"

If Check1(3).Value = vbChecked Then
 Set ars = New Recordset
 Set ars = acon.OpenSchema(adSchemaTables, _
 Array(Empty, Empty, Empty, "TABLE"))
 ' Show results
 Call ShowTables
Else
 For iCtr = 0 To 2
 If Check1(iCtr).Value = vbChecked Then
 Set ars = New Recordset
 Set ars = acon.OpenSchema(adSchemaTables, _
 Array(Empty, sWhere(iCtr), Empty, "TABLE"))
 ' Show results
 Call ShowTables
 End If
 Next
End If

Alter the values of the Where array to reflect your own database environment or simply pass an
argument of Empty in the OpenSchema method to retrieve all schemas.

The ShowTables procedure remains the same except for deleting the listbox Clear method
mentioned previously and adding a modification to the AddItem method. The code currently
looks like the following:

lbTables(0).AddItem ars.Columns(0).Value

Recall that the old query returned a concatenation of the Creator column, a period (“.”), and the
Table_Name column. You will simulate that with the following modified code, replacing the
Columns reference with Fields and using elements 1 and 2 (where the schemas and table names
are located):

lbTables(0).AddItem ars.Fields(1).Value & "." & _
 ars.Fields(2).Value

At this point, the application is capable of listing all the tables on the database. The user sees a
screen that looks like Figure 8.2.

Figure 8.2 The partially converted ad hoc report writer.

Next, you follow the code when the user clicks on a table name. The code here that you need to
replace is the following:

' Build query
sQuery = "Select cname from sys.syscolumns" & _
 " Where creator = '" & sCreator & "' " & _
 " and tname = '" & sTable & "' " & _
 " order by colno"

' Build the result set
Call SetResultSet(sQuery)

' Populate listbox and combo
Do Until ars.EOF
 lbCols(Index).AddItem ars!cname
 cbCols(Index).AddItem ars!cname
 ars.MoveNext
Loop

The RDO version of the code generated a query to find all the columns in the table that the user
clicked on. Again, you will use the OpenSchema method to generate a more generic solution
that will work with any database. Using OpenSchema turns out to make the code much simpler,
as shown in the next example:

Set ars = New Recordset
Set ars = acon.OpenSchema(adSchemaColumns, Array(Empty, _
 sCreator, sTable, Empty))

' Populate listbox and combo
Do Until ars.EOF
 lbCols(Index).AddItem ars!column_name
 cbCols(Index).AddItem ars!column_name
 ars.MoveNext
Loop

The query was changed to the OpenSchema method using sCreator as an argument for
TABLE_SCHEMA and sTable for TABLE_NAME. In the code where you add to the
listboxes, you use the more generic ars!column_name instead of referencing the Fields
collection, as in the BuildTableList procedure earlier.

javascript:displayWindow('images/08-02.jpg',634,544)
javascript:displayWindow('images/08-02.jpg',634,544)

You are getting near the end of what needs to be converted. The BuildQuery procedure is fine as
is; it merely builds up the SQL SELECT statement. When the user clicks the Run Query button,
the SetResultSet procedure is called. The code follows:

If acon.RecordSets.Count > 0 Then
 ars.Close
End If

Set ars = acon.OpenResultset(sQuery, _
 rdOpenDynamic, rdConcurReadOnly, rdAsyncEnable)
Call WaitQuery

You replace the code with these simplified lines:

Set ars = New Recordset
ars.Open sQuery, acon, adOpenKeyset, adLockPessimistic, adCmdText
Call WaitQuery

In the body of the WaitQuery procedure, you replace the text of the StillExecuting property
with the State property:

While ars.State = adStateExecuting

After the Recordset has been built, the application populates the grid control with the results.
You should replace the numerous references to RowCount in the procedure with RecordCount.
The references to rdoColumns.Count should be replaced by Fields.Count. Alas, you run into a
stumbling block when you address the use of the GetClipString method of the RDO ResultSet.
There is no ADO equivalent. The code from the RDO version of the application looked like the
following:

' Display data
With rs
 sClip = .GetClipString(.RowCount)
 fgResults.Row = 1
 fgResults.Col = 0
 fgResults.RowSel = fgResults.Rows - 1
 fgResults.ColSel = fgResults.Cols - 1
 fgResults.Clip = sClip
 fgResults.Row = 1
 fgResults.Col = 1
End With

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The RDO solution was fairly efficient. A better solution is to bind the data
source directly to the grid control, but that is going a little bit out of the way
for this example. You can replace the code with a straightforward, if
brute-force, solution, as shown next:

With ars

 Do Until .EOF
 fgResults.Row = fgResults.Row + 1

 For iCol = 0 To .Fields.Count - 1
 fgResults.Col = iCol
 fgResults.Text = .Fields(iCol).Value
 Next
 .MoveNext
 Loop
End With

The CD-ROM contains the code that I used to populate the grid control for the
DAO version of the Ad Hoc Report Writer project. It takes a different tack in
populating it, which is too lengthy to list here. However, although it is
considerably longer, it is actually more efficient.

The application is now fully converted, and the finished product is shown
running in Figure 8.3. The query that the application built is a self-join of the
Employee table listing all employees along with their managers.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 8.3 The RDO Ad Hoc Report Writer converted to work under ADO.

Summary

The RDO example that I used to illustrate the conversion to ADO process was
extensive. Between it and the DAO examples, I have covered most of the key
methods and properties of ADO objects. Although there was no magic bullet,
neither were there deep mysteries. The process is straightforward, if a bit
tedious. Still, most developers will find the effort worthwhile.

Where To Go From Here

Assuming you have read Chapter 7, where I introduced the basics of ADO, my
recommendation is to take one of your DAO or RDO applications and practice
converting it. Run it in debug mode, stepping through the code and using the
Immediate window to explore the values of different objects. Take some time
also to explore the Microsoft Web site for any developments since this book
was written (www.microsoft.com/data/). Then, dive into Chapter 9, where I
expand upon the use of ADO, and Chapter 10, where I start introducing
advanced topics, such as business objects. If you are not yet comfortable with
SQL or your database, review Chapters 2 and 3 and skip ahead to Chapter 11,
where I discuss some advanced database issues.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/08-03.jpg',635,544)
javascript:displayWindow('images/08-03.jpg',635,544)
http://www.itknowledge.com/reference/standard/1576102823/ch08/www.microsoft.com/data/
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 9
Advanced ADO Client/Server
Techniques
Key Topics:

• Using the DataEnvironment object

• Using the DataReport object

• Parameterized, hierarchical, grouped, and aggregated Recordset
objects.

Microsoft has introduced a number of new objects along with ADO,
including the DataEnvironment, which is introduced briefly in Chapter 4, and
the DataReport. To support these tools, new designers and viewers have been
developed as well.

In this chapter, you’ll learn about the new tools that can help you to maximize
the productiveness of your client/server development, as well as functionality
and performance. The tools that I show you in this chapter can add power to
your running application as well as provide an unprecedented leap in
development productivity. In addition to reviewing the new tools, you’ll also
learn about some new, advanced data handling and navigation techniques.

The concepts and tools presented in this chapter are all very new and will
evolve over time. I urge you to experiment with the technology presented here
and to create bookmarks for the Microsoft Visual Basic home page
(msdn.microsoft.com/vbasic) and the Microsoft Universal Data Access Web
page (www.microsoft.com/data). Check the sites often—you’ll frequently
find new articles and, most likely, new releases of ADO.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Bugs, Bugs, Bugs

I have been programming in the PC world for 20 years now, and I am not
ashamed to admit that a lot of my background is on the mainframe. We
“old-iron” types have a saying: Before PCs had mice, we had bugs. But alas,
mainframes are not unique in that respect.

I encountered a number of bugs as I attempted to push Visual Basic’s new
tools to various extremes. In this chapter, I share what bugs I found as well
as some workarounds. I anticipate that there will be other bugs that I haven’t
run into yet. Therefore, you should monitor the Visual Basic Web site for
any patches, workarounds, and so on for at least the first six to nine months
after Visual Basic 6’s general release.

The Data View Window

The first item that I want to introduce is the Data View window. To access the
Data View window, select it under the View menu (or from the Standard
toolbar). All currently defined data links should display as shown in Figure
9.1.

Figure 9.1 The Data View window.

You can right-click the Data Links folder to create a new Data Link or
right-click the Data Environment Connections folder to create a new
Connection object. You can expand any of the existing Data Links to see a list
of tables, views, and stored procedures. You can expand each of these and see
their properties.

After you have created a new DataEnvironment object, you can then drag the
object from the Data View window onto the DataEnvironment Designer
window to create new Connection objects. The DataEnvironment object and
DataEnvironment Designer are new to Visual Basic 6. Combined, the
DataEnvironment components provide a new weapon in the arsenal of tools
for the developer to attack high-powered client/server applications. In this
section I will introduce you to these tools and their usage.

The DataEnvironment Designer

The DataEnvironment Designer is roughly analogous to the User-Connection
Designer in Visual Basic 5, which created RDO objects. The DataEnvironment
Designer encompasses the functionality of the UserConnection Designer, plus
new, ADO-related functionality. For instance, you can create Connection
objects that access multiple data sources simultaneously. You can drag fields
from the designer onto your VB form, and appropriate data bound controls will

javascript:displayWindow('images/09-01.jpg',306,278)
javascript:displayWindow('images/09-01.jpg',306,278)

be automatically created (!).

To use the DataEnvironment Designer, you must add a reference to it:

1. From the Project|References menu, select Microsoft Data
Environment 1.0.

2. Then, from the Project menu, choose Add Data Environment.

Alternatively, you can press the Add Data Environment button on the Data
View window’s toolbar. The DataEnvironment Designer window will open,
and a reference will be added to the Project Explorer window, as shown in
Figure 9.2.

Figure 9.2 The DataEnvironment Designer window.

Before you get too far in using the designer, you should have an idea of what it
is you need to accomplish.

Using The DataEnvironment Designer

In this section, you’ll learn how to use the DataEnvironment Designer by
working through example scenarios. I’ll walk you through two examples using
the sample database. First, you’ll look at a report using Microsoft’s new
DataReport object. Then, I will walk you through the creation of a
hierarchical Recordset. For now, let’s take a look at the DataEnvironment
Designer. Follow along as I give you the “whirlwind” tour:

1. If you have not already done so, open the DataEnvironment Designer
by selecting “More ActiveX Designers” from the Project menu and then
selecting the DataEnvironment Designer.

2. Right-click on the DataEnvironment object, and select Options. The
Options dialog has two tabs—General and Field Mapping.

3. On the General tab, make sure that the Show Properties Immediately
After Object Creation and Show System Objects options are both
checked.

4. Click on the Field Mapping tab. Here, you can tell Visual Basic how
to map data types to bound controls on forms, as shown in Figure 9.3.

Figure 9.3 The Field Mapping tab of the Options dialog box.

As you can see in Figure 9.3, the dialog box organizes the database data
types into categories, such as Long. Under each category are specific
data types, such as adDouble and adNumeric. For each category, you

javascript:displayWindow('images/09-02.jpg',594,330)
javascript:displayWindow('images/09-02.jpg',594,330)
javascript:displayWindow('images/09-03.jpg',401,343)
javascript:displayWindow('images/09-03.jpg',401,343)

can specify what type of bound control Visual Basic should create when
you drag a field onto a form. You can then specify that each data type
uses the default type of control, or you can override the default and
specify a different type of control. In the Control drop-down list box,
Visual Basic lists every ActiveX object registered on your PC, although
some are obviously inappropriate choices to use to display data.

5. Close the dialog box after making any changes that seem appropriate.
You can always change them again later.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

I am hoping that Microsoft will some day also allow you to specify a default
DataFormat property for bound controls in the Field Mapping dialog. (The
DataFormat property, of course, would make it easier to quickly control how
data is displayed as opposed to having to change each field individually.)

When you open the DataEnvironment Designer, Visual Basic automatically
creates a DataEnvironment object and a Connection object, I show you how
to use these in the next two sections.

The DataEnvironment Object

When you add the DataEnvironment Designer to your project, a
DataEnvironment object is automatically created along with a Connection
object named Connect1. The DataEnvironment object has only two
properties: the Name property and the Public property. The latter is a Boolean
where True indicates that the object can be shared by other applications.

The Connection Object

The Connection object is a “standard” ADO object. I discussed its properties
and methods in Chapter 7.

The easiest way to create a new Connection object is to drag a table, view, or
stored procedure from the Data View window to the DataEnvironment
Designer window. Alternatively, you can right-click the DataEnvironment
object, and select Add Connection. When you do so, the Data Link Properties
dialog box displays. There are four tabs: Provider, Connection, Advanced, and
All.

• Provider—Use to select the OLE DB provider that you will be using.

• Connection—Use to select the database, enter the user ID and
password, and so on, as appropriate for the OLE DB provider.

• Advanced—Use to enter the timeout parameter, locking level, and so

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

on.

• All—Use to view a summary of the Connection object’s settings, as
shown in Figure 9.4.

Figure 9.4 The All tab of the Data Link Properties dialog box.

You can add as many Connection objects as needed. To each, you can add
multiple Command objects. I discuss the Command object next.

NOTE
When you create a Connection object by dragging from the Data View
window, a Command object is created automatically.

The Command Object

Like the Connection object, the Command object is a standard ADO object. I
discussed its use in Chapter 7. The following shows you how to add a
Command object to a Connection object and customize it in the
DataEnvironment Designer:

1. To add a Command object to a Connection object, right-click on the
Connection, and select Add New Command.
Alternatively, you can drag a table, view, or stored procedure from the
Data View window onto the DataEnvironment Designer window.

2. Right-click on the new Command object to set its properties. Again,
you are presented with a tabbed dialog box:

• General—On the General tab, you can rename the object or
choose a different Connection to which this object belongs.
Under Source Of Data, you can set the source of the data to be
either an existing database object or an SQL Statement.
If you select SQL Statement, you can type in the statement or
press the SQL Builder button. Doing the latter allows you to build
the query graphically. The SQL Builder is shown in Figure 9.5.

Figure 9.5 The SQL Builder dialog box allows you to drag and
drop to build your queries.

Besides an SQL Select, you can also specify a database object as

javascript:displayWindow('images/09-04.jpg',367,465)
javascript:displayWindow('images/09-04.jpg',367,465)
javascript:displayWindow('images/09-05.jpg',784,433)
javascript:displayWindow('images/09-05.jpg',784,433)

being the data source of a Command object. If you choose to use
a database object, you can select Stored Procedure, View, Table,
or Synonym. In each case, the Object Name drop-down list box
lists the available objects.

• Parameters—The Parameters tab of the Connection Properties
dialog box shows all the parameters associated with a stored
procedure, as well as its data type and direction.
The parameters you see listed on the Parameters tab will generate
Parameter objects at runtime. ADO normally identifies all the
properties of Parameter objects automatically, but this dialog
box provides a convenient method of verifying or overriding the
property values. For more information on Parameter objects, see
“The Parameters Collection And Parameter Object” in Chapter
8.

TIP
Adding Multiple Stored Procedures As Commands
You can create multiple Command objects from stored
procedures by right-clicking on the Connection object and
choosing Insert Stored Procedures. Visual Basic will then
open the Insert Stored Procedures dialog box listing the stored
procedures available in the current connection. You can select
all or some of the procedures—Visual Basic will then create
Command objects from them.

• Relation—The Relation tab allows you to associate Command
objects with each other in a hierarchical relationship. I will
discuss this later in the chapter in the section entitled
“Hierarchical Cursors.”

• Grouping—The Grouping tab allows you to specify one or
more fields on which your output will be grouped, similar to the
SQL GROUP BY clause.

• Aggregates—The Aggregates tab allows you to aggregate your
data based on one or more of several function types, such as sum
and standard deviation. If the data is grouped, subtotals are taken
at the group level.

• Advanced—The Advanced tab has different options available
depending on the data source. For instance, the Call Syntax tab
will show you the syntax for calling stored procedures but is
unavailable for SQL SELECTs. For SQL SELECT, you can set
properties such as Cache Size and Lock Type, as shown in Figure
9.6. In the example, I have unchecked the All Records box, and
entered a maximum number of records to return.

Figure 9.6 The Advanced tab of the Command object Properties
dialog box allows you to refine various advanced settings.

javascript:displayWindow('images/09-06.jpg',401,343)
javascript:displayWindow('images/09-06.jpg',401,343)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using The SQL Builder

I found the SQL Builder to be a little balky. (I am hoping that by the time
VB6 ships, the SQL Builder’s procedures will have been refined somewhat.)
When you open the SQL Builder dialog box, you face four blank panes:

• The top pane represents a graphical look at the tables.

• The second pane, called the Grid, shows columns that you have
selected and allows you to specify sort orders, and so on.

• The third pane is the text of the SQL statement.

• The last pane allows you to view the output of your query.

To add a table to SQL Builder, you can drag it from the Data View window.
(For whatever reason, I had a hard time figuring that out—someone else had
to point it out to me.)

To create a query, click next to each column that you want in your query.
The columns appear in the second pane as you click each. To change the
order of the columns (not the sort order within a column), drag each column
as needed.

To join tables together, click on a column from one table and drag it to the
column in the second table. VB draws a line denoting the relationship. By
default, VB creates an inner join. Right-click on the join line to expose its
properties. You can then change how the tables will be joined.

In the Grid pane, you can assign an alias to columns, if you so desire. If you
click in the Sort column next to a database field, you can choose Ascending
or Descending. The Sort Order allows you to refine nested ORDER BYs.
You can type an expression into the Criteria box, such as > 0. There are three
Or columns allowing you to string together several search criterion. There is
no overt provision to And your search criterion. You can, however, create
multiple conditions one below the other, which creates the And condition.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

To see the results of your query, right-click in the dialog box, and click Run.

Using The DataEnvironment Object

The DataEnvironment object can be used much like a Data control by
binding controls to it. You can also create it programmatically and manipulate
its Command objects. In the design environment, the DataEnvironment
object exposes two collections: Commands and Connections. At runtime, it
also exposes the Recordsets collection. Confusingly, these collections are 1
based while other ADO collections are 0 based.

The DataEnvironment collections are created at runtime when the
DataEnvironment object is instantiated. When a Command object is
executed, it creates a Recordset object if it is marked as being record
returning.

As I mentioned earlier, you can rapidly build your forms using drag and drop.
Here’s how:

1. Reposition the DataEnvironment Designer window and your form
window so that you can see both.

2. Expand the Command object that you want to be the data source for
the form, as I have done in Figure 9.7.

Figure 9.7 Building a form based on a DataEnvironment object using
drag and drop.

NOTE
When you create a Command object with the DataEnvironment
Designer, it is automatically identified as to whether it’s record
returning. You can override this setting from the Advanced tab of the
Command Properties dialog box.

3. Set the Font property of the form to whatever font and size that you
want your bound controls to inherit. (The Font property of the form is
used to default the Font property of controls subsequently added to the
form).

4. Then, simply drag fields from the design window to the form
window, as shown in Figure 9.7.

You can drag the Command object itself onto the form, in which case Visual
Basic will create all the data bound controls at once. You can drag with the
right mouse button also. When you do so and drop the Command object on
the form, you’re given the options of creating data bound controls, a data grid,
or a hierarchical flex data grid. It doesn’t get much easier than this.

The label captions default to the field name; however, you can right-click on
any field in the Command object within the designer window and override the

javascript:displayWindow('images/09-07.jpg',800,571)
javascript:displayWindow('images/09-07.jpg',800,571)

default caption. I did this for the last and first name fields in Figure 9.7. You
can also override the default control. Unfortunately, Visual Basic does not
provide a facility to rapidly change all the fields on one window. Maybe in the
next release of VB?

Visual Basic names the controls that it creates for you based on the control and
the field. As you can see in Figure 9.8, the name of the textbox for the
customer last name is txtCust_LName (Cust_LName is the field name). I
would prefer that VB created an array of textboxes to more easily iterate
through them at runtime, but an alternative would be to iterate through the
Controls collection of the form.

Figure 9.8 Properties of a control bound to the data source.

You can, of course, create the controls manually. You will need to set the
DataSource, DataMember, and DataField properties of the control, as seen
in Figure 9.9. DataSource is set to the name of the DataEnvironment object,
DataMember to the name of the Command object within the
DataEnvironment, and DataField to the name of the appropriate Field object
within the Command object.

Figure 9.9 The DataEnvironment-driven Item Maintenance application.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/09-08.jpg',545,650)
javascript:displayWindow('images/09-08.jpg',545,650)
javascript:displayWindow('images/09-09.jpg',404,238)
javascript:displayWindow('images/09-09.jpg',404,238)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using the objects in code is pretty much the same as I explained in Chapter 7. You will be
manipulating Recordset objects, Field objects, Connection objects, Command objects, and
perhaps Parameter objects. The two things to keep in mind are:

• All of the objects will be properties of the DataEnvironment object.

• Visual Basic will create the Recordset objects for you and name them by adding the
letters rs in front of the name of the Command object from which the Recordset
objects were created. For example, if your Command object is named Orders, the
resulting Recordset will be named rsOrders.

TIP
Using Stored Procedures As Data Sources
To bind a control to a stored procedure as a data source, you must make sure that it is
marked as Recordset Returning on the Advanced tab of the Command object’s
Properties dialog box. Because the Command object will be executed as soon as the
form opens, you must also enter a value for each of the input parameters on the
Parameters tab.

As we go through the next several sections, I’ll provide a number of examples of using the
objects in code.

Creating The Basic Data Maintenance Form From The
DataEnvironment Object

In this section, we will program a form to maintain the Item table on the database. The first
step is to create the appropriate Connection and Command objects. (If you have not already
created a DataEnvironment object, you should do that first.)

1. Create a Connection object as discussed earlier. I created one to connect to a Sybase
database and called it conExampleSybase.

2. Next, create a Command object whose data source is a table. Select the Item table,
and name your Command object Item.

3. Add a form to your project, right-click on the Item Command, and drag it to the
form. Select Bound Controls from the context menu.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

4. Now, you will need to add navigation buttons.

Your navigation buttons should be pretty much like navigation buttons in any ADO
application. I used an array of Image controls, as seen in Figure 9.9. I also added an array of
command buttons and a textbox to display the current status. The complete code is presented
as Listing 9.1. Although it is bare bones, it performs most functions required of a data form.
(You would want to add some code validation and so on.) Note that the only real difference
between this application and more traditional ADO projects is that the Recordset object is
referenced as a property of the DataEnvironment object.

Listing 9.1 The code for the Item Maintenance form.

Private Sub cmdAction_Click(Index As Integer)
Dim vBMark As Variant
Dim lRec As Long
Dim lCount As Long
vBMark = deItemTest.rsItem.Bookmark
lRec = deItemTest.rsItem.AbsolutePosition
lCount = deItemTest.rsItem.RecordCount
Select Case Index
 Case 0
 deItemTest.rsItem.AddNew
 Text1 = "New Record"
 Case 1
 deItemTest.rsItem.Delete
 If lCount > 1 Then
 Image1_Click (0)
 Else
 cmdAction_Click (0)
 End If
 Case 2
 deItemTest.rsItem.Update
 Image1_Click (3)
 Case 3
 deItemTest.rsItem.CancelUpdate
 deItemTest.rsItem.Bookmark = vBMark
 dispRec
 Case 4
 End
 End Select
End Sub

Private Sub Form_Load()
dispRec
End Sub

Private Sub Image1_Click(Index As Integer)
Select Case Index
 Case 0
 deItemTest.rsItem.MoveFirst
 Case 1
 If deItemTest.rsItem.AbsolutePosition > 1 Then

 deItemTest.rsItem.MovePrevious
 End If
 Case 2
 If deItemTest.rsItem.AbsolutePosition < _
 deItemTest.rsItem.RecordCount Then
 deItemTest.rsItem.MoveNext
 End If
 Case 3
 deItemTest.rsItem.MoveLast
End Select
dispRec
End Sub
Private Sub dispRec()
Text1 = "Record " & deItemTest.rsItem.AbsolutePosition & _
 " of " & _
 deItemTest.rsItem.RecordCount
End Sub

Using Stored Procedures And Parameters With DataEnvironment
Objects

Figure 9.10 shows an application included on this book’s CD-ROM that uses stored
procedures as data sources. As in the stored procedure examples shown in Chapter 7, you
have a lot of flexibility in how you code the procedures.

Figure 9.10 The Stored Procedure demo program.

The top half of the form shown in Figure 9.10 is the same Employee Count stored procedure
used in Chapter 8. The code to execute the procedure and display the results is shown next:

deStoredProcedure.Commands("coriolis_NoEmps").Execute
txtNoEmps = deStoredProcedure.Commands _
 ("coriolis_NoEmps").Parameters(0)

Because the procedure has no input parameters, it is not necessary to set any parameter
values. The first line of code executes the Command object Coriolis_NoEmps that has one
output parameter. The second line of code then accesses the value of that Parameter object
and displays its value in a textbox.

The second stored procedure has two input parameters and one output. The code to execute it
is as follows:

deStoredProcedure.Commands("coriolis_raise_no").Parameters(0) _
 = val(txtRaise(0))
deStoredProcedure.Commands("coriolis_raise_no").Parameters(1) _
 = val(txtRaise(1))
deStoredProcedure.Commands("coriolis_raise_no").Execute

javascript:displayWindow('images/09-10.jpg',249,218)
javascript:displayWindow('images/09-10.jpg',249,218)

txtRaise(2) = deStoredProcedure.Commands _
 ("coriolis_raise_no").Parameters(2)

In this example, the first two lines of code set the two input parameters equal to the value of
whatever is entered into the first two textbox controls. The third line of code executes the
Command object, and the fourth line displays the result.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The DataEnvironment Event-Driven Model

You do not lose the flexibility of event-driven development or asynchronous
techniques when you use the DataEnvironment object. The
DataEnvironment object exposes two events: Initialize and Terminate.
These two events are much the same as the class module’s Initialize and
Terminate events and provide you with an opportunity to perform
initialization and clean-up chores.

TIP
DataEnvironment Objects And Reusability
You will place processing such as data validation into the DataEnvironment
module and not into any form (and so on) module that accesses it. If you
code the InfoMessage event of a Connect object, for instance, any form that
uses the DataEnvironment object as its data source inherits the code for the
InfoMessage event. This provides considerable freedom to reuse the
DataEnvironment object from form to form or even from project to project,
thereby maximizing code reuse and reliability. Neat!

On this book’s CD-ROM, I have included a project called
CustOrdDetHierarchy. In it is a DataEnvironment
object—deHierarchy—that I use in examples in most of the remainder of the
book.

deHierarchy has one Connection object: cmdCustOrdDet (so named
because the examples access the Customer, Orders, Line_Item, and Item
tables). The module for the deHierarchy object exposes all the ADO Connect
object events, such as WillConnect and ConnectComplete (the complete
ADO event model is discussed in Chapter 7).

The DataEnvironment object takes all the Command objects that you create
and internally performs a Set Recordset = command.Execute method. The
names of the Recordset objects created are patterned after the Command

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

object’s name by prefixing it with an rs. A Command object named
custsByState generates a Recordset named rsCustsByState.

Each of these Recordset objects have their event models fully exposed as
well. If you double-click deHierarchy in the Project Explorer, its code
window opens. All Recordset objects that will be generated are listed in the
object drop-down box without your needing to make a reference to them. You
use the events just as you would in a form module that creates an ADO
Recordset.

To access a Recordset from your form, you need to declare a reference to it. If
you do so, you then have access to its events at the form level as well
(although I am not convinced this is a good idea in most cases). Add a
declaration at the module level to create a Recordset object:

Private With Events rs As Recordset

In the form’s Open event, make an explicit reference to the Recordset created
by the DataEnvironment object:

Set rs = deHierarchy.rsCustsByState

In the next section, I use the returned reference to navigate a Recordset.

Handling Recordset-Returning Stored Procedures

Stored procedures that return Recordset objects are shown in the
DataEnvironment Designer window with a plus sign next to them. If you
expand the stored procedure (by clicking on the plus sign), you can see the
fields returned by the stored procedure. The Properties dialog for the
Command object containing the stored procedure has a checkbox on the
Advanced tab indicating that the stored procedure returns a Recordset.

Figure 9.11 shows a form that I created to illustrate handling stored procedures
that return a Recordset object. The form, frmSPRS, is part of the same
application, deSPDemo (included on this book’s CD-ROM), in which
frmSPDemo from Figure 9.11 is included. Both forms will open if you run the
application.

Figure 9.11 This form demonstrates how to code applications that use
Recordset-returning stored procedures.

I used a “canned” stored procedure from the database to create the form. I
right-clicked on the stored procedure in the DataEnvironment Designer
window and dropped it onto the form. At the prompt, I selected DataGrid. I
dragged the stored procedure again and chose Data Bound Controls. I
borrowed the navigation buttons from the frmSPDemo form.

javascript:displayWindow('images/09-11.jpg',800,600)
javascript:displayWindow('images/09-11.jpg',800,600)

After declaring a variable, rs, to be of type Recordset at the module level, I
coded the following line into the form’s Load event:

Set rs = deStoredProcedure.rsdbo_sp_tables

This line of code does a few things for me:

• By cutting down on the number of “dots” whenever I need to
reference the Recordset, I actually make the code more efficient. I
discuss this a little more in Chapter 11 but, for now, understand that VB
only has to resolve deStoredProcedure.rsdbo_sp_tables once instead
of many times.

• I now gain access to the events of the rsdbo_sp_tables Recordset
object as discussed in the prior section.

• I save myself a ton of typing!

As you can see in the project on the CD-ROM, the code is pretty much the
same as for the frmSPDemo form example except that references are
shortened up, for example,

rs.MovePrevious

instead of:

deStoredProcedure.rsdbo_sp_tables.MovePrevious

The data source of both the grid control and the textboxes is the same, so any
references to a method or property of rs affects both.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using The DataReport Object

The DataReport object is a welcome addition to Visual Basic. The Crystal Reports
add-on has always been a good tool (and continues to be). The DataReport provides
some event-driven asynchronous control over your reporting.

The DataReport can be bound to any data source, but it works most naturally with the
DataEnvironment object. You can drag and drop fields from a Command onto the
DataReport or drag the entire Command object. In my testing, I found the DataReport
Designer to be somewhat finicky and, sometimes, not very intuitive. However, it seems
that it will be a great addition to the VB toolkit.

The following is a summary of some of the highlights of the DataReport and the
DataReport Designer. An in-depth coverage of either is beyond the scope of this book.
(Besides, you probably have already used a half-dozen or so report writers in your
career.) For more information, read “Writing Reports With The Microsoft Data Report
Designer” in the Visual Basic Help file, if you so desire.

To use the DataReport object, select Add Data Report from the Project menu. When
you do so, Visual Basic adds a library reference. The first time you use it, I recommend
pulling up the Object Browser, selecting MSDataReportLib in the Library list box, and
exploring the objects, methods, properties, and events of the library.

The DataReport Designer is broken into different sections (what are often called bands
in other report writers). By default, Section 1 is the Detail section. It is interesting to
note that each section is actually an object (of type Section). Each Section object is part
of the Sections collection. The implication, of course, is that the DataReport is highly
programmable at runtime.

Each Section object has several properties. The key properties are KeepTogether
(True means that if a section does not fit on a page, a new page should be started) and
ForcePageBreak. For the latter property, you can specify that a page break always
occurs before the section, after the section, before and after the section, or that no page

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

break occurs. The Section object also has a Controls property made up of all of the
controls placed on that section.

The DataReport has its own toolbox with its own version of design-time controls.
RptTextBox, RptShape, RptLine, and RptImage are all self-explanatory. A fifth control
is the RptFunction control. You select this and drop it on an appropriate section. Then,
you need to set two properties: the DataField property and the FunctionType property.
Among choices for FunctionType are rptFuncAve, rptFuncSum, and so on.

Of more interest are the properties, methods, and events of the DataReport object itself
as well as how to use the object in your program. By using these properties and
methods, you can exercise a lot of flexibility over your report, including the dynamic
alteration of its layout.

After you create a report, you can show it in much the same way as you show any form.
I created a standard module (included on this book’s CD-ROM) that displays a single
report modally from the Main Sub procedure and then ends the program:

Sub main()
drCustomersOrders.Show vbModal
End
End Sub

Other methods that you can use programmatically include Refresh (to regenerate the
report), PrintReport, and ExportReport. The syntax for the PrintReport method is
shown as follows:

datareport.PrintReport(ShowDialog, Range, PageFrom, PageTo)

ShowDialog is a Boolean where True causes the Print dialog to be displayed. Setting
Range to rdPrintAllPages causes the entire report to print. rdRangeFromTo specifies
that only part of the report will be printed. You can then specify the PageFrom and
PageTo arguments. Omitting PageFrom or PageTo causes the Print dialog to open.
The report is printed asynchronously.

The ExportReport method allows you to save the report as a file. The syntax is shown
in the following code:

datareport.ExportReport(index, filename, _
 Overwrite, ShowDialog, Range, PageFrom, PageTo)

The ShowDialog, Range, PageFrom, and PageTo arguments work the same as for the
PrintReport method. Overwrite is set to True to cause files to be overwritten or False
to prevent files from being overwritten. filename is the path and file name to save the
report to. If not supplied, the Export dialog is opened. index specifies the type of file to
generate. You can specify the name of an ExportFormat object or an export key
(rptKeyHTML, rptKeyText, rptKeyUnicodeHTML_UTF8, or
rptKeyUnicodeTest).

Visual Basic provides a lot of flexibility in data report exports. The subject is outside
the scope of the book, but you can refer to “ExportReport Method” in the VB Help file
for more information.

The DataReport object supports a number of events. AsyncProgress allows you to
monitor the progress of the report. The Processing TimeOut event is triggered at
defined intervals (about one second each) and allows you or the user to cancel a report
in progress. The Error event is triggered when an error is encountered during an
asynchronous event.

The following code example is a bare-bones error-handling routine:

Private Sub DataReport_Error _
 (ByVal JobType As MSDataReportLib.AsyncTypeConstants, _
 ByVal Cookie As Long, ByVal ErrObj As _
 MSDataReportLib.RptError, ShowError As Boolean)

Select Case JobType
 Case rptAsyncExport
 MsgBox "Error Exporting Report"
 Case rptAsyncPreview
 If ErrObj = rptErrOutOfMemory Then
 MsgBox "Out of Memory!"
 Unload Me
 End If
 Case rptAsyncPrint
 MsgBox "Error Printing Report"
End Select
ShowError = True
End Sub

The next sample code demonstrates the handling of the Processing TimeOut event:

Private Sub DataReport_ProcessingTimeout _
 (ByVal Seconds As Long, Cancel As Boolean, _
 ByVal JobType As MSDataReportLib.AsyncTypeConstants, _
 ByVal Cookie As Long)

If MsgBox("Report Timed Out. Continue?", _
 vbYesNo + vbQuestion) = vbNo Then
 Cancel = True
Else
 Cancel = False
End If
End Sub

You can also programmatically access or set various properties to control the
appearance or operation of the DataReport object. For instance, the ExportFormats
property is a reference to the ExportFormats collection. DataMember and
DataSource allow you to specify the data source of the report.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Command And Recordset Hierarchies

The power of the relational database has always been to present data from
multiple tables and, in the process, relate the data from one table to another.
Visual Basic 6 and, in particular, OLE DB, provide an entirely new way of
relating rows or records from one table or file to another table or file—the
hierarchical Recordset. Not only is this method somewhat more intuitive, it is
more efficient.

For purposes of this discussion, I will refer to tables. From an OLE DB
standpoint, however, the concept of hierarchical Recordset applies just as well
to any file or data source for which there is an OLE DB data provider.

The hierarchical Recordset views tables in parent-child relationships. This is a
comfortable enough analogy—we looked at relationships that way when
designing the database back in Chapter 2. In the real world, we can’t have
children without first having parents. In parent-child, hierarchical
relationships, records on a child table depend on records on a parent table.
Because an order cannot exist without a customer, the Customer table is
parent to the Orders table.

In the DataEnvironment object, we can create command hierarchies to
represent hierarchical relationships. This is implemented as a Shape (which I
discuss later in this section). The DataEnvironment Designer also helps you to
build grouping and aggregate hierarchies. Visual Basic 6 includes the
Hierarchical Flexgrid control to display Recordset hierarchies in an intuitive
manner.

When you create a hierarchical Recordset, child Recordset objects are
represented as Field objects on the parent Recordset. In other words, if you
have a parent Recordset representing the Customer table and a child
Recordset representing the Orders table, on each record in the parent

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Recordset, there is a Field object containing a Recordset which, in turn,
contains all orders related to that customer.

The easiest way to display and understand a hierarchical Recordset is to use it
as a data source to a Hierarchical Flexgrid control, as shown in Figure 9.12.
The control displays each customer on the Customer table. If the customer has
any orders, a plus or minus symbol is displayed next to the customer. Click the
plus symbol to expand the display to show all orders. Click the minus symbol
to not show the order information. For each order, line items are also displayed
with the same plus and minus symbols. Again, click the plus sign to display
the detail line item information or the minus sign to not display the
information.

Figure 9.12 A Hierarchical Flexgrid control displaying a hierarchical
Recordset hat contains the Customer, Orders, and Line_Item tables.

To create the hierarchical Recordset:
1. Add a Command object to in the DataEnvironment Designer.

2. After giving it an appropriate name, such as cmdCustomer, set its
data source to be a table object, and select the Customer table.

3. Next, right-click on cmdCustomer, and select Add Child Command.
Give it a name, such as cmdOrders, and specify its data source to be
Table. Select Orders for the name of the table.

4. Now, click on the Relation tab, and click the Relate To A Parent
Command checkbox.

5. In the Parent Command drop-down list, select cmdCustomer.

6. In the Related Definition field, select the two fields on which these
commands are related, in this case, Cust_No and Ord_Cust_No.

7. Click the Add button, and then click OK. The DataEnvironment
Designer window will now show the new Command (cmdOrders) as
being a Field object underneath cmdCustomer.

8. Add a child Command to cmdOrders using the same technique
relating the Line_Item table to Orders using Ord_No and
Line_Ord_No as the related fields.
You can relate two Command objects after they have already been
created, even if you did not specify that one is the child of another.

9. Go to the Properties dialog of the object that is to be the child
Command, select the Relation tab, and define the relationship as
described in the preceding steps.

10. Now, drag the top level Command object (cmdCustomer) onto a
form, and drop it with the right mouse button.

11. Select Hierarchical Flexgrid control. The grid is drawn on the form.

12. Right-click on the grid, and select Properties.
One of the tabs, as seen in Figure 9.13, is named Bands. Each

javascript:displayWindow('images/09-12.jpg',660,390)
javascript:displayWindow('images/09-12.jpg',660,390)

Command object represents a band in the control. You can select what
fields to display here as well as perform some limited formatting.
Unfortunately, I was not able to find a way to format numbers or dates
without doing it in code.

Figure 9.13 The Hierarchical Flexgrid control’s Property Pages.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/09-13.jpg',419,320)
javascript:displayWindow('images/09-13.jpg',419,320)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Grouped Command And Recordset Hierarchies

Command objects can be grouped in a manner similar to the way data can be
grouped in SQL statements with the GROUP BY clause. When you create a
Command group, a new object is created that is the parent of the object being
grouped. In other words, if you group by one or more fields in a Command, a
new Command is created consisting of those summary field(s) and is the
parent in the hierarchical relationship. You can group a single Command or a
Command that already has a hierarchical relationship.

Assume that you wanted to group your customers by state and city. You could
do so by opening your Customer command and, in the Properties dialog box,
selecting the Grouping tab. All the fields that comprise the command are
listed. Select the one(s) that you want to group by. Note that if you group by
state and city in the same object, then your groups are composed of each
unique occurrence of state and city together. You do not get a state group and,
within that, a city group.

When you create a Hierarchical Flexgrid control based on the group hierarchy,
you get a band for each Command object just as you do with the hierarchical
Command. Depending on how you build the hierarchy, the Flexgrid control
can be fooled. To illustrate, let’s use the Command hierarchy built earlier with
the Customer, Orders, and Line_Item tables. Drag it on the form, create a
Hierarchical Flexgrid control as we did earlier, and then test. All works fine.
Now, edit the cmdCustomer object, and, on the Grouping tab, specify
Cust_St. Run the form again. This time, only the first grouping is displayed on
the Flexgrid control. Using the sample data, only orders placed from California
are displayed and there is no way to see other data.

The reason for this is that the definition of the data source object has changed.
What the grid control thinks is band 0—the top-level band—is derived from
the second highest Command object. The quickest solution is to simply

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

right-click on the Flexgrid control and select Retrieve Structure. This will
reinitialize the control, but you will have to go into Properties and reselect
those fields that you want to display.

Another solution is actually a cute trick: Drag the summary Command object
onto the form, and drop it anywhere except on top of the Flexgrid. Choose
Bound Data control if you dragged with the right mouse button. You will now
have a textbox that is displaying the summarized level of the command
hierarchy while the Flexgrid control displays the detail. Next, place a
command button on the form and attach some code to scroll through the
Recordset, as shown:

deHierarchy.rscmdCustomer_Grouping.MoveNext

The form will then page through the data one state at a time—the Flexgrid will
always display customers and sales for only that state in the textbox. You can
quickly turn the form into an inquiry by state form. I further refine this
example later in the chapter by moving navigation to the DataEnvironment
object and adding more functionality, such as a Find dialog.

Aggregating Data

You can create aggregated commands based on hierarchical relationships
and/or grouped relationships. The aggregate is a Field object, which contains
aggregated data based on how you define it. I found using aggregation to be
very frustrating and am assuming that the problems are beta-related (or me!).
In particular, I had no luck using the grand total aggregate or any meaningful
grouping aggregations. Nevertheless, I will walk you through what I learned.

Assuming you have two Command objects related in a hierarchical manner,
you can edit the properties of the parent object and select the Aggregates tab.
In the Name box, enter a meaningful name for the aggregate. Then, you can
select the function type (Sum, StdDev, and so on). Below that is a box where
you define what you will aggregate on. Depending on what level of the
hierarchy you are on, and whether you have grouped the hierarchy, you can
aggregate based on Grouping (computations are taken on breaks in whatever
field(s) you have grouped by), the child table, or Grand Total. If you choose a
child table, then you can select one of its columns in the Field box. For
instance, in Figure 9.14, I have a form where I chose to sum the ord_amount
column. If you chose Grand Total as your grouping level, you can only
compute the total based on the Grouping criteria.

Figure 9.14 This form, grouped by state, shows each customer with total sales
and detail sales.

TIP
Provider And The Shape Language
Aggregating, grouping, and establishing hierarchies is all done with the

javascript:displayWindow('images/09-14.jpg',679,400)
javascript:displayWindow('images/09-14.jpg',679,400)

Shape language, which I discuss later in this chapter. To use the Shape
language yourself, you must set the Connection object’s Provider property
to “MSDataShape” and change the Connection string from “Provider=…”
to “Data Provider=…”. I did the same for the DataEnvironment object.

Alas, I was never able to get any sort of nested computations and spent a
considerable amount of time in working the problem out using VB’s tools.
(When you work with a new package and things don’t go as planned, the
tendency is to assume that you are making the error). I spent a considerable
amount of time debugging the Shape language generated by Visual Basic. I
discuss the mechanics of what I did later in this chapter.

I wanted to total sales by state. In the Properties window of the
cmd-Customer object, I added a new aggregate and called it
TotSalesByState. I selected Sum for the function and Grouping for the
aggregation level. A new Field object was added to the parent Command
object—the same one that contains the cust_st summary field.

After I got the Shape language squared away, the next trick was to tell VB to
use my version and not its own. To do that, I needed to edit the WillExecute
event of the DataEnvironment object. You may recall from Chapter 7 that the
syntax for this event includes the Source argument. I placed some code into
this event to see what command was to be executed and, if appropriate,
replaced it with my own source.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using Hierarchical Commands And Recordsets In DataReports

You can also use your hierarchical Recordset as the source for a DataReport, though it
isn’t as straightforward as it might seem. To do this, add a DataReport to your project
from the Project menu. Then, drag the parent Command object on to the DataReport.
At first blush, it seems as though nothing has happened. But, in fact, the DataReport
reconfigures itself by adding (or deleting) headers and footers to reflect the number of
levels of data in the Recordset hierarchy.

Consider the report shown in Figure 9.15; the detail section is composed of individual
line items. The Line_Item table happens to be the child of all other tables in the
command hierarchy. The parent of the Line_Item table is the Orders table. Visual Basic
assigns the first header and footer sections to the Orders table. On the report, I use this
area to print the order number and date. The footer section can be used to perform
calculations (such as summing) on the preceding section (in this case, the detail section).

Figure 9.15 The Customer Sales Report generated by the report designer.

The parent of the Orders table is Customer, so Visual Basic makes a higher-level header
and footer pair of sections for customer-level data. On my report, I use the header area to
show the customer number and name.

After this is done, you can drag individual fields onto the report and place them as you
wish, within appropriate sections. For instance, I cannot place line item information into
the customer header. You can add functions, labels or other controls, and so on.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-15.jpg',607,543)
javascript:displayWindow('images/09-15.jpg',607,543)

Encapsulation And The DataEnvironment Object

In most of the examples in this chapter, I have manipulated Recordset objects directly
from the forms that are displaying them. This approach, while valuable as an illustrative
technique, has some problems. My main objection is the redundancy of code—each form
that displays a given Recordset must re-create the wheel in terms of navigation, data
validation, and so forth. Furthermore, in an object-oriented world, we have to keep in
mind the issue of ownership and responsibility. The forms that display the Recordset
objects don’t actually own the record sets. The DataEnvironment object owns them,
instead. As Chapter 8 describes, encapsulation demands that manipulation be a function
of the owning object.

For this example, I refined the form that I discussed earlier under “Grouped Command
And Recordset Hierarchies.” On the form itself, I added an array of four command
buttons named cmdMove. I added two other command buttons named cmdFind and
cmdClose. Finally, I added the new DataCombo ActiveX control. (To use the
DataCombo control, add Microsoft DataList Controls 6.0, which adds an OLE DB
enhanced list box and combo controls to the toolbox.) Figure 9.16 shows the form.

Figure 9.16 The Customer Detail form enhanced with navigation and find capabilities.

Instead of performing the navigation and find functions within the form, I added them to
the deHierarchy object. Recall that the object has multiple commands and record sets. I
wanted to generalize the routines so that they could be used with any Recordset object.

In preparation, I declared a reference to the rsCusts_by_State Recordset in the
frmCustOrdDet form:

' In the General Declarations Section
Dim rs As Recordset
Private Sub Form_Load()
Set rs = deHierarchy.rscusts_by_state
End Sub

Next, I added an Enum for navigational control to the general declarations section of the
deHierarchy module (you may want to do it in a standard module instead):

Public Enum RsMovement
 rsFirst = 0
 rsBack = 1
 rsForward = 2
 rsLast = 3
End Enum

Next, I added two Sub procedures as shown:

Public Sub MoveRS(rs As Recordset, dir As RsMovement)

javascript:displayWindow('images/09-16.jpg',742,496)
javascript:displayWindow('images/09-16.jpg',742,496)

Select Case dir
 Case rsFirst
 rs.MoveFirst
 Case rsBack
 If rs.AbsolutePosition > 1 Then
 rs.MovePrevious
 End If
 Case rsForward
 If rs.AbsolutePosition < _
 rs.RecordCount Then
 rs.MoveNext
 End If
 Case rsLast
 rs.MoveLast
End Select
End Sub

Public Sub rsFind(rs As Recordset, sVal As String)
Dim vBMark As Variant
If (Not rs.BOF) And (Not rs.EOF) Then
 vBMark = rs.Bookmark
Else
 Exit Sub
End If
rs.MoveFirst
rs.Find sVal
If rs.EOF Then
 MsgBox "Record Not Found"
 rs.Bookmark = vBMark
End If
End Sub

The first Sub accepts as arguments a Recordset object and a variable of type
rsMovement, which is the Enum created earlier. Back in frmCustOrdDet, I coded the
procedure to handle navigation:

Private Sub cmdMove_Click(Index As Integer)
Dim iDir As RsMovement
Select Case Index
 Case 0: iDir = rsFirst
 Case 1: iDir = rsBack
 Case 2: iDir = rsForward
 Case 3: iDir = rsLast
End Select
deHierarchy.MoveRS rs, iDir
End Sub

As you can see, the routine simply checks which button was pressed, sets the direction
variable, and makes a call to the MoveRS procedure, passing it a reference to the
Recordset and a direction. Any form or module can share the MoveRS procedure, of
course.

The Find function allows the user to select a state from the combo box control on the
form and click Find. The find procedure in deHierarchy is generalized to accept any
Recordset and any search criteria. It does some basic error checking and executes the
search. From frmCustOrdDet, the procedure is as follows:

Private Sub cmdFind_Click()
deHierarchy.rsFind rs, "cust_st = '" & DataCombo1.Text & "'"
End Sub

These principles are not a whole lot different than the techniques we used to abstract
classes in Chapter 8 and can be expanded upon to add updating, validation, and so on.
Unfortunately, the DataEnvironment cannot protect its members. In other words, the
Recordsets it generates are public by nature and there is nothing to stop any other
module from manipulating them directly. You can, of course, use the DataEnvironment
as a data source to a class module and achieve some degree of encapsulation in that
manner.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Shape Command

When you create a hierarchical DataObject, Visual Basic implements it with what is
known as a Shape command. You are free to create the syntax yourself. For instance, you
can create a Recordset by using Shape language as its record source. The statement to
create the hierarchical Recordset shown in Figure 9.14 is:

recordset.open "Shape {Select * from line_item}", connection

In order to use the Shape language, you must set the Connection object’s Provider
property to MSDataShape and alter the ConnectionString somewhat:

con.Provider = "MSDataShape"
con.ConnectionString = _
 "Data Provider=MSDASQL;dsn=Coriolis VB Example;" & _
 "uid=coriolis;pwd=coriolis;"
con.CommandTimeout = 15
con.CursorLocation = adUseClient
con.Open

As mentioned earlier, the Shape language generated by the DataEnvironment Designer is
flawed. You can view the generated statement by right-clicking on the Command object.

I attempted to create the form shown in Figure 9.17 with the designer. As you can see, it
subtotals all the sales for each customer, groups the customers by state, and takes a total
of sales by state.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/09-17.jpg',560,406)

Figure 9.17 This form was generated by overriding Microsoft’s Shape language.

The syntax that the designer generated is as follows:

Shape (Shape {Select * From customer} As cmdCustomer _
 Append ((Shape {Select * FROM orders} As cmdOrders _
 Append ({Select * From "coriolis"."line_item"} _
 As cmdLineItem Relate ord_no To line_ord_no) _
 As cmdLineItem) As cmdOrders Relate cust_no _
 To ord_cust_no) As cmdOrders, Sum(cmdOrders.ord_total) _
 As sumOrds) Compute cmdCustomer, Sum(cmdOrders.sumOrds) _
 As TotSalesForState By cust_st

The syntax is a bit difficult to follow, so I will try to explain it in this section. For now,
understand that the correct syntax is more like this:

Shape (Shape {Select * From customer} As cmdCustomer _
 Append ((Shape {Select * From orders} As cmdOrders _
 Append ({Select * From coriolis.line_item} _
 As cmdLineItem Relate ord_no To line_ord_no) _
 As cmdLineItem) As cmdOrders Relate cust_no _
 To ord_cust_no) As cmdOrders, _
 Sum(cmdOrders.ord_total) As sumOrds) Compute cmdCustomer,_
 Sum(cmdCustomer.sumOrds) As Totsalesforstate By cust_st

Although it took me quite a while to hack through the language, the only real difference
is on the last line. Notice on the second to last line that a SUM is done on
cmdOrders.ord_total. Ord_total is a column in the Orders table. cmdOrders is a child
of the cmdCustomer object. The SUM occurs right before the COMPUTE
cmdCustomer and creates a Field called sumOrds, which is a field within
cmdCustomer. But, on the next line, the generated syntax attempts to reference a field
named cmdOrders.sumOrders. cmdOrders has no such field. I changed that to
cmdCustomer.sumOrds, and the syntax was correct.

It makes sense that the change was as “simple” as that, because, as I note earlier in the
chapter, I could not get any nested functions to work. In experimenting, I found that the
designer consistently referenced an object one step lower in the hierarchy than it should
have whenever it attempted to manipulate summary fields.

Unfortunately, knowing what is wrong and doing something about it are two different
things. You cannot override the language that VB creates in the designer. What I had to
do instead was a little trickery. In the deHierarchy object, I placed some code in the
WillExecute event. Recall from Chapter 7 that one of the arguments to this event is the
Source that will execute. I tested to see what Source was about to execute and then
overrode it in this way:

Private Sub conCustOrdDet_WillExecute (Source As String, _
 CursorType As ADODB.CursorTypeEnum, LockType As _
 ADODB.LockTypeEnum, Options As Long, adStatus As _
 ADODB.EventStatusEnum, ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _

javascript:displayWindow('images/09-17.jpg',560,406)

 ByVal pConnection As ADODB.Connection)
If InStr(1, UCase$(Source), "TOTSALESFORSTATE") Then
 Source = "SHAPE (SHAPE {SELECT * FROM customer} " & _
 "AS cmdCustomer APPEND ((SHAPE {SELECT * FROM " & _
 "{orders} AS cmdOrders APPEND ({SELECT * FROM " & _
 "line_item} AS cmdLineItem RELATE ord_no" & _
 "TO line_ord_no) AS cmdLineItem) AS cmdOrders" & _
 "RELATE cust_no TO ord_cust_no) AS cmdOrders," & _
 "SUM(cmdOrders.ord_total) AS sumOrds) COMPUTE" & _
 "cmdCustomer, SUM(cmdCustomer.sumOrds) " & _
 "AS TotSalesForState BY cust_st"
End If
End Sub

This isn’t a perfect solution (I rely on finding the value TotSalesForState, which I might
use in more than one command), but it works. It also provides a valuable opportunity to
dissect the Shape language.

Before doing so, let’s take a step back and ask the $64,000 question: Why bother?

As I noted earlier, hierarchical Recordset objects are more efficient than Recordset
objects created with an SQL join. This is because the parent in a join is repeated for each
occurrence of a child, while it (the parent) occurs only once in a hierarchical Recordset.
To illustrate, assume that you issue a select against a join of fictitious State and City
tables as follows:

SELECT state_name, city_name
FROM STATE, CITY
WHERE STATE.st_id = CITY.st_id
ORDER BY state_name, city_name

The result set would redundantly include information from the State table for each row
returned from the City table:

state_name city_name
---------- ---------
Massachusetts Attleboro
Massachusetts Auburn
Massachusetts Bedford
Massachusetts Boston
Massachusetts Burlington

In a hierarchical Recordset, the same query would return only one occurrence of the
value Massachusetts. In this example, the State table is the parent. To create the parent
using Shape, you would code the following:

Shape {Select state_name From State}

To create a child, you need to Append a new query, and then Relate the two objects
together:

Shape {Select state_name, state_id From State}
 Append {{Select city_name, city_state_id From City}
 Relate state_id To city_state_id}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Notice that the Relate references state_id To city_state_id. Unlike SQL, when you join two
tables via the Shape command, you have to include in the Select statements the two columns
on which you are joining the tables.

If assigned to a Recordset, the columns from the state table cannot be independently accessed.
We can fix that problem by providing an alias, as shown next:

Shape {Select state_name, state_id From State} As cmdStateCity
 Append {{Select city_name, city_state_id From City} As cmdCity
 Relate state_id To city_state_id} As CmdStateCity

The key here is the naming of the inner Select cmdCity. The resulting Recordset created from
this would have three Field objects: state_name, state_id, and cmdCity. The third Field is, of
course, another Recordset.

The question, then, is how to access the Fields within the cmdState Recordset. Assume that
you had created a Recordset named rsState. You could access the cmdCity Recordset as
shown next:

Dim vCity As Variant
Dim rsCity As New Recordset
vCity = rsState("cmdCity")
rsCity = vCity.Value

Declare a variable, vCity, of type Variant and a second variable, rsCity, of type Recordset.
Assign to vCity the value in the cmdCity field. Then, set rsCity equal to vCity.Value. Visual
Basic’s example of referencing a child Recordset in the Help file was incorrect with my copy
of VB6.

A little explanation is in order here. While it is tempting to assume that vCity’s underlying data
type is Recordset, it isn’t. It is actually type Field. The Field object’s Value property is of type
Recordset. What’s more, you cannot make a direct assignment of rsCity = vCity—you will
get a mismatch error. Whereas you might assume that vCity’s default property is Value (the
Field object’s default property is Value), vCity is still a Variant. So, you need to be explicit
with your references.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Alternatively, you could reference vCity directly:

text1.text = vCity.Value("city_name")

Although it is strange looking, it works.

When you create parent/child Recordset objects, the database only needs to return one copy of
each parent record, unlike with the SQL join example earlier in this section. The state of
Massachusetts (excuse me, the Commonwealth of Massachusetts) has 351 cities and towns. For
each of those 351 city records, there is only the one parent record. Assuming the state table has
all 50 states and 20,000 or so cities and towns, the parent Recordset would include only 50
records. This represents a considerable savings in network traffic and, presumably, database
resources.

Figure 9.18 shows another sample application (included on this book’s CD-ROM) with which
you can experiment with Shape language and parent and child Recordset objects. There are
three command buttons, which display data from one, two, or three tables, respectively. For the
application, I used the Customer, Orders, and Line_Item tables. The listing is very lengthy,
and so I will only touch upon the highlights.

Figure 9.18 The Shape Testing application.

The goal of the application is, of course, to display the data. This can be a mite tricky as well. If
you run the sample application and press the third command button, the first customer record is
displayed. That customer’s first order is displayed and that order’s first line item is displayed.
But, if you press one of the top navigation buttons (to scroll to the next customer), the order
doesn’t change. If you scroll the order, the line item doesn’t change. So, what else is going to
go wrong today?

You may recall the StayInSync property from Chapter 7. If this property is False (the default)
on a parent Recordset, then the parent and child Recordsets move independently of one
another. To keep the parent and child Recordsets in sync, you must set this property to True
on the parent Recordset before retrieving the child Recordset. On the sample application,
checking the Sync Parent checkbox will cause the Recordsets to stay in sync.

The application doesn’t know what data it will be displaying or how many Recordset objects
there are. Listing 9.2 shows a mildly dangerous way to generically display data without
knowing up front what the child Recordset objects are, how many there are, or their field
names.

Listing 9.2 A code “trick” to iterate nested Recordsets.

Private Sub disprec()
Dim iCtr As Integer
Dim iStart As Integer
Dim iRs As Integer
Dim iFlds As Integer
On Error GoTo BumpIt
ShowRS:
iFlds = rs(iRs).Fields.Count
For iCtr = iStart To iStart + iFlds - 1
 lblFields(iCtr) = rs(iRs).Fields(iCtr - iStart).Name

javascript:displayWindow('images/09-18.jpg',782,312)
javascript:displayWindow('images/09-18.jpg',782,312)

 If IsNull(rs(iRs).Fields(iCtr - iStart).Value) Then
 txtFields(iCtr) = "*NULL*"
 Else
 txtFields(iCtr) = _
 rs(iRs).Fields(iCtr - iStart).Value
 End If
Next
Exit Sub
BumpIt:
' This is a dangerous trick!
If Err.Number = 13 Then
 iRs = iRs + 1
 iStart = iCtr
 Resume ShowRS
Else
 MsgBox Err.Description
End If
End Sub

First, I should explain that I created an array of Recordset objects in the application. If you
examine the code listing on this book’s CD-ROM, you can see that I did, in fact, make some
assumptions about the names of those child Recordset objects. A few code changes and you
can generalize the routine that creates them as well. Iterate through the Field objects testing for
a Null value. When you encounter a child Recordset, a mismatch error will be generated. In
the error-handling routine, ReDim Preserve your array of Recordset objects, and, using the
technique I showed earlier, set the new Recordset to be the Field object that generated the
error.

In the preceding example, I use a very similar technique to iterate through the Recordset
objects displaying their fields. When a child Recordset is encountered in the parent, a
mismatch error occurs and I increment the rs subscript.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

You can consult the VB documentation for other hints on creating Shape
statements. My recommendation is to generate them in the DataEnvironment
Designer and then copy and paste them into your code. Fix any errors using the
techniques described at the beginning of this section.

The Shape language can get pretty overwhelming for us mere mortals. Even here,
though, you can do yourself a favor by starting small, testing, and adding new
items. I tell my students the same thing when trying to write complex queries in
Oracle or SQL Server. The last hint I would like to leave you with is to treat the
Shape statement like a nested If statement, if necessary. The sample application
uses the following Shape statement to join three tables. To make it more
understandable, I have reformatted it, indenting at each level (parent, child, and
sub-child):

Shape
 (Shape {Select * From customer} As cmdCustomer
 Append (
 (Shape {Select * From orders} As cmdOrders
 Append (
 {Select * From "coriolis"."line_item"}
 As cmdLineItem
 Relate ord_no To line_ord_no) As cmdLineItem)
 As cmdOrders
 Relate cust_no To ord_cust_no)
As cmdOrders

When you look at it this way, it’s not so bad.

Other Data Access Tools In Visual Basic 6

Throughout the first nine chapters of this book, I have attempted to introduce as
many of the tools and techniques to access data in a client/server environment as

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

possible. In fact, the nature of VB’s extensibility means that one cannot cover
every conceivable tool—most of VB’s intrinsic controls are data aware and there
is a plethora of third-party components available as well. In Chapter 10, I discuss
the class module as a data consumer and a data provider in the process of
constructing business objects. In Chapters 12 through 15, the discussion moves
toward remote database development with an eye toward the World Wide Web
and, there, yet more tools are introduced.

Visual Basic 6 continues the trend of an accelerated migration to an
object-oriented and database-oriented development tool. VB3 was the first serious
attempt at using Visual Basic as a client/server development tool. In my opinion,
VB4 was really just a refinement of that attempt. VB5 was as much an
improvement over VB4 as VB4 was over the very first release of Visual Basic 1.
VB6 is a quantum leap over VB5.

Each time I fire up this beta release of Visual Basic 6 in research for this book, I
find something new and wonderful. As I have noted throughout this chapter, some
of the edges are a little ragged, but those will be smoothed—hopefully by the time
VB is sent into general release.

In this section, I want to briefly overview some of the remaining tools that you
should be familiar with.

The Bindings Collection And Binding Object

Visual Basic 6 introduces the Bindings collection and the Binding object. These
objects provide a means to bind any data consumer (such as a textbox or class) to
any data provider (such as a data control or Recordset).

To use the Binding object, you have to declare a reference to the Microsoft Data
Binding Collection Library. Then, declare objects as being of type
BindingCollection, as shown here:

Dim bc1 As BindingCollection

Next, you bind the BindingCollection to a data source. In the following example,
I bind it to a Recordset:

Set bc1.DataSource = rs

At this point, bc1 is a data consumer. As such, it doesn’t do a whole lot of good,
but you can make it act as a data provider as well. Next, I am going to bind a
couple of textbox controls by adding members to the collection. The arguments
that I have provided are:

• The control that will act as the data consumer (in this case, txtDept and
txtSal)
• The property of the control that will display the data (in this case, Text)
• The field from the Recordset (emp_dept_no for txtDept and emp_
salary for txtSal)
• A name for the object (dept for the first and salary for the second)

 bc1.Add txtDept, "text", "emp_dept_no", , "dept"
 bc1.Add txtSal, "text", "emp_salary", , "salary"

At this point, the textbox controls are now bound to bc1, and bc1 is bound to the
Recordset. I will be using this behavior to advantage in the next section.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Visual Basic Format Objects

Format objects allow you to format and unformat data for display. In the
following examples, I want to display the employee’s gender as red if female or
blue if male. To do so, I am going to declare a Format object to handle this. To
use Format objects, you must first declare a reference to the Microsoft Standard
Formatting Library. Then, for each Format object that you want to create, you
must declare a variable of type StdDataFormat, as shown in the following code.
In my example, I also need to bind the Format object to a BindingCollection
object, so I declare a reference for that as well:

Private bc1 As New BindingCollection
Private WithEvents fmtSex As StdDataFormat

The sample application on this book’s CD-ROM, FormatBindings, opens an
Active Data control on the Employee table. (The example from the prior section
is included in that project as well). In the application’s Open event, I coded the
following:

Set bc1.DataSource = Adodc1.Object
Set fmtSex = New StdDataFormat
fmtSex.Type = fmtCustom
bc1.Add txtFields(3), "text", "emp_gender", _
 fmtSex, "Sex"

I bound bc1 to the Active Data control and then created a new instance of fmtSex.
I set its type to fmtCustom. Other options include fmtBoolean, fmtPicture,
fmtCheckbox, and so on. See the VB Help file for more information. I then
added the object to the BindingCollection.

The Format object has a number of events. You can use the Format event to
alter the presentation of the data if necessary. Because the data values can change,

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

I need to reformat the data each time the value changes:

Private Sub fmtSex_Format(ByVal DataValue As _
 StdFormat.StdDataValue)
If DataValue = "F" Then
 txtFields(3).ForeColor = vbRed
Else
 txtFields(3).ForeColor = vbBlue
End If

End Sub

As you can see, DataValue is a property of the object. There is also an Unformat
event, which you can use to convert the data back into a form acceptable to the
database. Finally, there is a Changed event to handle situations where the data
has changed.

Figure 9.19 shows the prior two sections in action. The application includes four
different format objects and three BindingCollections. It compares each
employee’s salary to the department average and company average. If greater, the
Format object sets the Checkbox controls. As you can see, the employee shown
makes more than the company average but not as much as her department’s
average salary. Though you can’t tell in Figure 9.19, her gender is displayed as
red.

Figure 9.19 This application makes use of Format and DataBinding objects.

Data-Bound User Controls

You can use the DataBindings collection to bind controls on a user control to a
data source. On this book’s CD-ROM, the AXctlLineItem project is a user control
compiled to an ActiveX control that is bound to the database.

To create a data-bound user control, create a new project of type ActiveX control.
Place fields as needed. For the example application, I used four textboxes that will
eventually manipulate data from the Line_Item table. Each textbox is exposed
through the appropriate Property Get and Property Set statements. For instance,
the following code manipulates a control property, ItemDesc, which will
eventually be mapped to the item_description field on the database:

Public Property Get ItemDesc() As String
ItemDesc = txtFields(3).Text
End Property

Public Property Let ItemDesc(sItemDesc As String)
txtFields(3).Text = sItemDesc
End Property

javascript:displayWindow('images/09-19.jpg',478,276)
javascript:displayWindow('images/09-19.jpg',478,276)

To map the properties, select Procedure Attributes from the Tools menu. At the
top is a drop-down window that displays the object’s properties. Click the
Advanced button and you will see where you can set object behaviors. The
bottom area is for data binding. Check the Property Is Data Bound box and also
the Show Property In Data Bindings Collection At Run Time boxes. Repeat this
for each of the four properties in the control and then compile it. You will use the
control in conjunction with the DataRepeater control in the next section.

The DataRepeater

The DataRepeater control allows you to display multiple occurrences of a data
bound object—such as the ActiveX control created in the prior section—in a
format similar to a grid control. To use it, add the Microsoft Data Repeater
Control 6.0 to your toolbox, and then draw it on the form. Make it big enough to
handle multiple occurrences of the OCX you created in the prior section. (Figure
9.20 shows the running application—the application from this book’s CD-ROM is
Data-Repeater.) Add an Active Data control whose Source is “Select * From
Line_Item”.

Figure 9.20 The DataRepeater control is used to display multiple occurrences of
the contained data bound controls.

Next, find the RepeatedControlName property in the Properties dialog for the
DataRepeater control. Click it, and all ActiveX objects registered on your PC are
displayed. Locate the control you created in the last section and select it. When
you do, it will be repeated multiple times inside of your DataRepeater control. For
the DataSource property, select the Active Data control.

Next, right-click on the control and select Properties. Select the RepeaterBindings
tab. There is a drop-down list box listing all the properties of the ActiveX control
that you chose to be added to the DataBindings collection in the last section.
Select each in turn, and select a database field from the DataField box. You can
optionally specify a collection key in the next field. The next tab, Format, allows
you to format individual fields.

Run the project and you should get a display similar to the one shown in Figure
9.20. To programmatically access the properties and methods of your user control,
the RepeatedControl property returns a reference to the control. For instance, to
set the ItemDesc property:

DataRepeater1.RepeatedControl.ItemDesc = "Another Item"

The current record is indicated by the CurrentRecord property.

Previous Table of Contents Next

javascript:displayWindow('images/09-20.jpg',522,334)
javascript:displayWindow('images/09-20.jpg',522,334)

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Where To Go From Here

We have covered a lot of ground in these first nine chapters. In Chapter 10, I’ll
explore the concept of the business object and build on the technique of using
classes as data objects. In Chapter 11, I’ll concentrate on the database aspect of
your client/server application. After that, my co-author Kurt Cagle takes you
into the exciting and scary realm of Web development, DHTML, XML, and so
on.

The amazing thing about Visual Basic 6 is that, even in 3,000 pages, not every
aspect can be covered in depth. But, it is not my intention to do so. We have
built a core of knowledge from Chapter 1 on and added to that very rapidly
until getting into the relatively advanced concepts presented in this chapter.

If you have come this far, congratulations! Take some time to explore and
expand on some of the sample applications on this book’s CD-ROM. In
particular, take note of how the latter examples in this chapter take advantage
of procedures written earlier. For instance, the final Shape application uses the
same navigation methodologies encapsulated into the deHierarchy that
frmCustOrdDet used earlier in the chapter. Also, note how we began moving
towards encapsulation of methods and properties. The user control in the last
section, for instance, makes it impossible to access an item from the database
without using its interface. Such techniques promote productivity and
reliability of code (and is the focus of the next chapter).

Previous Table of Contents Next

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 10
Creating Business Objects With Visual
Basic 6
Key Topics:

• Object-oriented development

• Creating Private and Public events, methods, and properties

• In-process and out-of-process ActiveX servers

• Connecting to local and remote business objects

Application development always seems to be 12 to 36 months behind
technology, and maybe that is just as well. In the early to mid 1990s, a joke
compared client/server development to sex: Everybody is talking about it, but
nobody is doing it. Today, the buzz is about distributed objects, COM/DCOM,
Web-based applications, n-tier architecture, and so on. Although I certainly
don’t mean to imply that these technologies aren’t viable and even in use in
some organizations, they still remain the exception and not the rule.

Throughout this book, I have attempted to keep an eye on where most
organizations and developers are technologically, while building a foundation
for the architectures of tomorrow. One has only to look at the delays in the
release of SQL Server 7—which relies heavily on ADO, DCOM, and
distributed objects—to see that some of these new technologies are still
evolving. I cannot recommend throwing the tried and true techniques that I
have discussed so far in this book into the abyss of remote objects and the like.
Instead, I recommend that you proceed slowly, testing the reliability and
viability of these techniques as they evolve.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Should you investigate these technologies? Absolutely. Most of the remainder
of this book is devoted to these new and exciting development methodologies.
My recommendation at this time, if you decide to move forward, is to roll out
your deployments with small, non-mission-critical applications as you get your
feet wet (in other words, learn how to use the new tools) and as the technology
matures and stabilizes.

DCOM, distributed-architecture, n-tier, Web-based applications, and so on are
all parts of the same whole: Microsoft’s services architecture model, which I
introduced in Chapter 1. DCOM is the glue that binds all of these together; its
very nature is the distribution of components—ActiveX objects—at
appropriate places with the services model (user, business, or data) and
imparting them with the knowledge of how to communicate with one another,
regardless of the language used to develop them and regardless of their
location on the network.

In this chapter, I lead you through the foundations of distributed components
with an introduction to creating right-sized and right-located business objects.
Note that most of the examples in this chapter are adapted from applications or
objects generated by different Visual Basic wizards (such as the Data Object
Wizard) to which I then made modifications to illustrate various points.

Introducing The Business Object

A business object encompasses data and rules that perform a business function.
More to the point, any object in a COM or DCOM environment has three
facets:

• Data—Business information from the data source, such as a customer
record, as well as variables used internally.

• Behavior—Methods and events of the object.

• Interface—Both the user interface, if any, and a set of “connections”
that expose the object to the outside world. In DCOM, these connections
are the object’s proxy and stub.

COM, DCOM, And ActiveX Summarized

It is worth taking a moment to reflect on what the various pieces of the
COM, DCOM, and ActiveX architecture really are and how they fit together.
For anyone who has done Java development, ActiveX can be likened to
JavaBeans and DCOM can be likened to COBRA. COM (Component Object
Model) is as much a development philosophy as it is a development
methodology. COM-based development uses previously created components
in an effort to promote reusability, reliability, and interoperability. The
components are ActiveX servers, as I will be discussing in this chapter.
COM in general, and ActiveX controls in particular, focus on the
desktop—the presentation layer. In contrast, DCOM (Distributed Component
Object Model) focuses on the network and is the technology that enables
objects running in separate processes—particularly those running on separate
computers—to communicate with one another.

With that quick summary in mind, let’s jump into the concept of the business

object in component based development.

This concept of an object is illustrated in Figure 10.1.

Figure 10.1 An illustration of a client (Object A) calling Object B (running in
its own pro-cess)—perhaps to invoke a method of Object B.

Business Object Data

To create a business object, you first need to create its definition or class. In
VB, you do this by creating a class module. When the class is instantiated, it
becomes an object. Within the class module, you create the data that you need
to manipulate, as well as methods and events. Any data that is declared
Private cannot be seen by other modules, so it is protected from unauthorized
use. You may opt to expose Public methods, allowing the manipulation of that
data, but the manipulation will still be done by the class module itself. This
arrangement is called encapsulation; privately declared data, methods, and
events are encapsulated by the business object.

The following code declares some variables in a class module:

Option Explicit

Private Emp_No As Integer
Private Emp_FName As String
Private Emp_LName As String
Private Emp_DOB As Date
Public bClose As Boolean

Because the first four variables are not publicly available to other modules,
they are fully protected. The last variable is declared Public and can thus be
changed by any other object. However, you then need to provide some sort of
interface to the outside world to access these variables.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/10-01.jpg',640,370)
javascript:displayWindow('images/10-01.jpg',640,370)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Business Object Behavior

You allow access to objects via properties, methods, and events. Together, those properties,
methods, and events that are declared with the Public keyword compose the object’s
interfaces to other objects. You could, for instance, provide an interface that returns to the
requesting object the employee’s name:

Public Property Get EmpName () As String
 EmpName = Emp_FName & " " & Emp_LName
End Property

In this example, the property EmpName is declared as Public, so it is part of the object’s
interface. If the object’s name were clsEmployee, you would reference the property using
simple dot notation:

' Display the customer
txtEmpName.Text = clsEmployee.EmpName

EmpName is a read-only property because it was defined with the Get modifier. To create
a property that can be written to, use the Let or Set modifiers. Perhaps you want to allow
the update of the employee’s name but only under strict control. You do this with a
Property Let statement, as shown:

Public Property Let FLName (first As String, last As String)
 Emp_FName = first
 Emp_LName = last
End Property

Of course, the preceding code snippet doesn’t provide much in the way of data validation.
Let’s modify the code a little bit:

Public Property Let FLName (first As String, last As String)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 If Len(first) = 0 Or Len(last) = 0 Then
 Err.Raise vbObjectError + 512, _
 "First and last names cannot be blank"
 ElseIf Len(first) > 15 Or Len(last) > 21 Then
 Err.Raise vbObjectError + 513, _
 "Name too long. First <= 15, Last <= 21."
 Else
 Emp_FName = first
 Emp_LName = last
 End If
End Property

The preceding code object edits the name lengths for validity and uses the Visual Basic
error-handling facilities to flag any data violations. The calling object is not allowed to pass
invalid values.

Business Object Methods

Publicly declared methods are implemented as Subs or Functions and implement any
services that the object needs to provide to the outside world. Of course, the object may
also have privately declared methods, which are used internally by the object and are then
not part of the object’s interface.

There is some overlap between methods and properties. Consider that a Property Get
exposes a portion of the object—such as a variable. It is similar to a Function in that it
returns a value to the calling object. Likewise, a Property Let or Property Set is similar to
a Sub in that it performs an action without returning a value to the calling object.

An Alternative To The Error Handler In Class Modules

An alternative to using the error-handling facilities for Property Let and Property Get
is to create a property whose sole purpose is error reporting. To do this, create a private
module-level variable named ErrStat and an array of error messages named ErrMsg.
Create Public properties to expose them:

' General Declarations Section
Private ErrStat As Integer
Private ErrMsg (100 To 199) As String

' Class Initialization Procedure
ErrMsg (100) = "First and last names cannot be blank"
ErrMsg (101) = "Name too long. First <= 15, Last <= 21."

Public Property Get Status () As Variant
 Status (0) = ErrStat
 If ErrStat <> 0 Then
 Status (1)= ErrMsg(ErrStatus)
 End If
 ErrStat = 0
End Property

Then, in your Property Let procedure, update the ErrStat variable to reflect success or

failure:

Public Property Let FLName (first As String, last As String)
 If Len(first) = 0 Or Len(last) = 0 Then
 ErrStat = 100
 ElseIf Len(first) > 15 Or Len(last) > 21 Then
 ErrStat = 105
 Else
 ErrStat = 0
End Property

This might not seem as straightforward as simply relying on VB’s error-handling system,
and in fact, it isn’t. However, it does make the resulting business object more portable
and simulates ADO’s Error object.

TIP
Properties, Methods, And Performance
One other consideration when choosing whether to expose an interface as a property or
method is the design of the object. If it is to be an out-of-process server, COM imposes
severe performance penalties when communicating across process boundaries. In this case,
you are better off using properties as much as possible because properties incur much less
of a performance hit than methods. However, see “Relocating The Business Object” later in
this chapter, where the rules change.

Your business object could be designed devoid of any publicly declared properties or
methods. Consider the EmpName property from the last section; it could have been
implemented as a Function, as shown:

Public Function EmpName () As String
 EmpName = Emp_FName & " " & Emp_LName
End Function

To an extent, how you build your class and your choices between properties and methods is
largely a personal preference. However, my recommendation is that you expose data as
properties if for no other reason than it is a more natural way for the calling object to
reference the business object. In general, if something that your object exposes is a noun
(the employee’s name, for instance), expose it as a property. If it is a verb (update
employee record, perhaps), it should be implemented as a method. If the method needs to
return a value, it should be a Function. Otherwise, it should be a Sub.

Because the business object “owns” the employee data, it has the responsibility for
updating that data. Assuming that a previously opened Recordset named arsEmp is being
used to manipulate the data source, you might create an UpdateEmp interface as shown
next:

Public Sub UpdateEmp ()
 ' Put any data validation here.
 ars.Update
End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Business Object Events

Events provide the foundation of any object-oriented development effort. VB provides the
capability for your business object to expose events to which the calling object can react.
Assume you want to create an event to let the calling object know that the employee update
completed. Perhaps you also want to pass back to the calling object information about the
success or failure of the update.

To create the event, you declare it in the General section of the class module:

Public Event EmpUpdateComplete (pError As Error, _
 bStatus As Boolean)

The Event declaration also specifies optional arguments, which the calling object will then
have access to. To cause the event to occur, use the Raise keyword:

Private Sub arsEmp_RecordsetChangeComplete(ByVal adReason As _
 ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, adStatus _
 As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
Dim bSuccess As Boolean
If adStatus = adStatusOK Then
 bSuccess = True
End If
RaiseEvent rsUpdateComplete(pError, bSuccess, pRecordset)
End Sub

The calling object will then see that declared event just like any other event, as shown in
Figure 10.2.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 10.2 Once you declare a reference to a class object, its events are exposed.

Business Objects As Components

In the object-oriented world, an object is an instance of a class. In other words, a class is the
definition of an object. A dictionary definition of “person” might generically indicate that a
person is a human with two legs, hair, and so on. What you see in the dictionary is not a
person; it is the definition of a person. An object becomes an object only after it is
instantiated (created).

To instantiate a class module, you create a reference to it in whatever module needs to
access its properties, methods, and events:

Dim empClsDemo as clsEmpDemo

In this example, clsEmpDemo is the name of a class module that you had previously
created. empClsDemo is the name of an object that gets created from clsEmpDemo when
declared.

A component is not an object: Let’s make that clear. A component is prebuilt, binary code
that is language independent. When you add the CommonDialog ActiveX control to your
project, you are adding a prebuilt component. Because it is binary code, it can be used by
any language that understands ActiveX technology. Components typically consist of one or
more objects. In Microsoft’s COM and DCOM models, components are ActiveX Servers
(either EXEs or DLLs) or ActiveX controls. As with your class module, you must make a
reference to them (usually via the Components or References options from VB’s Project
menu). When the reference is made, the components’ exposed properties, methods, and
events become available to your program.

Although you can certainly create a class module and then reuse it from project to project as
needed, its portability is especially enhanced when you compile the class into an ActiveX
component. It can then be used by any application, regardless of the development language,
potentially at any place on the network (instead of on the client machine). This portability is
an especially useful feature because many applications can share the same component.

Components can be in-process or out-of-process servers. An in-process server runs within
the same memory space as the application, whereas an out-of-process server runs in its own
memory space. Each approach has advantages and disadvantages. The most significant
advantage of an out-of-process server is that it can be shared among other processes. An
in-process server belongs to the application. On the other hand, out-of-process servers come
at a distinct performance disadvantage: Because calls from one process to another must
cross process boundaries, performance can be severely impacted.

I discuss the pros and cons of the different approaches as we go along.

The ActiveX control is essentially an in-process server. Although an ActiveX control is not
required to have a visible component, it typically is used that way. The CommonDialog
control is one of the more common exceptions to that rule. The biggest drawback of an
ActiveX control versus an ActiveX DLL is that the control must be placed in some sort of

javascript:displayWindow('images/10-02.jpg',800,576)
javascript:displayWindow('images/10-02.jpg',800,576)

container object—such as a form. You can’t use an ActiveX control within a standard
module, for instance.

Business Objects And Object-Oriented Behavior

To support object-oriented development, objects need to exhibit certain kinds of behaviors.
Visual Basic class modules and their resulting objects support these behaviors, which I
discuss in this section.

Encapsulation is key. An object must contain all the data that it needs to accomplish its
mission (such as maintaining employee data). It must take responsibility for its mission and
not allow any other processes to directly affect its data. Instead, it must expose properties,
methods, and events to accomplish its goal.

Polymorphism is using the same interface for different objects. For instance, an MS Word
document exposes functionality to send a document to the printer using the Print interface
(or method). Excel exposes functionality using the same interface to send a chart to a plotter:
Chart.Print. Assume you create two classes—one to manipulate text files and one to draw
images. Each might have a PrintIt method, as shown next:

' In the text class
Public Sub PrintIt (Place As Form)
Dim sText As String
' Code to read the file
Place.Print sText
End Sub

' In the draw class
Public Sub PrintIt (Place As Form)
Place.Line Step(x1, y1) -Step (x2,y2)
End Sub

A form module can then use the common interface in a polymorphic manner:

Dm myClass As className
myClass.PrintIt Me

The previous example illustrates polymorphism using a process known as late binding. This
means that the compiler cannot know which object is being referenced when the PrintMe
method is invoked, so it must resolve it at runtime instead of at compilation. Under a
different scenario, you could implement polymorphism using early binding. The following
lines of code implement a generic Graphics class:

' In the graphics class
Public Sub PrintIt (Target As Form)
End Sub

Next, you can borrow the interface provided by the Graphics class to create the Text and
Draw classes:

' In the text class
Implements Graphics

Private Sub Graphics_PrintIt(Target As Form)
 Dim sText As String
 ' Code to read the file
 Target.Print sText End Sub

' In the draw class
Implements Graphics
Private Sub Graphics_PrintIt(Target As Form)
 Target.Line Step(x1, y1)-Step(x2,y2)
End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The code uses the Implements keyword, which passes to the Text and Draw classes
all of the interfaces of the Graphics class. The advantage comes when you seek to
print something on the form, as shown in the next example:

Private Sub PrintOnForm (myObject As Graphics)
 myObject.PrintIt Me
End Sub

To use this code, you pass it the name of the class whose PrintIt method you want to
use. Visual Basic is now able to verify the code, perform type checking, and so on at
compilation time.

The Implements keyword is also used to apply Visual Basic’s admittedly weak
implementation of inheritance. The Text and Draw classes inherited all of the
interfaces of the Graphics class. (The flip side is that they are then required to
implement all of those interfaces.) Further, you can customize each class to add its
own needed behaviors. You did that previously by changing the definition of the
PrintIt method. You could have also added other, object-specific interfaces. This
process of customization is called abstraction. Abstraction allows you to take
advantage of common features in objects and ignore the differences. It allows you to
borrow from an existing class, as you did with Graphics, and customize it as needed.
You do that every time you place a control on a form. For instance, if you place three
textbox controls on a form, you might make one of them a multiline textbox and
ignore that interface (the Multiline property) with the other two.

Visual Basic does a fair job of simulating inheritance and multiple inheritance
(inheriting from two or more objects to create a new object), using techniques known
as delegation and containment. You are probably already familiar with containment;
it states that an object can contain another object. For instance, instead of using the
Implements keyword, the Text class might have declared a reference to the
Graphics class. Delegation allows you to delegate a function to another object
instead of doing it yourself. (Some call this laziness.)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The next example modifies the PrintIt method of the Graphics class to draw a line
on a form. The Text and the Draw classes each contain the Graphics class. The
Draw class delegates to Graphics the responsibility to draw a line. The Text class
overrides this behavior with its own routine. Any object can still call any of these
objects in a polymorphic manner, although the ability to do early binding is now
gone.

' Graphics class
Public Sub PrintIt (Target As Form)
 Target.Line Step(x1, y1) -Step (x2,y2)
End Sub

' In the text class
Private myGraphics As New Graphics
Public Sub DoPrintIt (Target As Form)
 Dim sText As String
 ' Code to read the file
 Target.Print sText
End Sub

' In the draw class
Private myGraphics As New Graphics
Public Sub DoPrintIt (Target As Form)
 myGraphics.PrintIt Target
End Sub

Obviously, any object can contain any number of other objects. This process is called
aggregation.

The Business Object

In this section, I create an initial model of an object to maintain employee records.
Of necessity, the examples provided in the earlier section were oversimplified. In
particular, I seek to exploit Visual Basic’s newfound ability to create data-aware
classes. I first create a simple class module, which will act as the data source in the
project shown running in Figure 10.3. Then, I convert the class into an ActiveX
server and run it on a remote machine, connecting to it over the network.

Figure 10.3 An MDI application using a data consumer class module as the data
source of the employee maintenance forms.

Creating The Business Object

The application that I create is on the enclosed CD-ROM as EmpCLS-Demo.VBP. It
includes four forms, a standard module, and a class module. You can generate the
application with the Application Wizard, if you want, but I have added more

javascript:displayWindow('images/10-03.jpg',660,451)
javascript:displayWindow('images/10-03.jpg',660,451)

capabilities here not generated by the Application Wizard. (As shown in Figure 10.3,
it is also somewhat less complex.)

The class module is named clsEmpDemo. It declares a number of module-level
variables as shown:

Private WithEvents arsEmp As Recordset
Private WithEvents acon As Connection
Public Event MoveComplete()
Public Event rsUpdateComplete(pError As Error, _
 bSuccess As Boolean, ars As Recordset)

The variables are all declared as private, but the two events are declared as public
(which is the default).

Connecting To The Data Source

The class module normally has only two events: Initialize and Terminate. Because I
have defined the DataSourceBehavior property to be vbDataSource, a
GetDataMember event is also defined.

The Initialize event is shown next. It performs a connection to the database and then
adds an item to the DataMembers collection.

' Connect to the database

Set acon = New Connection
acon.CursorLocation = adUseClient
acon.Open "PROVIDER=MSDASQL;dsn=Coriolis VB Example;" & _
 "uid=coriolis;pwd=coriolis;"
Set arsEmp = New Recordset
arsEmp.Open "select * from employee Order by emp_no", _
 acon, adOpenStatic, adLockOptimistic
' This gives a control something to bind to
DataMembers.Add "EmpPrimary"

A DataMember represents a data source for a data consumer, such as a data-aware
control. In essence, it creates a qualifier to the DataSource property of a data-aware
control. To bind to this class, data-aware controls need their DataSource property
set to the class (clsEmpDemo) and their DataMember property to the string added
by the class (EmpPrimary).

A data provider can provide different data streams, which are identified by the
DataMember property. When a DataMember is added to the DataMembers
collection, the GetDataMember event is triggered. It is here that you associate the
actual data source (the Recordset) with the DataMember as shown:

Private Sub Class_GetDataMember(DataMember As String, _
 Data As Object)
 Select Case DataMember
 Case "EmpPrimary"
 Set Data = arsEmp

 End Select
End Sub

I will show you the mechanics of how this event is called when I show you how to
“connect” your form to the clsEmpDemo object.

Exposing The Business Object

I provided a couple of publicly available properties so that the calling object can be
aware of whether the Recordset is in edit mode and what the specific edit mode is:

Public Property Get EditingRecord() As Boolean
 EditingRecord = (arsEmp.EditMode <> adEditNone)
End Property
Public Property Get EditMode() As Long
 EditMode = arsEmp.EditMode
End Property

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Remote Data Validation

The class contains all the code necessary to manipulate the data. Space limitations preclude
listing the entire module. (You can examine the code on the CD-ROM in the file
clsEmpDemo.cls.) Listing 10.1 illustrates some basic data validation steps. The first is an
evaluation of the reason that the event was triggered. For example, if the user attempts to
close the window before saving any changes, the WillChangeRecord event is called with an
adReason of adRsnClose. The user is prompted to save his or her changes.

NOTE
In my beta copy of Visual Basic, the adRsnClose code was not being passed. I developed an
alternative workaround in the form code itself in the UnLoad event, which you can examine
on the CD.

Later in Listing 10.1, I evaluate the current EditMode. If the mode is delete, for instance, I do
not bother to validate the data. If a record is being changed, then I perform some basic
validations. (Some validating is done on the database via constraints, as discussed in Chapter
2.) Any data validation errors cause a message to be displayed, listing all the problems, as
shown in Figure 10.4. The update is then canceled.

Listing 10.1 Data validation in the empCLSDemo object.

Private Sub arsEmp_WillChangeRecord(ByVal adReason _
 As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
 ' This is where you put validation code
Dim bCancel As Boolean
Dim iEmpNo As Integer
Dim iCtr As Integer
Dim sMsg As String
Dim arsEmpNo As Recordset

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

sMsg = "The following errors were encountered:" & vbCr

' Why did event trigger?
Select Case adReason
 Case adRsnClose
 ' Prompt to save changes
 Select Case MsgBox("Save Changes before closing?", _
 vbYesNoCancel + vbQuestion)
 Case vbNo
 arsEmp.CancelUpdate
 Case vbCancel
 adStatus = adStatusCancel
 Exit Sub
 Case vbYes
 ' Need to validate data
 End Select
 ' Other reasons
 Case adRsnUpdate
 ' Some reasons omitted for space
 Case adRsnUndoUpdate
End Select

Select Case arsEmp.EditMode
 Case adEditDelete
 ' No need to edit data we are deleting
 Exit Sub
 Case adEditNone
 ' No need to validate
 Exit Sub
End Select

' Validate remainder of data
With arsEmp
 If !emp_DOB > Now Then
 sMsg = sMsg & "Invalid date of birth" & vbCr
 bCancel = True
 End If
 If (!emp_hire_date < !emp_DOB) Or (!emp_hire_date > Now)
Then
 sMsg = sMsg & "Invalid hire date" & vbCr
 bCancel = True
 End If
 If !emp_salary < 0 Then
 sMsg = sMsg & "Salary cannot be less than 0" & vbCr
 bCancel = True
 End If
End With

If bCancel Then
 MsgBox sMsg
 adStatus = adStatusCancel
End If

End Sub

Figure 10.4 Data validation message from the employee class.

Data Handling In The Business Object

The basic data handling is typical of any ADO-based application except that the code lies
encapsulated in the class module. To keep any calling objects apprised of what is going on,
the module creates publicly viewable events and raises them as necessary. I show next the
arsEmp_MoveComplete event raised by ADO within the class module. Because it is private,
the form that is using the class module as a data source cannot know when a move is
complete, so the event procedure raises the publicly viewable MoveComplete event.

Private Sub arsEmp_MoveComplete(ByVal adReason As _
 ADODB.EventReasonEnum, ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, ByVal pRecordset _
 As ADODB.Recordset)
RaiseEvent MoveComplete
End Sub

Similarly, I added an event to the class module to allow calling objects to be aware of the
completion of any update operations. Within the arsEmp_RecordsetChangeComplete
event, I raise the rsUpdateComplete event.

Private Sub arsEmp_RecordsetChangeComplete(ByVal adReason As _
 ADODB.EventReasonEnum, ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, ByVal pRecordset As _
 ADODB.Recordset)
Dim bSuccess As Boolean
If adStatus = adStatusOK Then
 bSuccess = True
End If
 RaiseEvent rsUpdateComplete(pError, bSuccess, pRecordset)
End Sub

NOTE
For illustrative purposes, I pass back some of the arguments received by the internal event.
Normally, you do not need to nor should you pass this type of information (specifically, the
Error and Recordset objects) back to the calling object. Exposing these objects outside of the
class module defeats the purpose of encapsulation and ends up promoting code redundancy;
any code that needs to handle these objects should exist within the class module itself and
nowhere else.

Accessing The Business Object

To access the interfaces of the class module, you must declare a reference to the module. I
used a form, frmEmpClsDemo, to display the data. The form’s module-level declarations are
shown next:

javascript:displayWindow('images/10-04.jpg',552,421)
javascript:displayWindow('images/10-04.jpg',552,421)

Private WithEvents empCLSDemo As clsEmpDemo
Private bChangedByCode As Boolean
Private bBookMark As Variant
Private bEditFlag As Boolean
Private bAddNewFlag As Boolean
Private bDataChanged As Boolean

The class module is declared using the WithEvents clause, which then enables the form to
“see” any publicly declared events.

As shown in Figure 10.2, the events of the class then become available within the code editor.
Next, I show you the usage of two of those events:

Private Sub empCLSDemo_rsUpdateComplete(pError _
 As ADODB.Error, bSuccess As Boolean, ars As
ADODB.Recordset)
Dim sMsg As String
If bSuccess Then
Else
 Dim vError As Error
 For Each vError In pError
 sMsg = "An error has occurred: " & vbCr & _
 "Err Number: " & pError.Number & vbCr & _
 pError.Description
 Next
End If

End Sub

Private Sub empCLSDemo_MoveComplete()
 lblStatus.Caption = "Record: " & _
 CStr(empCLSDemo.AbsolutePosition)
End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

In the empCLSDemo_rsUpdateComplete event, I examine the status
(bSuccess) returned by the class and, if there was an error, I iterate through the
Errors collection. As noted earlier, I don’t actually encourage you to do this in
the calling form—rather, it should be done in the class module itself. I show it
here to illustrate the passing of objects from one module to another and, later
in this chapter, across process boundaries.

The empCLSDemo_MoveComplete event is a little more typical. Here, I
simply update the lblStatus control’s Caption property with the current record
number. Notice the reference to the AbsolutePosition property of the
empCLSDemo object. To “see” the current record number, I had to expose the
Recordset object’s AbsolutePosition property with a Property Get
statement:

Public Property Get AbsolutePosition() As Long
 AbsolutePosition = arsEmp.AbsolutePosition
End Property

While writing this book, I hoped that some issues would be resolved by the
time the production release of Visual Basic 6 was shipped. An interesting
problem that I had was in the empCLSDemo_MoveComplete event. I wanted
to display the current employee’s name on the form’s caption:

Me.Caption = txtFields(1) & ", " & txtFields(2)

Although the textbox controls displayed the correct information, I received the
data from the previous record if I referenced their Text properties in this event.
The reason for this discrepancy is interesting if you step through the code.
When you click the Next button on the form, the following sequence of code is
executed:

1. The cmdNext_Click event on the form (which I show next) is

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

triggered. In that event, I invoke the MoveNext method of the
empCLSDemo object:

 Private Sub cmdNext_Click()
 On Error GoTo GoNextError
 empCLSDemo.MoveNext
 Exit Sub
 GoNextError:
 MsgBox Err.Description
 End Sub

2. The object’s MoveNext event is called while cmdNext_Click is still
executing. This event from the empCLSDemo object is shown next:

 Public Sub MoveNext()
 If Not arsEmp.EOF Then
 arsEmp.MoveNext
 End If
 If arsEmp.EOF And arsEmp.RecordCount > 0 Then
 Beep
 ' Moved off the end, so go back
 arsEmp.MoveLast
 End If
 End Sub

3. As soon as the MoveNext method is executed, the
arsEmp_MoveComplete event is triggered. As shown in Figure 10.5,
the Recordset has indeed moved to a new record. The emp_LName
Field object’s value is Wesley, but the textbox control bound to this
Field still reflects the value from the prior record: Benson. In fact, as
shown in Figure 10.6, this is still the case; as the form is notified that the
move is complete, the two values are not yet in sync.

Figure 10.5 The bound controls’ values are not in sync with the
Recordset when the Recordset object’s Move-Complete event is
triggered.

Figure 10.6 Even when the form is “notified” that the move is
completed, the bound controls and the Recordset are still out of sync.

4. In the arsEvent_MoveComplete, the class object’s MoveComplete
event is raised. Processing control returns to the form momentarily and
where the AbsolutePosition property is accessed so that the record
count can be displayed. Once this is finished, control finally returns to
the MoveNext event, and as soon as it does, Visual Basic syncs up the
values in the bound controls to the values in the Recordset. The result is
shown in Figure 10.7.

javascript:displayWindow('images/10-05.jpg',798,220)
javascript:displayWindow('images/10-05.jpg',798,220)
javascript:displayWindow('images/10-06.jpg',813,295)
javascript:displayWindow('images/10-06.jpg',813,295)

Figure 10.7 The bound controls are finally in sync with the Recordset
when control is returned to the MoveNext event.

What this process suggests, really, is that the notification to the form that the
move is complete is a little premature. A better place to put the notification is
in the MoveNext method. Unfortunately, that choice itself creates some
problems because the code is somewhat redundant. (The notification would
also have to be placed in the MoveFirst, MoveLast, and MovePrevious
methods.) What I ended up doing to solve this problem is create a new
publicly viewable property within the class module, as shown next, which
returns a formatted string containing the last and first names of the employee
in the current record of the Recordset.

Public Property Get empName()
empName = Trim(arsEmp("emp_lname")) & ", " _
 & arsEmp("emp_fname")
If empName = ", " Then
 empName = "New Record"
End If
End Property

The reason for the test to see if empName is equal to a comma is to check
whether the application is currently processing a new record. In the form
module, I altered the event procedure that displays the current record number:

Private Sub empCLSDemo_MoveComplete()
lblStatus.Caption = "Record: " & _
 CStr(empCLSDemo.AbsolutePosition)
' Display the customer name on the caption
Me.Caption = empCLSDemo.empName
End Sub

The lblStatus control and the form’s Caption property are updated to reflect
the current record number and employee name even before the bound control’s
are updated, as shown in Figure 10.8. I single-stepped through the code in
debug mode and took this screen shot immediately after the form’s
MoveComplete event completed. The textboxes have not yet been updated to
reflect the current Recordset object’s information, although the label control
and the form’s caption have been updated.

Figure 10.8 The textboxes are not yet updated immediately after the form’s
MoveComplete event fires.

javascript:displayWindow('images/10-07.jpg',722,334)
javascript:displayWindow('images/10-07.jpg',722,334)
javascript:displayWindow('images/10-08.jpg',554,424)
javascript:displayWindow('images/10-08.jpg',554,424)

Why go to all this trouble? Figure 10.9 shows the application with some
embellishment. I added a Window menu that shows the four currently opened
forms, all of which are instances of the employee maintenance form. In an
MDI application, the operator might open many instances of different forms,
and this menu provides a quick way to locate a specific instance.
(Programmatically, you can update the form’s Tag property with the name of
the employee as a way to distinguish different instances of each form.) This is,
of course, similar to the way you probably negotiate the many open windows
in your own Visual Basic IDE.

Figure 10.9 The application has a Window menu item, allowing the operator
to quickly locate a specific form among many.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/10-09.jpg',761,472)
javascript:displayWindow('images/10-09.jpg',761,472)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Binding Controls To The Business Object

To bind the controls to the class module, I set their DataField properties to the
names of the columns in the database. As shown in Figure 10.10, however, I
left the DataSource property blank. In development mode, Visual Basic has
no way of knowing that the class module will be a data provider as it does
when a Data control is placed directly on the form. The association of the
controls to the data provider has to occur when the form is instantiated:

Private Sub Form_Load()
Set empCLSDemo = New clsEmpDemo
Dim oText As TextBox
' Bind the textboxes to the data provider
For Each oText In Me.txtFields
 oText.DataMember = "EmpPrimary"
 Set oText.DataSource = empCLSDemo
 oText.Visible = True
Next
SetEdit False
End Sub

Figure 10.10 I set the control’s DataField property but left DataSource and
DataMember blank.

The DataMember property is set to the value of the object added to the
DataMembers collection in the empCLSDemo object’s Initialize event.
Then, each control’s DataSource property is set equal to the empCLSDemo

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-10.jpg',800,576)
javascript:displayWindow('images/10-10.jpg',800,576)

object. In a sense, the class module becomes a reusable data control—except
that it has no visible components. It provides no buttons to scroll through
records and so on. I added the command buttons that you can see in the figures
showing the running application. These buttons all invoke methods of the
empCLSDemo object, such as MoveNext and Update.

The SetEdit False line of code from the previous example calls a procedure
that unlocks all but the employee ID textboxes for editing. It also disables
some of the command buttons.

Relocating The Business Object

Class modules are powerful weapons in the Visual Basic developer’s arsenal.
Space limitations prevent me from exploring every facet of the object-oriented
potential of the class module. However, a key strength is the ability to compile
the class module into an ActiveX server component. When that is done, the
component can literally exist almost anywhere on the network and serve as a
data provider for multiple clients. The advantages of this approach are
numerous. I discussed many of them in Chapter 1 in the discussion of the
Microsoft services model. The goal of the services model is partitioning the
application into three (and sometimes more) tiers. (The word “layer” comes to
mind when discussing tiers; Microsoft actually avoids using the word layer,
preferring the term partition or tier.) The client tier is that piece of the
application that runs on the client PC—typically the user interface. The
business tier contains the business logic and typically handles communications
with the database. The data tier is the data source itself.

Before moving further, you need to understand some basic concepts:

• Persistence refers to whether an object’s state is saved between
invocations. Persistent objects “remember” their settings, such as the
values of properties, by saving them to disk. This has advantages,
particularly with remote objects, by eliminating the need to set many
properties and thus reducing the number of calls to the object. Objects
that aren’t persistent—nonpersistent objects—have the advantage of
being simpler to design and implement and are advantageous when there
is no need to set properties.

• Stateless is a term often used in describing a remote object whose
properties are set by calling methods of the object instead of the more
traditional object.property syntax. As I will discuss in more detail, by
calling methods that set multiple properties at once, you can minimize
the number of cross-process calls.

• Process boundary refers to the way that the operating system
segregates separate processes, where a process refers to an application,
DLL, and so on. For purposes of this discussion, a process is more akin
to a separate program, such as Microsoft Word. The concept of process
boundaries has implications in cross-process components.

Modeling Your Application

With the Enterprise edition of Visual Basic, Microsoft bundles a tool called
Visual Modeler. The tool is also integrated into Visual Studio. With this tool,
you can model an application from scratch or reverse-engineer an existing
application. Either way, the result is a graphical model built using a subset of
Unified Modeling Language (UML), which shows all of the objects in your
application and how they connect. The model can be viewed as a logical
(business) model or a physical (component) model. Once the application is
modeled, you can even generate Visual Basic or Visual C++ source code
from the model. Figure 10.11 shows the Employee Class Demo application
being modeled by Visual Modeler.

Figure 10.11 The Employee Class Demo project reverse-engineered into
Visual Modeler.

The learning curve with Visual Modeler is fairly stiff; entire books can be
written about its use. However, the benefit from learning the tool is worth the
time invested, particularly for multitiered applications.

• A cross-process component is an executable program that makes its
services available to other programs. It runs in its own process space.
Using DCOM, two separate processes can communicate and share
objects. Calls to a cross-process component can be expensive in terms of
computer resources. The operating system (Windows) goes to a lot of
trouble to keep processes separate—running in their own address
spaces. Keeping processes discrete promotes the stability of the
operating system because the two programs cannot clobber each other
with errant calls. On the other hand, a significant amount of overhead is
required to ask the operating system to make calls to other processes.

• An in-process component runs in the same address space as the
application and is typically a DLL. Running a component as an
in-process component saves a lot of overhead but means that the
component cannot be shared with other processes.

• A remote component runs on another machine on the network. This
model exacts a toll in performance because it is not only cross-process,
but it also involves network traffic. On the other hand, the component
runs on an entirely separate CPU from the application that is using it,
which may offset—perhaps by a lot—the overhead incurred in
communicating with it.

• With components, the application program or component that is
calling or using the properties, methods, and events of another
component is called the client. The component whose services are being
utilized is called the server or, more accurately, the ActiveX server.

javascript:displayWindow('images/10-11.jpg',1024,744)
javascript:displayWindow('images/10-11.jpg',1024,744)

Optimizing Cross-Process Calls

As noted in the text, using cross-process calls to or between objects is
inefficient. It is not possible to entirely eliminate cross-process calls, but you
can take steps to reduce their impact on performance:

• If you need to set a number of properties at one time, consider
creating a method where the properties are arguments to the method.

• Minimize or eliminate late binding. Early binding can reduce the
overhead of making cross-procedure calls by 50 percent. To force
early binding, use explicit Set or Dim statements.

• Minimize the use of nested object notation. For instance, assume
object_a contains a reference to object_b. Instead of coding
object_a.object_b.property = value, use Set to create an explicit
reference to object_b: Set myVar = object_a.object_b. Then, you
can utilize it directly: myvar.property = value. Nested object
references are time-consuming for Visual Basic to resolve.

• Use the With…End With construct to minimize the number of
times Visual Basic has to resolve nested objects.

• Marshalling is the method used to invoke the methods and properties
of an out-of-process component. With in-process components, you can
use the client’s stack space to make the calls. With out-of-process
components—that is, when crossing process boundaries—the proxy on
the client “gathers” together parameters to be passed to the
out-of-process component and sends them to a stub on the server
component. Counter-intuitively, you are better off passing parameters
ByVal than you are ByRef. With an in-process call, most VB
developers use ByRef because it involves passing only a pointer to a
value or object (as opposed to sending a copy of, say, a 2,000-byte
string); however, when making cross-process boundary calls, passing
ByRef works against you. The other object needs to then make a call
back to the client to get the value of the parameter, meaning that
parameters sent ByRef cause the process boundaries to be crossed twice
instead of once.

• The concept of a thread is similar to the concept of a process. A
thread is a separate line of communication within a process—almost like
a process within a process. For instance, Windows 98 runs 32-bit apps
as separate threads within the Windows Virtual Machine. (NT runs all
applications as separate threads.) Threads are normally protected from
each other. You can create an ActiveX server that has separate threads
for each client communicating with it.

• Apartment model threading is illustrated by a house with separate
apartments. Each thread lives in its own apartment, oblivious to what is
going on in other apartments. This means that each thread has, for
instance, its own copy of global data. This setup is actually the default
when creating ActiveX components. Even if the component has a single
thread, it resides in its own apartment. You set threading options in the
Project Properties dialog box. See “Apartment-Model Threading in
Visual Basic” in the Visual Basic Help file for some more details on

options and trade-offs with different approaches.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Creating The In-Process Component

To illustrate the process of separating the user interface services from the
business services of the Employee Class Demo project, I separated the
clsEmpDemo.cls module from the rest of the Visual Basic project. I created a
new project, and when asked for project type, I specified ActiveX DLL. The
DLL will run in the same space as the client application. I removed the default
class module that Visual Basic creates and added the saved clsEmpDemo
module.

Depending on the type of project you create, the class module will have
different properties available. Because this module will be an ActiveX
component, the Instancing property becomes available. Instancing refers to
how and under what conditions objects may be created from the class. The
possible values are shown next:

• Private means that no object may access the properties and methods
of the class—which is useful only for other objects within the same
component.

• PublicNotCreateable means that any other process can access the
class but cannot actually create an instance of the class. This is only
appropriate for ActiveX EXEs, and it means that the server application
(the ActiveX EXE) must already be running for other processes to use
objects from it.

• MultiUse means that multiple processes can create objects from one
instance of the component. For an ActiveX EXE, objects can be
supplied to multiple clients. For an ActiveX DLL, the component can
provide multiple objects—but only to the one client.

• GlobalMultiUse is the same as MultiUse except that you do not have
to explicitly declare an instance of the class; it happens automatically as
soon as any method or property of the class is referenced.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• SingleUse allows any object to create objects from the class, but each
object created causes a new instance of the class to be created.

• GlobalSingleUse is the same as SingleUse except that any reference
to a property or method of the class causes the class to be instantiated
without first explicitly creating it. Because both SingleUse and
GlobalSingleUse allow multiple instances of the same process on a
computer, you cannot use the values for an ActiveX DLL.

I set the Instancing property to MultiUse.

The Persistable property sets whether the component can be persisted as
discussed previously. The possible values are NotPersistable and Persistable.

A new property is the MTSTransactionMode, which specifies the level of
support the component provides for Microsoft Transaction Server (MTS).
Other possible values, if you are placing objects on MTS, are
NoTransactions, RequiresTransactions, UsesTransactions, and
RequiresNewTransaction.

You really don’t need to do anything else to the class project except compile it.
When you do, the resulting DLL is registered as an ActiveX component, which
you can use much like any other ActiveX component. I compiled my project as
AXClsEmpDemo.DLL. I typed “Coriolis ActiveX DLL Emp Example” into
the Project Description area of the Project Properties dialog box.

Using The In-Process Component

To use the AXClsEmpDemo.DLL component, I had to add a reference to it in
my original form-based project. I actually created a new project of type
Standard EXE and added the frmClsEmpDemo form to it. I then saved that
form as frmClsEmpDemoAX. Next, I went to the Project References dialog
and added the “Coriolis ActiveX DLL Emp Example” component that I
created in the last section. Notice in Figure 10.12 that in the References dialog,
the project description is used (and, if it’s not entered, the project name is
used), whereas in the object browser, the project name is used. Notice also that
the class looks like any other component in the browser because it is like any
other component.

Figure 10.12 Referencing the in-process component in the application.

The only other changes to the application were slight modifications in the
reference to the object (mainly because I renamed it when I created a
component from it):

Private WithEvents empCLSDemo As clsEmpDemoAX

At this point, you can run the application as before. If you need to debug it,
you do not have access to the code internal to the component unless you first

javascript:displayWindow('images/10-12.jpg',800,575)
javascript:displayWindow('images/10-12.jpg',800,575)

start it in a separate instance of Visual Basic itself.

Figure 10.13 shows the running application.

Figure 10.13 This form is using an in-process component (ActiveX server) as
its data source.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/10-13.jpg',800,600)
javascript:displayWindow('images/10-13.jpg',800,600)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Creating The Remote Business Object

In Chapters 12 through 15, I guide you through the process of creating remote
objects hosted on the Internet (or your corporate intranet). The principles of the
remote business object are not much different from those for a business object
running locally. Remote business objects offer the advantages of code reuse,
encapsulation, and application partitioning. Additionally, they can be shared by
multiple clients, take advantage of the server’s presumably greater resources, and
more effectively manage connections to the database.

For purposes of this chapter, I built a flexible data inquiry application, shown
running in Figure 10.14. Running behind the scenes is another application, a
remote data server. Let’s examine the remote server first.

Figure 10.14 The Remote Server demo is running on a Windows 98 client
connected to a Windows NT 4.0 server.

The remote server is adapted from the VBBusObj sample provided with MDAC
and is included on the CD-ROM as VBBusObj.vbp. The guts of the application is
a single class module responsible for communicating with the database. In my
testing, I located and registered the module on an NT 4.0 server. The Instancing
property is set to GlobalMultiUse so that any object need merely reference a
method of the business object to create it. The project’s only reference is to the
Microsoft Active Data Objects Recordset 2.0 library.

I created a Public Function, shown in Listing 10.2. The purpose of the function is
to return to the client the names of all of the columns in a table. I had originally
sought to use the OpenSchema method. However, Visual Basic does not support

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/10-14.jpg',518,356)
javascript:displayWindow('images/10-14.jpg',518,356)

this method remotely, and I was forced to instead open a Recordset. To minimize
database and network traffic, I set the MaxRecords property to 1. Notice the use
of the adOpen-Unspecified and adCmdUnspecified arguments on the Open
method. These arguments refer to the CursorType and Options properties. On a
remote server, these are the only values you are allowed to specify.

Listing 10.2 The GetSchema function.

Public Function GetSchema(ByVal Connect As String, _
 ByVal sName As String) As ADOR.Recordset
 ' This function returns the requested schema
On Error GoTo ehGetRecordset
' ADO must be registered locally!
Dim objADORs As New ADODB.Recordset
objADORs.MaxRecords = 1
objADORs.Open sName, Connect, adOpenUnspecified, _
 adLockBatchOptimistic, adCmdUnspecified
' Set object pointer for ADOR type recordset
Set GetSchema = objADORs
Exit Function
ehGetRecordset:
Err.Raise Err.Number, Err.Source, Err.Description
End Function

The function returns an object of type ADOR.Recordset. The ADOR comes
from the Recordset -only library reference. (In Chapter 7, I discussed the two
ADO libraries—the Microsoft ActiveX Data Objects Recordset 2.0 library
provides only the Recordset and Connection objects as opposed to the Microsoft
ActiveX Data Objects 2.0 library, which provides all ADO objects.) Notice the
use of the Set command to set the function equal to the Recordset returned from
the Open method.

I will show you how this function is used when I illustrate how to create the
client.

The other main function in the remote server application is Get-Recordset, as
shown in Listing 10.3. This function is similar in functionality to the GetSchema
function. Notice that in both functions, all arguments are passed ByVal instead of
ByRef. This eliminates a trip (call) to the server from the client, as I discussed
earlier in the chapter in “Optimizing Cross-Process Calls.” An examination of the
module will show that the object exposes no properties, and the only items passed
from process to process are done so via methods.

Listing 10.3 Function used to return a populated Recordset to the client.

Public Function GetRecordset(ByVal Connect As String, _
 ByVal SQL As String) As ADOR.Recordset
' This function returns an ADODB recordset object
On Error GoTo ehGetRecordset
' ADO must be registered locally
Dim objADORs As New ADODB.Recordset
objADORs.CursorLocation = adUseClientBatch

objADORs.Open SQL, Connect, adOpenUnspecified, _
 adLockBatchOptimistic, adCmdUnspecified
' Set object pointer for ADOR type recordset
Set GetRecordset = objADORs
Exit Function
ehGetRecordset:
 Err.Raise Err.Number, Err.Source, Err.Description
End Function

The remote server provides a Test method so those clients can quickly ascertain
whether they are establishing contact with the server:

Public Function Test() As String
Test = "You are being heard!"
End Function

Although not illustrated here, the remote server also has several other methods,
including one to return the machine name and one to execute action queries.

The remote server application was built and compiled as an ActiveX EXE. Once
compiled, it is registered as an ActiveX component. You need to deploy it on the
target server and register it there and then re-register it at the client machine so
that the client can find it on the network.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Using The Remote Business Object

The RemoteSrvrClient application, also included on the CD-ROM, consists of four
forms:

• frmSrvLogIn is used to pass a connection string, a user ID, a password, and a
server address to the rest of the application. If you are running the remote server on
your local machine, you can leave the server address blank.

• mdiRemote is an MDI form that acts as a shell to the rest of the application.

• frmClsSrvEmp is a form that displays employee data.

• frmGeneral is a form that is built on-the-fly to display whatever data the user
chooses.

The project has a single standard module, which contains most of the common code.

The application references four libraries: OLE Automation, vbBusObj (which is the
remote server component), Microsoft ActiveX Data Objects Recordset 2.0 library, and
the Microsoft Remote Data Services 2.0 library. The last one is the critical piece,
enabling communications over the network.

NOTE
The application allows you to connect to any database via any data provider. However,
because the menu itself is hard-coded, you would have to dynamically alter the menu
Caption properties to access other tables.

The forms that display data have these module-level references:

Private ds As New RDS.DataSpace
Private bo As Object
Private objadors As Object

The ds object comes from the Remote Data Services library. bo and objadors are both

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

defined as generic objects, meaning that they will be late bound.

When the application is running, the user can select the Data menu. It has two choices:
PreBuilt and On The Fly. Both lead to cascading menus. The PreBuilt menu has only one
choice, Employee, which creates a form hard-coded to display employee data. The other
cascading menu lists all of the tables in the database by name.

If a user clicks, for example, the Customer menu choice, the code shown next is invoked:

Private Sub mnuDataRec_Click(index As Integer)
Dim f As New frmGeneral
Screen.MousePointer = vbHourglass
BldForm f, mnuDataRec(index).Caption
f.txtGetRecordset = "SELECT * FROM " & f.Tag
Screen.MousePointer = vbDefault
End Sub

A new instance of form frmGeneral is created, and a procedure, BldForm, is then
called, passing the form and the menu item’s Caption property as arguments. The latter
contains the name of the table that will be accessed.

The BldForm procedure is in the standard module because the frmClsSrvEmp form also
uses it. It is shown in Listing 10.4. The procedure creates a basic SELECT statement
based on the table name passed to it. It then creates an instance of the remote server
component using the CreateObject function, passing it the name of the component and
the name of the server. Notice that CreateObject is a method of the ds object. Once a
reference is obtained by the server and stored in bo, a Recordset is created using the
GetSchema method I discussed earlier. Most of the code is spent building the form. The
table names are stored in the form’s Tag property for later use. The DataField property
of each textbox on the form is set to the name of each Field object returned in the
Recordset. The textbox is then made visible (the form is built with all of the textboxes
invisible). Finally, the form is resized to show only the used textbox controls.

Listing 10.4 The procedure to dynamically generate a data form.

Public Sub BldForm(f As Form, tname As String)
Dim iIndex As Integer
Dim sCmd As String
sCmd = "Select * from " & tname
Set bo = ds.CreateObject("VbBusObj.VbBusObjCls", sServer)
Set objadors = bo.GetSchema(sConnect, sCmd)
With f
 .Tag = tname
 .Caption = tname
 For iIndex = 0 To objadors.Fields.Count - 1
 .lblField(iIndex).Caption = objadors.Fields(iIndex).Name
 .lblField(iIndex).Visible = True
 .txtFields(iIndex).Text = objadors.Fields(iIndex).Name
 .txtFields(iIndex).Visible = True
 .txtFields(iIndex).DataField =
objadors.Fields(iIndex).Name
 Next

 .Height = (iIndex * 360) + 1850
 .Show
End With
End Sub

Note that a more elegant solution is to create the textboxes as needed. I chose this
approach for simplicity, although it limits the number of columns that can be displayed.

When the procedure completes, the form is shown with all of the Text properties set
equal to the names of the table’s columns. A textbox on the form is set equal to a basic
SQL statement, such as SELECT * FROM CUSTOMER. The user can change the
statement if he or she wants. Pressing the Run command button or any of the scroll
buttons will cause the form to fill up with data, which is done with the code shown in
Listing 10.5. The key line of code is the call to GetRecordset, which is in the standard
module.

Listing 10.5 This procedure populates the form with data.

Private Sub cmdGetRecordset_Click()
Dim oText As TextBox

' Populate form with data from Recordset
On Error GoTo ehcmdGetRecordset_Click
MousePointer = vbHourglass
If Trim(txtGetRecordset) <> "" Then
 Set objadors = GetRecordset(txtGetRecordset.Text, Me)
Else
 Set objadors = GetRecordset(Tag, Me)
End If
For Each oText In Me.txtFields
 oText = ""
Next
If objadors.RecordCount > 0 Then
 bData = True
Else
 bData = False
End If
ShowData Me, objadors
MousePointer = vbNormal
Exit Sub
ehcmdGetRecordset_Click:
 MousePointer = vbNormal
 MsgBox Err.Description
 bData = False
End Sub

GetRecordset is shown in Listing 10.6. It is similar to the GetSchema method illustrated
earlier.

Listing 10.6 The procedure to retrieve the Recordset from the remote server.

Public Function GetRecordset(tname As String, f As Form) _

 As Recordset
Dim sCmd As String
On Error GoTo errHandler
If InStr(1, Trim(tname), " ") = 0 Then
 sCmd = "Select * From " & tname
Else
 sCmd = tname
End If
Set bo = ds.CreateObject(sObj, sServer)
Set objadors = bo.GetRecordset(sConnect, sCmd)
Set GetRecordset = objadors
Exit Function
errHandler:
 Screen.MousePointer = vbNormal
 MsgBox Err.Description
 bData = False
End Function

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

When control returns to the form, the ShowData method is invoked from the
standard module, as shown in Listing 10.7. It essentially moves through each
textbox in the txtFields array and compares its DataField property to get the
Value of the corresponding Field object and displays it. A test is performed to
detect and handle the case where the value is Null, and the error handler
checks for the case where the DataField has no corresponding Field object.
The lblStatus control is updated to show the record number, and the form’s
Caption property is updated to show the form’s current contents.

Listing 10.7 The ShowData procedure is called repeatedly to display data on
the form passed.

Public Sub ShowData(f As Form, objadors As Recordset)
Dim oText As TextBox
Dim bOkay As Boolean
bOkay = True
If objadors.RecordCount > 0 Then bData = True
If bData = False Then Exit Sub
On Error GoTo errHandler

For Each oText In f.txtFields
 If IsNull(objadors.Fields(oText.DataField)) Then
 oText.Text = ""
 Else
 oText.Text = objadors.Fields(oText.DataField)
 End If
 If bOkay = False Then
 oText.Text = "*Not Found!*"
 bOkay = True
 End If
Next

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

f.lblStatus = "Record " & _
 objadors.AbsolutePosition & _
 " of " & _
 objadors.RecordCount
f.Caption = f.Tag & " - " & f.txtFields(0).Text

Exit Sub
errHandler:
If Err.Number = 3265 Then
 ' Field not found
 bOkay = False
 Resume Next
Else
 MsgBox Err.Description
End If

End Sub

The final code of interest is the mechanism to scroll through the records. The
form has an array of CmdMove buttons. When a button is pressed, a call is
made to the ScrollData procedure in the general module, as shown in Listing
10.8. The form checks whether the Recordset object is equal to Nothing. If it
is, a call is first made to GetRecordset. The ScrollData Sub performs basic
error checking, moves through the referenced Recordset object, and then calls
the ShowData method.

Listing 10.8 This procedure scrolls through the Recordset.

Public Sub scrolldata(f As Form, index As Integer, _
 objadors As Recordset)
If objadors.RecordCount < 1 Then Exit Sub
Select Case index
 Case 0 ' Move first
 objadors.MoveFirst
 Case 1 ' Move previous
 If objadors.AbsolutePosition > 1 Then
 objadors.MovePrevious
 End If
 Case 2 ' Move next
 If objadors.AbsolutePosition < _
 objadors.RecordCount Then
 objadors.MoveNext
 End If
 Case 3 ' Move last
 objadors.MoveLast
End Select
ShowData f, objadors

End Sub

All of the code in both the remote server and the client is built to minimize the
amount of network traffic and also to minimize the number of out-of-process
calls.

Where To Go From Here

What I have attempted to do in this chapter is introduce the business object,
describe how to use the object in Visual Basic applications, and provide some
practical hints on improving component performance. I introduced a simple
but illustrative remote server and client. Chapters 12 through 15 expand and
build on these concepts considerably in Internet- or intranet-based applications.
Internet-based components are not the only tools for building a distributed
client/server application, of course. You can, as shown in this chapter, deploy
the same objects on your NT server just as well as you can deploy them on
MTS, IIS, and so on.

Microsoft has included full-blown client and middle-tier (business-tier)
applications in the MSADC directory (generally found under Program
Files\Common Files\System\MSADC\Samples\Selector), which you can
examine in depth. The remote server component in this chapter was adapted to
some extent from the middle-tier component in the Selector directory.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 11
Visual Basic 6 Advanced Database Topics
Key Topics:

• Data validation and integrity constraints

• Data dictionary

• Stored procedures and triggers

• Generating primary keys

• Transaction and concurrency management

There are two keys to a successful client/server application: database techniques and
component architecture. In terms of component architecture, we seek to maximize
performance and reliability. This is done largely through the creation of reusable objects,
which I introduced in Chapter 10, and the location of those objects, which will be the
subject of the remainder of this book.

In terms of the database, we seek to maximize performance and data integrity. This is
accomplished through intelligent database design, which I discussed in Chapters 2 and 3,
and sensible database handling techniques, which we will concentrate on in this chapter.

One of the edicts of medicine is to “First, do no harm.” The analogy in client/server is to
“First, do not corrupt the data.” Corruption of data involves one or both of two
possibilities: inconsistent data, such as an order without a valid customer; or, incorrect
values stored on a record. The first situation can happen if we update a database by
adding a new order but, for some reason, the customer add fails. The second situation
might occur because two users change the same record at the same time.

I will spend a good amount of time in this chapter discussing data integrity constraints
and differing approaches for accomplishing it. In doing so, I will introduce the concept of

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the data dictionary. I will then lead you through the creation and use of stored procedures
and triggers using data validation as a key objective. I will then spend the remainder of
this chapter discussing the concepts of transaction management and concurrency as well
as a couple other issues that I have found to be troublesome to client/server developers.

Data Validation

Ensuring the integrity of your data is paramount. If your order entry application allows an
order to be placed without a valid customer or an address to have an invalid state, you
stand to lose a lot of money and business. In this section, I will walk you through some of
the issues relating to data validation.

Encoding And Decoding

Certain types of data lend themselves to encoding. Encoding is not encrypting as its name
implies—rather, it is the abbreviation of common values. Consider the Emp_Gender
column on the Employee table. Employees can be female or male. Storing the fully
expanded values wastes space, data entry time, and network traffic utilization. So, it is
more typical to encode the values as F or M. The same is true for many other types of
data, such as state and provinces. You and I know that F means Female and CA means
California. But, the computer doesn’t know that. So, we need to provide a facility to
decode values as well. This process expands the encoded value to its full description.
This is done via one or more lookup tables where we store in one column the encoded
value and in another column the decoded value, as seen next:

St_ID St_Name
MA Massachusetts
MD Maryland
ME Maine

Such lookup tables then become a convenient means to validate data as well, as seen in
this example:

' Note that this would be a very inefficient method to
' validate. You would normally already have a Recordset open
Set arsState = New Recordset
arsState.Open "Select st_name from state where " & _
 "st_ID = '" & txtState.text & "'", acon
If arsState.RecordCount = 0 then
 MsgBox "State Code Invalid!"
 txtState.SetFocus
End If

Referential Integrity

In Chapter 2, I discussed the concept of the referential integrity mechanism and showed
you how to create the DDL necessary to create it. In general, this is the preferred method
because it involves the least usage of network, database, and client resources. Referential
integrity involves the defining of a database integrity constraint, as shown next:

Alter Table Customer
Add Constraint fk_valid_state
Foreign Key (cust_st)
References State (st_id)

This constraint prevents the entry of a state code that is not already on the State table. If
such an entry is made, the database generates an error and refuses to insert or update the
record. That is all well and good where it is feasible.

What if, though, a country code is recorded on the customer record? While MA might be
a valid state code in the US, it is not for Canada. So, you might alter the State table to
have a compound primary key, as shown next:

Create Table State
 (St_Ctry_ID Char(3) Not Null,
 St_ID Char(2) Not Null,
 St_Name VarChar (21),
 Constraint PK_Cntry_St
 Primary Key (St_Ctry_ID, St_ID))

Then, your constraint on the Customer table would look more like this:

Alter Table Customer
Add Constraint fk_valid_ctry_state
Foreign Key (cust_ctry, cust_st)
References State (st_ctry_id, st_id)

In this way, the combination of country and state (or province, as the case may be) is
validated. Of course, that does not mean that the country code entered into the State table
is valid. You might consider having a separate Country table as well:

Create Table Country
 (Ctry_ID Char(3) Not Null,
 Ctry_Name Char(30),
 Constraint PK_Ctry
 Primary Key (Ctry_ID))

And you would add a constraint to the State table as such:

Alter Table State
Add Contrant fk_valid_ctry
Foreign Key (st_ctry_id)
References Country (ctry_id)

You can see where we easily start getting a lot of tables involved, which has the effect of
dragging down database performance. I will talk about that in a moment. But, for the time
being, we also have the problem of those countries that don’t happen to have states. The
Customer table verifies whether the country/state combination is valid via a foreign key
constraint to the State table. The State table validates the country via a foreign key
constraint to the Country table. If the customer happens to be from a country with no
states (or provinces), then the country will not be listed on the State table. There are a

number of solutions.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

You can make the cust_ctry and cust_st columns on the Customer table nullable,
which creates a conditional constraint. A conditional constraint is one where the data
must be valid if present. That solves the problem of a customer legitimately not
having a state or province (perhaps the customer is from Aruba or Bermuda). But, it
does not help to enforce that the country is, in fact, valid. So, we might create a
second foreign key on the Customer table like this:

Alter Table Customer
Add Constraint FK_valid_cust_ctry
Foreign Key (cust_ctry)
References Country (ctry_ID)

Again, this is not enough. Because we have made the cust_ctry column nullable, the
relationship is not automatically enforced. We cannot make cust_st nullable and
leave cust_ctry as NOT NULL. For example, assume the customer is from
Bermuda and that Bermuda’s ctry_id is BER. By leaving cust_ctry as NOT NULL,
the foreign key relationship is no longer conditional. The database would attempt to
find a row on the State table where st_ctry_id = “BER” and st_id is Null. Putting
such a row on the State table for every country would be awkward. But, we can still
trick the database. We can add a constraint on the cust_ctry column to enforce that
the length of the column must be greater than 0. With a value present, the database
then validates the country against the Country table while not validating against the
State table if the state field is not entered. The ending (simplified) CREATE
statements look something like Listing 11.1.

Listing 11.1 SQL CREATE statements with conditional referential integrity.

DROP TABLE COUNTRY ;

CREATE TABLE COUNTRY
 (CTRY_ID CHAR(3) NOT NULL,

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 CTRY_NAME VARCHAR (35) NOT NULL,
 CONSTRAINT PK_CTRY_ID
 PRIMARY KEY (CTRY_ID));

INSERT INTO COUNTRY VALUES
 ('USA','United States') ;
INSERT INTO COUNTRY VALUES
 ('CAN','Canada') ;
INSERT INTO COUNTRY VALUES
 ('BER','Bermuda') ;

DROP TABLE STATE ;

CREATE TABLE STATE
 (ST_ID CHAR(2) NOT NULL,
 ST_CTRY_ID CHAR (3) NOT NULL,
 ST_NAME VARCHAR (21) NOT NULL,
 CONSTRAINT PK_ST_ID
 PRIMARY KEY (ST_ID, ST_CTRY_ID));

ALTER TABLE STATE
ADD CONSTRAINT FK_VALID_CTRY
FOREIGN KEY (ST_CTRY_ID)
REFERENCES COUNTRY (CTRY_ID) ;

INSERT INTO STATE VALUES
 ('MA', 'USA', 'Massachusetts') ;
INSERT INTO STATE VALUES
 ('RI', 'USA', 'Rhode Island') ;
INSERT INTO STATE VALUES
 ('ON', 'CAN', 'Ontario') ;
INSERT INTO STATE VALUES
 ('BC', 'CAN', 'British Columbia') ;

DROP TABLE CUSTOMER ;

CREATE TABLE CUSTOMER
 (CUST_NO NUMERIC (9) DEFAULT AUTOINCREMENT,
 CUST_LNAME CHAR (21),
 CUST_FNAME CHAR (15),
 CUST_ST CHAR (2),
 CUST_CTRY CHAR (3) DEFAULT 'USA' ,
 CUST_TIMESTAMP DATE DEFAULT CURRENT TIMESTAMP,
 CONSTRAINT PK_CUST_NO
 PRIMARY KEY (CUST_NO)) ;

ALTER TABLE CUSTOMER
ADD CONSTRAINT FK_VALID_ST
FOREIGN KEY (CUST_ST, CUST_CTRY)
REFERENCES STATE (ST_ID, ST_CTRY_ID) ;

ALTER TABLE CUSTOMER
ADD CONSTRAINT FK_VALID_CTRY
FOREIGN KEY (CUST_CTRY)
REFERENCES COUNTRY (CTRY_ID) ;

ALTER TABLE CUSTOMER
MODIFY CUST_CTRY
CHECK (CUST_CTRY > ' ') ;

INSERT INTO CUSTOMER
(CUST_LNAME, CUST_FNAME, CUST_ST, CUST_CTRY)
VALUES
('Smith', 'John', 'MA', 'USA') ;

INSERT INTO CUSTOMER
(CUST_LNAME, CUST_FNAME, CUST_ST)
VALUES
('Smith', 'Jane', 'MA') ;

INSERT INTO CUSTOMER
(CUST_LNAME, CUST_FNAME, CUST_ST, CUST_CTRY)
VALUES
('Brown', 'Barbara', NULL, 'BER') ;

INSERT INTO CUSTOMER
(CUST_LNAME, CUST_FNAME, CUST_ST, CUST_CTRY)
VALUES
('Brown', 'Bob', 'BC', 'CAN') ;

Notice in the SQL CREATE statement for the Customer table, I have specified an
AutoIncrement default for the primary key and I have also added a TimeStamp
column. I will discuss those issues later in the chapter.

The Centralized Data Dictionary Lookup Table

Having too many discrete lookup tables begins to make your design look like an
octopus with arms “hanging” off of each master table. If you are displaying data
from a single table, you could easily end up joining four, six, or more lookup tables
as well. The impact on the database is tremendous.

What I have done to get around this problem is to place all my validation data into a
single lookup table with three columns: dd_type (the dd is for data dictionary)
designates the type of lookup, such as state codes or country codes; dd_val is the
encoded value, such as RI for Rhode Island or BER for Bermuda; and dd_desc is
the decoded value (Rhode Island or Bermuda). The SQL CREATE statement
looks something like the following:

CREATE TABLE Data_Dic
 (dd_type CHAR (6) NOT NULL,
 dd_val CHAR (32) NOT NULL,

 dd_desc VARCHAR (64),
 CONSTRAINT PK_LookUp
 Primary Key (dd_type, dd_val))

Some sample data in such a table is shown next:

DD_Type DD_Val DD_Desc
------- ------ -----------------
CC BER Bermuda
CC CAN Canada
CC USA United States
SC AZ Arizona
SC MA Massachusetts
SC RI Rhode Island
VRT CC Country Code
VRT SC State Code
VRT VRT Valid Record Type

The key to the table’s usage is the VRT record, which specifies the valid record
types and what they are used for.

To use the table in a customer listing, code an SQL SELECT statement, something
like the following:

SELECT cust_no AS "Cust No",
 cust_fname AS "First",
 cust_lname As "Last",
 sc.dd_desc As "State",
 cc.dd_desc AS "Country"
FROM customer, data_dic cc, data_dic sc
WHERE cust_st *= sc.dd_val AND sc.dd_type = 'SC'
 AND cust_ctry = cc.dd_val AND cc.dd_type = 'CC'

The query retrieves customer information, including the decoded state and country
values. This particular example uses Transact-SQL dialect to perform a left outer
join. The results are as follows:

Cust No First Last State Country
------- ------ ------ ---------------- ------------
1 John Smith Massachusetts United States
2 Jane Smith Massachusetts United States
3 Barbara Brown (NULL) Bermuda
4 Bob Brown British Columbia Canada

Now, we have placed all of our validation into a single table eliminating the need to
join many tables to perform simple reporting. (We are back in the same boat as we
were before in that the countries and states are not cross-referenced, but I will come
back to that problem in a moment.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Now that we have a convenient place from which to decode values (and potentially to
encode as well), how do we use the table for validation? It is no longer possible to have
referential integrity constraints, because there is no unique key for the database to
validate against. The primary key of Data_Dic is dd_type and dd_val combined. dBase
developers will remember that you could validate by hard-coding a portion of the other
table’s key—if SQL allowed this, it would look something like:

ALTER TABLE CUSTOMER
ADD CONSTRAINT FK_Val_State
FOREIGN KEY ('SC', cust_st)
REFERENCES DATA_DIC (dd_type, dd_val)

The (‘SC’, cust_st) would be needed, of course, so that you could validate cust_st
against dd_val where dd_type = ‘SC’.

So, what is left to accomplish the validation? The obvious answer is to open record sets
from VB to validate our data:

Set arLookup A= New Recordset
Set arCust = New Recordset
' acon is an active connection
arLookup.Open "Select * from data_dic Where dd_type = " & _
 "'CC' And dd_val = " & txtCountry.text, acon
If arLookup.BOF = True and arLookup.EOF = True Then
 ' No records
 MsgBox "Invalid Country!"
 txtCountry.SetFocus
 Exit Sub
Else
 ' proceed with update
End If

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

It would appear that even though we have saved the joining of many tables on data
retrieval, we have created a situation where each update involves potentially many
queries to validate the data. In the preceding example, we would also have to validate
state, postal code, and perhaps other fields.

In the next two sections, I will show you two ways to get around that problem.

Other Uses For The Data Dictionary Table

You can use the data dictionary table for many purposes. Besides the obvious uses,
such as storing valid state and country codes, I have used it to store tax tables,
currency exchange data, general ledger account types, calendars, and so on.

Sometimes, values vary by an independent factor, such as division. For instance, your
company may have several divisions (or subsidiaries) that keep their general ledgers
independently. In one division, account 1400 might be Fixed Assets while in another
division it might be Accumulated Depreciation. In these cases, I have used a
four-column table with the first column being dd_div. Any data that is common to all
divisions has a dd_div code of “ALL”.

Keeping Common Data In Memory

The typical application often validates against a common set of information. It is a drain
on resources to repeatedly request the same information from the database. Depending
on the type and amount of data, you might be better off loading the data into
memory—perhaps as an array—and accessing it that way.

Consider two common needs in an order-entry application—the state lookup table and
the item lookup table. Both of these types of data tend to be accessed a lot, so they
represent good areas to explore for minimizing database and network traffic. But, one
lends itself to pre-loading into memory, and the other doesn’t. Why?

The state lookup table stores the encoded state values (AZ for Arizona, CA for
California, and so on), which is data not subject to change. In other words, the data is
static. The item lookup table, on the other hand, stores data that is not static—prices can
change, items can be added, and so on. As such, the data cannot simply be stored in
memory—the application needs to access the database to ensure it has the most current
version available.

If a table has many thousands of rows, you probably don’t want to load it into memory.
First, you will bring client performance to a screeching halt, because all of that data
takes up valuable resources (RAM) and will almost certainly be swapped in and out to
disk. Second, each time a client logs into an application, a tremendous amount of data is
going to be pulled over the network, thus defeating the whole purpose of minimizing
network traffic.

The common lookup table that I discussed in the prior section is an example of a table
you probably don’t want to load into memory, both because it will likely become very
large and because it potentially may have some dynamic (non-static) data in it. That
doesn’t preclude you, however, from loading specific subsets of the data into memory.

Assume you have many different forms that validate state codes. Rather than opening a
Recordset object in each one, a better solution would be to open the Recordset as

Public when the application opens:

' Assumes a standard module
Public arState As Recordset
Public arCon As Connection
Sub Main ()
 ' Display a splash screen to keep them
 ' amused while loading data
 frmSplash.Show
 ' Open the connection object here
 ' Now open the Recordset
 Set arState = New Recordset
 arState.Open "Select * From data_dic Where " & _
 "dd_type = 'CC' Order By dd_val", acon
 UnLoad frmSplash
End Sub

A better solution than loading up the Recordset and keeping it in memory would be to
save its contents to an array and close the Recordset to free up database resources.
However, you would then have to write your own routines to search the array for the
value(s) that you are looking for.

The best solution of all is to not perform the validation at the client—instead, let the
database perform the validation using triggers.

The Trigger As A Data Validation Tool

The trigger is a special stored procedure that is automatically invoked by the RDBMS
as a result of a predefined action, such as UPDATE or DELETE. Using triggers, you
can have the database enforce your data validation rules. The advantage to this approach
is that it is more flexible than referential and check integrity constraints, it is all done on
the database, and every program that accesses the database gains the advantage of the
data validation rules already being defined. Further, if a change is needed, the change is
done in one place—at the database. All programs immediately gain the benefits of the
changes.

In the next section, I will discuss stored procedures and triggers, using data validation
for many of the examples.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Stored Procedures And Triggers

Throughout this book, I repeatedly allude to the most important aspect of
client/server development (outside of integrity of the data itself): minimizing
network traffic. In Chapter 10, for instance, the design for the remote,
out-of-process server was very different than the design for a local, in-process
server. In that example (for the remote server), we stacked calls by passing
property references as method arguments. With the database, the issue is
perhaps even more critical, because the nature of client/server itself is the
manipulation of remotely stored data. To the extent that you can minimize the
number of times that data has to move between your application and the
database server, your application will benefit from increased performance
levels.

In the previous sections, we discussed different aspects of data validation. In
some of the examples, we sent requests to the server asking if certain data
(such as state codes) was valid. The database then had to send the answers
back. Only after several roundtrips were we ready to send the update request to
the database—hardly an efficient way of doing things.

Stored procedures are small programs that sit on the database performing
specific tasks, such as data validation. Whereas stored procedures have to be
explicitly called, triggers are essentially stored procedures that occur
automatically as the result of a predefined action. You can think of a stored
procedure as analogous to a Visual Basic general procedure where a trigger is
analogous to an event procedure. The event procedure also occurs as the result
of a predefined event, such as a button click.

Stored Procedures On Differing RDBMSs

Unfortunately, stored procedures and triggers are the area where the different
dialects of SQL have significant differences. Although they are similar, you

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

cannot take an Oracle stored procedure to Microsoft SQL Server and expect it
to run without some modifications. As discussed in Chapters 2 and 3, Oracle
uses a dialect of SQL known as PL/SQL. Sybase uses Transact SQL (T-SQL).
Microsoft’s SQL Server, traditionally also based on T-SQL, has been moving
away to its own dialect of SQL. Still, the differences are outweighed by the
similarities. For instance, the following Oracle stored procedure is used to give
employees a raise. The code calls the function passing the department number
and the percent of the raise—all employees in that department will be affected:

CREATE PROCEDURE emp_raise
 (deptno IN NUMBER,
 raise_pct IN NUMBER)
AS
BEGIN
 UPDATE employee
 SET emp_sal = emp_sal * (1 + raise_pct)
 WHERE emp_dept = deptno;
END

TIP
Advantages To Stored Procedures
By moving code to the database, we realize three distinct advantages:

• Code reusability—All code modules use the same database
procedures.

• Minimization of network traffic—The server and client only have to
communicate in the event of an error, so network traffic is
dramatically reduced.

• Precompilation—Stored procedures (and triggers) are precompiled
on the server and so run more efficiently than does dynamic SQL.

The equivalent Microsoft SQL Server stored procedure takes this syntax:

CREATE PROCEDURE emp_raise
 (@deptno int,
 @raise_pct real)
AS
BEGIN
 UPDATE employee
 SET emp_sal = emp_sal * (1 + raise_pct)
 WHERE emp_dept = deptno;
END

In this example, the differences between SQL Server and Oracle are
small—mainly how parameters are declared. The larger differences show up in
the body of the stored procedure—those lines between the BEGIN and END
statements. There can even be differences between different versions of the
same RDBMS—vendors tend to enrich the language as the products evolve.

To use any of the examples I present here, you will have to create the stored
procedure on your database while making any necessary changes in syntax.
See your own database’s documentation for additional details. I will provide

some examples in different syntaxes as I go along. This book’s CD-ROM
includes the text of the stored procedures (and triggers later in this chapter)
that I use for examples.

The Lookup Stored Procedure

To illustrate the creation and use of stored procedures, I will start with some
modifications to the Data_Dic (data dictionary) table created earlier in the
chapter. First, let’s create a simple stored procedure that we can call whenever
we need to retrieve an un-encoded value from the data dictionary using SQL
Anywhere syntax:

CREATE PROCEDURE sp_lookup
 (IN lu_type CHAR (3), IN lu_val CHAR(32),
 OUT lu_desc CHAR(64))
BEGIN
 SELECT dd_desc INTO lu_desc
 FROM data_dic
 WHERE dd_type = lu_type
 AND dd_val = lu_val;
END

The Oracle equivalent is shown next:

DROP PROCEDURE sp_lookup ;
CREATE PROCEDURE sp_lookup
 (lu_type IN data_dic.dd_type%TYPE,
 lu_val IN data_dic.dd_val%TYPE,
 lu_desc OUT data_dic.dd_desc%TYPE) AS
BEGIN
 SELECT dd_desc
 INTO lu_desc
 FROM data_dic
 WHERE dd_type = lu_type
 AND dd_val = lu_val ;
END

In the Oracle stored procedure, I used a special notation for data
types—%TYPE—referencing the data type of the underlying column on the
Data_Dic column. The advantage of this is that if the data type
changes—perhaps making a column larger—the stored procedure does not
need to be revised.

Using The Stored Procedure In Visual Basic

You can use the stored procedure within your VB project easily. In an ADO
environment where only one record is being returned, it is not necessary to
open a Recordset object. Figure 11.1 shows an application that opens the
Customer table and displays the full text of the customer’s state and country.
While the application could have been done using a join between the
Customer and Data_Dic tables (and would probably be a little more

efficient), I chose to use the sp_lookup stored procedure to get the un-encoded
values from the data dictionary. The ADO objects created in the application
are shown next:

Private WithEvents acon As Connection
Private acmd As Command
Private acmdDataDic As Command
Private WithEvents ars As Recordset

Figure 11.1 This application uses a stored procedure to retrieve values from
the data dictionary.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/11-01.jpg',522,231)
javascript:displayWindow('images/11-01.jpg',522,231)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The application issues a connect to the database when the form opens, as shown next.
Note that I am using the stest user id in these examples for the sake of simplicity. If you
choose to work with the coriolis user id, the application works identically.

Private Sub Form_Load()
Screen.MousePointer = vbHourglass
Set acon = New Connection
acon.CursorLocation = adUseClient
acon.Open ("PROVIDER=MSDASQL;dsn=Coriolis VB Example;" & _
 "uid=stest;pwd=stest;")
End Sub

The connection is established asynchronously. When complete, the
ConnectionComplete event occurs, and the record set is opened. Previous to that,
acmdDataDic is created as a reference to the sp_lookup stored procedure:

Private Sub acon_ConnectComplete(ByVal pError As _
 ADODB.Error, adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)
' Connect complete - open record set
Set acmd = New Command
acmd.CommandText = "Select * from customer"
acmd.ActiveConnection = acon
Set ars = New Recordset
Set acmdDataDic = New Command
Set acmdDataDic.ActiveConnection = acon
acmdDataDic.CommandText = "sp_lookup"
acmdDataDic.CommandType = adCmdStoredProc
acmdDataDic.CommandTimeout = 15
ars.Open acmd, , adOpenDynamic, adLockOptimistic, adCmdText
Screen.MousePointer = vbDefault

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

' Command object for the stored procedure.
End Sub

TIP
Asynchronous Timing
In the code listing, I deliberately rearranged the order of creating objects in order to
highlight the timing issues that can be a real thorn in the side of a developer who is
moving from a synchronous data model. ADO will go out and “look” at the stored
procedure when the command type property is set. If I had opened the record set first,
ADO would almost certainly have waited for the execution to complete before taking a
look at the stored procedure. Then, the MoveComplete event would trigger, taking
precedence over the code remaining in the ConnectComplete event. The
MoveComplete event would then make a call to ShowRecs, which would invoke the
stored procedure, which would not even as yet exist.

Moral: Create all your objects prior to executing or opening them.

As you will see in a moment, it is not necessary to declare any Parameter objects. As
soon as the CommandType property is set, ADO goes to the data provider and
ascertains the stored procedure’s parameters. They are set in the same order as defined
in the database—the two input parameters are first and the output parameter is last.

Notice also that I create the Command object for the stored procedure prior to opening
the record set. Working in an asynchronous environment is a bit more complex than
working in a synchronous environment. Specifically, without getting the stored
procedure created prior to opening the record set, I can run into timing problems if the
query completes before cmdDataDic is created.

When ars is opened, the MoveComplete event is triggered as shown:

Private Sub ars_MoveComplete(ByVal adReason As _
 ADODB.EventReasonEnum, ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, ByVal pRecordset As _
 ADODB.Recordset)
txtRecord = "Record " & _
 ars.AbsolutePosition & " of " & _
 ars.RecordCount
ShowRecs
End Sub

The RecordCount Property

Note that not all data providers support the RecordCount property at all times. If not
supported, RecordCount is usually equal to -1. It would be a good idea to verify
whether the RecordCount property is valid before displaying it.

Also, consider that most data providers need to return the entire result set before they
can populate the RecordCount property. If you are returning more than a couple
dozen records, you may want to avoid referencing this property to avoid the
performance penalty inherent in unnecessarily returning the entire result set.

As a final note, in my testing, I noted times when ADO became confused as to what
the current record number (as returned by the AbsolutePosition property) was. This
seemed to occur in the development environment while debugging and presented

itself as record numbers below zero (that is, AbsolutePosition = -14). If you notice
this happening in your application during production, the workaround that I found is
to perform a MoveFirst followed by a move back to the current record. I was able to
first save the current record in a bookmark, which I found curious (because neither
VB nor ADO seemed to really know what the current record was). If you save a
record location in a bookmark and the bookmark then seems invalid, consider simply
using a Find on the primary key for the current record, to get yourself back to the
current record.

The ShowRecs procedure populates the first few textbox controls with the customer
number and name and then calls the GetDataDic procedure to retrieve the state and
country names, as shown next. Note that because the cust_st column is allowed to be
Null, I have to handle that before calling the stored procedure:

Private Sub ShowRecs()
Dim iCtr As Integer
Dim sSt As String
For iCtr = 0 To 2
 txtFields(iCtr) = ars.Fields(iCtr).Value
Next
' Get state
If IsNull(ars!cust_st) Then
 sSt = ""
Else
 sSt = RTrim$(ars!cust_st)
End If
txtFields(3) = GetDataDic("CSR", _
 RTrim$(ars!cust_ctry) & sSt)
' Get country value
txtFields(4) = GetDataDic("CC", _
 ars!cust_ctry)
End Sub

Finally, the GetDataDic procedure is very simple—much more so than calling a
parameterized query, as we did in Chapter 7. Because ADO has already looked at the
stored procedure, it is not necessary to create Parameter objects or to append them to
the acmdDataDic object’s Parameters collection. Normally, ADO can determine the
direction and type of the parameters also, so those properties (Direction and Type) do
not need to be set. Since this is a non-record-returning query (only the one output value
is being returned), it is not necessary to open a Recordset. Assign values to the input
parameters, execute the command, and then read the output parameter:

Private Function GetDataDic(ddType As String, ddval As _
 String) As String
Dim arsDataDic As New Recordset
GetDataDic = ""
acmdDataDic.Parameters(0) = ddType
acmdDataDic.Parameters(1) = ddval
acmdDataDic.Execute
GetDataDic = acmdDataDic.Parameters(2)

End Function

When ADO dynamically creates the Parameter objects, their Name properties are set
to their names in the stored procedures. In this example, the first parameter has a Name
property of lu_type (the name of the corresponding column in the database).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

About Triggers

As I mentioned earlier, a database trigger is much like a stored procedure except that
where a stored procedure must be explicitly called, a trigger is invoked automatically as
the result of an action on the database. To illustrate the use of triggers and expand on the
concept of stored procedures, let’s enhance the data validation aspects of the Customer
table and data dictionary.

Recall that the data dictionary has a record type of VRT, for valid record types. The VRT
records tell us what each record type is used for and also should restrict the records that
are entered into the data dictionary to valid entries. In other words, I should not be able to
enter TX record types if there is no such thing as a TX record type. So, the data
dictionary requires a VRT record for each record type maintained. This is a sort of
implied referential integrity constraint. To enforce this rule, I created a trigger,
tr_dd_validate, as shown next:

CREATE TRIGGER tr_dd_validate
 BEFORE INSERT, UPDATE ON data_dic
REFERENCING NEW AS new_data
FOR EACH ROW
BEGIN
 DECLARE data_type CHAR (3) ;
 DECLARE data_val CHAR (32) ;
 DECLARE data_desc CHAR (64) ;
 DECLARE data_count INTEGER ;
 /* Is record type valid? */
 CALL sp_lookup ('VRT', new_data.dd_type, data_desc) ;
 SELECT COUNT (data_desc) INTO data_count ;
 If data_count = 0 THEN
 RAISERROR 99999
 'Invalid Record Type For Data Dictionary';

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 RETURN ;
 END IF ;
 /* If country state, verify country */
 IF new_data.dd_type = 'CSR' THEN
 SET data_val = LEFT (new_data.dd_val || ' ', 3) ;
 CALL sp_lookup ('CC', data_val, data_desc) ;
 SELECT COUNT (data_desc) INTO data_count ;
 IF data_count = 0 THEN
 RAISERROR 99999 'No Such Country Record Defined' ;
 END IF;
 END IF;
END

As you can see, the trigger is defined to fire automatically any time the data_dic table is
updated or has a row inserted into it. The third line of the trigger uses the
REFERENCING NEW clause to create a reference to the new data being updated or
inserted. You can also use the REFERENCING OLD clause to create a reference to the
existing data prior to its being updated (which I will do in another trigger momentarily).
The trigger declares some work variables and then calls the sp_lookup stored procedure
that we examined in the last section. It passes a record type of VRT, the new record type,
and a holder variable in which to return the description of the record if found. Assume
you were adding a new country code (CC) record. As soon as you (or your application)
sends the new record to the database, this trigger automatically checks to see if there is a
corresponding VRT record, thus preventing any invalid record types from getting into the
data dictionary. A few lines later, the RAISERROR function is invoked if the record was
not found. The 99999 is a user-defined error return code. You can use any return code not
already used by the database (check your database documentation for more details). The
text of the error along with the error code is passed back to the application. When you
display errors, this error is returned like any other database error.

The second part of the trigger handles CSR records. What I did here was to create a
special kind of record that handles country/state cross-references. I eliminated the SC
record type, which, you may recall, contained all of the state and province names. The
CSR record contains values like CANBC for British Columbia. The trigger enforces the
rule that, before a country/state cross-reference record can be defined, the country must
already be defined in a CC record. In other words, I can’t add “Montana” to the data
dictionary until I first add “United States”.

To enforce this referential integrity, I created another trigger, tr_cust_validate, shown
next:

DROP TRIGGER tr_cust_validate ;
CREATE TRIGGER tr_cust_validate
 BEFORE INSERT, UPDATE ON customer
REFERENCING NEW AS new_cust
FOR EACH ROW
BEGIN
 DECLARE data_st CHAR (2) ;
 DECLARE data_ctry CHAR (5) ;
 DECLARE data_desc CHAR (64) ;
 DECLARE data_count INTEGER ;

 /* Is country valid? */
 IF new_cust.cust_ctry IS NULL THEN
 RAISERROR 99999 'Country can not be null!' ;
 RETURN ;
 END IF ;
 CALL sp_lookup ('CC', new_cust.cust_ctry, data_desc) ;
 SELECT COUNT (data_desc) INTO data_count ;
 IF data_count = 0 THEN
 RAISERROR 99999 'Invalid Country:'
 || new_cust.cust_ctry;
 RETURN ;
 END IF ;
 /* Is state valid? */
 IF new_cust.cust_st IS NULL THEN
 SET data_ctry = rtrim(new_cust.cust_ctry) ;
 CALL sp_lookup ('CSR', data_ctry, data_desc) ;
 SELECT COUNT (data_desc) INTO data_count ;
 If data_count = 0 THEN
 RAISERROR 99999
 'Missing CSR Record On Data Dictionary:'
 || data_ctry;
 RETURN ;
 END IF ;
 END IF ;
 SET data_ctry = rtrim(new_cust.cust_ctry) ||
 new_cust.cust_st ;
 CALL sp_lookup ('CSR', data_ctry, data_desc) ;
 SELECT COUNT (data_desc) INTO data_count ;
 IF data_count = 0 THEN
 RAISERROR 99999 'Invalid State:' || new_cust.cust_st ;
 END IF ;
END

As you walk through the code, you might notice that the body of the trigger is pretty
much the same as the body of a stored procedure. Also, it is not all that much different
than a Visual Basic program. The syntax is a little less forgiving, but, once you get used
to it, it’s not bad.

tr_cust_validate verifies that the country on the customer record is valid. If not, an error
is raised and a message is sent back to the application. As soon as SQL encounters the
RAISERROR command, the update or insert is cancelled. The RETURN statement tells
the trigger not to continue processing after the error, much like an Exit Sub or Exit
Function command in Visual Basic.

The trigger then validates the country/state combination, or, if there is no state, it
validates the proper construction of the data dictionary’s CSR key.

So, at this point, it is pretty much impossible to enter a customer with an invalid country
or state. Better yet, the validation occurs automatically on the server. But, what’s to stop
someone from deleting a record from the data dictionary that is being referenced? If
someone were to delete a “USA” country code record while customers were on the
database using that record, the database would be corrupt.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

To handle this, I wrote a generic trigger to handle a wide variety of deletions from the data
dictionary. What I wanted to do was to avoid having to write a trigger to handle each and
every record type in the data dictionary. To support this, I created two new record types:
RTN, for referenced table name, and RTC, for referenced table column. If you want the
generic validation routine to be active for a given record type, then you would add one of
each of these two records for the given record type. For instance, if I wanted to prevent
someone from deleting a country code (CC) record that was being used, I would add two
records to the data dictionary:

dd_type dd_val dd_desc
RTC CC cust_ctry
RTN CC customer

These records will tell our new trigger that if someone attempts to delete a CC record, it
should make sure that that the cust_ctry column on the Customer table does not reference
that CC record. Let’s look at the trigger:

drop trigger tr_dd_validate_delete ;
CREATE TRIGGER tr_dd_validate_delete
 BEFORE DELETE ON data_dic
REFERENCING OLD AS old_data
FOR EACH ROW
BEGIN
 DECLARE data_table CHAR (32) ;
 DECLARE data_column CHAR (32) ;
 DECLARE data_desc CHAR (64) ;
 DECLARE data_count INTEGER ;
 /* Is this a VRT record? */
 IF old_data.dd_type = 'VRT' THEN
 /* Don't let them delete a referenced record! */
 SELECT COUNT(*) INTO data_count

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 FROM data_dic
 WHERE dd_type = old_data.dd_val ;
 IF data_count > 0 THEN
 RAISERROR 99999 'Cannot Delete Referenced VRT Record!' ;
 RETURN ;
 END IF ;
 END IF ;

 /* check for dependencies */
 /* Must maintain RTN and RTC records for this to work! */
 /* Get dependent table name */
 SELECT dd_desc INTO data_table
 FROM data_dic
 WHERE dd_type = 'RTN' AND dd_val = old_data.dd_type ;

 /* Get dependent column name */
 SELECT dd_desc INTO data_column
 FROM data_dic
 WHERE dd_type = 'RTC' AND dd_val = old_data.dd_type ;

 /* Build and run query */
 EXECUTE IMMEDIATE 'SELECT COUNT(*) INTO data_count FROM '
 || data_table ||
 ' WHERE ' || data_column || ' = ' || char(39) ||
 old_data.dd_val || char(39) ;
 /* Run it */

 IF data_count > 0 THEN
 RAISERROR 99999 'Cannot Delete - ' || old_data.dd_val ||
 ' present on ' || data_table || ' table ' ;
 END IF ;
END

This trigger is declared to occur whenever an attempt is made to delete from the table,
whereas our earlier examples looked at inserts and updates. Also, this trigger uses the
REFERENCING OLD clause to obtain a reference to data on the table.

The trigger first makes sure that no one deletes a VRT record that is being referenced by
another record type. But, the meat of the trigger is the section that follows. If the record
type that is being deleted is not VRT, then a check is made to see if there are RTN and
RTC records.

Because the trigger cannot know ahead of time what record type might be deleted, it must
dynamically create an SQL statement. I had some problems troubleshooting this trigger to
make this dynamic statement generation portable across SQL platforms (test on your own
database, of course). However, as written, the dynamically generated statement should
work just fine on most RDBMSs. The statement is run using the EXECUTE
IMMEDIATE command. If your application were to delete the USA country code record,
the statement generated would check to see if there were any customers whose country was
“USA”. If so, the database would issue the error message that you can see in Figure 11.2.

Figure 11.2 The trigger on the database prevents the deletion of a country record if
existing customers reference that record.

As a quick note, the statement generated is not particularly efficient. It performs a count of
all the customers from that country. If the table was large, the statement would probably
yield unacceptable performance. My original intent was to open a cursor and fetch a single
row rather than count all the records. While that worked just fine with Oracle, I found that
Transact-SQL insisted that all declarations be at the top of the body of the trigger.
Unfortunately, to open a cursor, it must first be declared. I found different ways to work
around the issue on different platforms, none of them portable enough across all the
platforms to present here. Because I had to first determine the existence and values of the
RTN and RTC records, most of the workarounds that I devised involved calling stored
procedures, as I did in the first trigger example.

A generalized example of cursor usage is shown next. Consult your database
documentation for any specific details:

DECLARE data_lname CHAR (21) ;
DECLARE data_fname CHAR (15) ;
DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000' ;
DECLARE c1 CURSOR FOR
 'SELECT cust_lname, cust_fname ' ||
 'FROM customer ORDER BY cust_lname, cust_fname' ;
/* Open the cursor */
OPEN c1 ;
/* loop through it */
LOOP
 /* Fetch each record */
 FETCH NEXT c1 INTO data_lname, data_fname ;
 /* No more records? */
 IF err_notfound THEN LEAVE custloop ;
END LOOP custloop ;
/* Close the cursor */
CLOSE c1 ;

Maintaining The Data Dictionary

Figure 11.2 showed an application from this book’s CD-ROM that maintains the data
dictionary. It is a low-tech solution, leaving most of the validation work to the database.
Figure 11.3 shows a new country being added. The top two textboxes show the current
type of records being displayed in the grid control. If the user adds a new record, the record
type is filled into the first column of the new row. Feel free to expand upon it in your own
applications.

javascript:displayWindow('images/11-02.jpg',682,341)
javascript:displayWindow('images/11-02.jpg',682,341)
javascript:displayWindow('images/11-03.jpg',684,340)

Figure 11.3 The Data Dictionary Maintenance application.

Uses For Triggers

Your job as a client/server developer is to place as much processing on the database server
as possible (without overrunning it, of course). I routinely have triggers do such chores as
verify ZIP codes whenever customer, employee, or vendor addresses are maintained.
Often, applications require an audit trail or transaction table reflecting who did what to
whom. Any time a customer record is maintained, for instance, you might want to have a
trigger write out to another table the operator, date, and type of change performed, as well
as the old data values.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/11-03.jpg',684,340)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Generating Primary Keys

Every row on the database needs to have a primary key. Although primary
keys can be made up of any number of columns and those columns can be any
data type, most tables will have a one-column numeric key. Those tables that
have more than one column are most often child tables whose key is
composed, in part, of their parent table(s) key(s).

Generating a unique, numeric primary key is most often a matter of assigning
numbers sequentially. As simple as that sounds, this was a large thorn in my
side earlier in my career. In the mid-1980s, I worked on large DB/2 databases
with tables whose row counts sometimes numbered into the millions. We
didn’t have such things as auto-incrementing columns then, so we had to do it
the old-fashioned way—painfully. The general gist was to perform a SELECT
MAX on the primary key column to find the highest used number and add one
to it. On the larger tables, this sometimes took several minutes. Users, being
unreasonable souls, judged five-minute response times to be unacceptable. So,
we developed clever little workarounds, which were never quite perfect but
somehow got the job done.

Fortunately, the problem is not so bad today. All database vendors provide
some way to generate a sequential number for a primary key (or whatever
other purpose you deem). Normally, you specify an option at table-create time.
For example, with Sybase and Microsoft SQL Server, you specify the keyword
IDENTITY when you define the column:

CREATE TABLE CUSTOMER
 (Cust_No Int IDENTITY,
 Cust_Lname CHAR (21) , ...

SQL Anywhere uses a convention similar to Access with the
AUTOINCREMENT default (in Access, AUTOINCREMENT is an actual

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

data type—its underlying data type is LONG):

CREATE TABLE CUSTOMER
 (Cust_No Int DEFAULT AUTOINCREMENT,
 Cust_LName CHAR(21), ...

Oracle does not have an equivalent facility (to increment a primary key)
specifically bound to a column. Instead, it uses an independent database object,
SEQUENCE:

CREATE SEQUENCE seq_Cust
 CACHE 200
 STARTWITH 100
 INCREMENT BY 10

The Oracle SEQUENCE maintains a certain number of new numbers, waiting
to be used, in memory. The number of items cached is determined by the
CACHE qualifier (the default is 15). My recommendation is to have enough
cache to last about five minutes. For example, if you have 50 users adding an
average of 1 customer per minute, a cache size of 250 is reasonable. The
Oracle SEQUENCE allows you to specify a starting value as well as an
increment value. With SQL Server and Sybase, the equivalent would be shown
as:

(Cust_No Int IDENTITY (100, 10), ...

None of the RDBMSs, except for Oracle, cycle back to the beginning when all
the numbers are used up. You can tune the cycling behavior in Oracle by
specifying NOCYCLE (do not start all over again when the numbers are used
up) and the MAXVALUE or NOMAXVALUE clauses.

Except for Oracle, the numbers are created automatically whenever you add a
new row to a table. If there is an error, the number does not get reused. For
instance, assume that you do an INSERT and the next customer number is
220. For whatever reason, the INSERT fails. The next insert will be number
221 (depending on whether you alter the default increment of 1). If you issue a
ROLLBACK, however, the next number will also be restored.

Oracle’s SEQUENCE has two methods: CURRENTVAL and NEXTVAL.
NEXTVAL is used to get the next available number. CURRENTVAL is a
reference to the number currently being used in the current database session.
In other words, if you make a reference to NEXTVAL and get the number
220, the CURRENTVAL in your database session becomes 220. If another
users makes a reference to CURRENTVAL, the user will not get 220—that
person will get whatever number was generated when he or she invoked
NEXTVAL.

To add a row to the Customer table using the SEQUENCE object, you have
to explicitly reference it. Because the object is not connected to the Customer
table in any way, the database doesn’t know that you are using it to generate
customer numbers:

INSERT INTO CUSTOMER VALUES
(seq_Cust.NEXTVAL, 'Smith', ...)

Although this is a bit more work than you have to do with, say, SQL Server, it
also offers somewhat more flexibility. Assume that after you add a new
customer, you want to add an order for that customer. For the ord_cust_no
field, you can simply reference the CURRVAL method of the SEQUENCE,
as shown next:

' seq_ord is an existing sequence
INSERT INTO ORDERS VALUES
(seq_ord.NEXTVAL, SYSDATE, seq_cust.CURRVAL ...)

The preceding example assumes, of course, that the first three columns on the
Orders table are ord_no, ord_date, and ord_cust_no.

I have used the INT data type in my examples so far. If you anticipate
generating a very large number of keys, or if you anticipate that the value of
those keys will be very large, I recommend using a data type of DECIMAL
(38) (SQL Server), NUMERIC (38) (Oracle), or a similar data type. This
allows for whole numbers with up to 38 digits.

Result Set Size

Through the last several chapters, I have periodically stressed the importance
of reducing to a minimum the amount of data that is retrieved from the
database. This helps in the performance of the network, the client, and the
database server. Nevertheless, the most common problem I see in beginning
and even intermediate client/server development is the temptation to bring an
entire table down from the server to the client.

Let’s assume that you have a customer maintenance screen. The lure of
presenting all of those customers in a list box (or similar) so that the user can
choose which he or she wants to maintain is enticing to even the most
seasoned veteran. Don’t do it! Depending on the size of the records, don’t
bring down more than a few dozen to a few hundred records. Think of when
you go out to Amazon.com to do some book shopping. The server doesn’t
send you the entire list of 2 million books—you’d probably sue if they did!
Instead, you enter search criteria. Perhaps the name of your favorite author or a
subject area. If there are more than 100 books that match your search criteria,
Amazon sends them to you 100 at a time. You find the one you want and
select it.

Do the same for your users. Find the ways that users locate customers: last
name, telephone number, or whatever else is natural to your users and your
organization. Place proper indexes on those columns and then bring back a
screenfull or a few screenfulls of records for the users to scroll through.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Nature Of Transactions

The database measures activity (updates, deletes, and inserts) in what are known as
LUWs (Logical Units of Work). The term LUW is synonymous with a transaction—a
transaction is a logical unit of work. It is possible to work outside the scope of explicit
transactions. When you log onto a database server and start updating records, you
implicitly begin a transaction. When you log off, the transaction is ended. Normally,
all your work is then committed (made permanent).

Managing transactions through your VB program is more work than simply letting the
database do it for you implicitly. Imagine that your application is adding a new order.
The customer orders 10 screwdrivers. The application generates these changes to the
database:

• Inserts a new order

• Inserts a new line item

• Updates the inventory

Now, imagine that the two inserts worked but that the inventory update failed. The
customer would get his or her 10 screwdrivers, but your inventory would reflect 10
more in stock than there actually are. The data has been corrupted.

Transactions allow you to handle this situation with a little more grace. This
pseudocode illustrates the correct way to handle the order:

BeginTrans
Insert new order
If insert worked then
 Insert new line item
 If insert worked then
 Update inventory
 If update worked then

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 CommitTrans
 Else
 RollbackTrans
 End If
 Else
 RollbackTrans
 End If
Else
 RollbackTrans
End If

By verifying that each action on the database was successful, we have created an
all-or-nothing situation. Recall the term logical unit of work. The two inserts and the
update together constitute a unit of work that we have logically grouped together. We
started by explicitly beginning a transaction. We verified that there were no errors and
then committed the work. If there was an error, we then rolled back any changes.
Either way, we ended the transaction (a transaction is always ended with a
CommitTrans or RollbackTrans). The beginning and end of a transaction have
implications in terms of database performance.

Transactions And Performance

While a transaction is active, you are occupying resources on the server. Inasmuch as
resources are finite, it makes sense that you want to begin and end your transaction as
quickly as possible. Consider an application with 10,000 users. One after another, each
user starts a transaction and then gets up to take a coffee break. Resources on the
server will be quickly overrun. Sooner or later, the database will run out of resources
and crash, or it will refuse to allow users to log on, or it will simply start terminating
transactions and rolling back changes. You, the poor not-so-innocent developer, will
be very unpopular. Thus, we want to keep our transactions as short as possible.

Likewise, transactions often need to lock rows of data. When your application locks a
row, no other application can access that row. Other applications have to wait for your
application to release the lock. Obviously, this can adversely impact performance as
well. Because each lock requires a certain amount of memory on the server, too many
active locks can adversely impact performance when the server runs short of
resources.

Ill-behaved applications that don’t quickly release locks on data can lead to a
condition known as lock escalation and even another condition known as deadlock.
Assume your application uses pessimistic record locking. Each time a record is edited,
it is immediately locked—the lock isn’t released until the record is updated.
Depending on how the database does locking, other records on the same data page on
the server may also be locked. If you have a few hundred users, each maintaining
records, the database may be asked to maintain several hundred or more locks
simultaneously. This is an expensive operation (in terms of resource usage on the
computer) and quickly leads to performance degradation. You may also get into a
lock-escalation situation. When the database begins to run short on resources, it will
attempt to “consolidate” the locks by escalating them. If it is doing row-level locking,
it may escalate them to page-level locking or even table-level locking.

Even worse is the deadlock situation (sometimes called a deadly embrace) where two

processes completely block the other with no hope for resolution. Assume application
A first updates Smith (placing a lock on him) and then wants to update his account.
Application B is updating Smith’s account (and places a lock on it) and now wants to
update Smith. Application A is locked out until application B releases the lock on the
account. But, application B cannot release the lock until application A releases the
lock on the customer. The only way to solve this unfortunate situation is for the DBA
to terminate one of the transactions. (This can be done manually or through a timeout
value.)

A facet of transaction management that is even more crucial than performance is the
integrity of the data itself.

Transactions, Locking, And Data Integrity

The nature of the transaction is defined by the concept of data integrity. Consider an
application that maintains a general ledger. An entry is placed to debit Cash for $100
and to credit Accounts Receivable $100. There are two updates, and the transaction is
not complete until both updates have been made and verified. Using pseudocode, this
transaction might look like this:

Debit Cash $100
If error then
 Display error
 ' Undo any changes
 Rollback
 Exit Sub
Else
 Credit Accounts Receivable $100
 If error then
 Display error
 ' Undo all changes including debit to cash
 Rollback
 Exit Sub
 Else
 ' Make the changes permanent and end the transaction
 Commit Work
 End If
End If

Again, as can be seen in the example, transactions are an all-or-nothing proposition. If
the second update fails, we want to undo all changes so that we don’t leave the books
out of balance.

But there is more to data integrity than making sure that all records are updated. There
is the problem of data concurrency.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Concurrency

A few pages back, I discussed the problems of lock escalations with the use of
pessimistic locking. The answer, of course, is to use optimistic
locking—where the rows aren’t locked until they are actually being updated.
However, just as premature locking is bad for performance (don’t they make a
drug for that problem now?), it is great for data integrity. Consider the
following scenario:

You go to a bank machine (ATM) and look up your checking balance. The
machine says $500. The balance record is loaded into that machine’s memory.
At that moment, your spouse goes to a second ATM and asks to see the
balance. That ATM also reports a $500 balance. The balance record is loaded
into the second machine’s memory. Since the records aren’t locked, neither
machine is aware of the other.

You press a lot of keys and swear a little bit. Assuming your bankcard doesn’t
get eaten, the machine gives you $500. The record in the first machine now
reflects the new balance of $0 (about what I am used to), and the database is
updated to reflect the fact that you are broke. But, wait! The ATM that your
spouse is using still thinks there is $500 in the account. Being somewhat more
frugal than you, your spouse withdraws only $300. The ATM dutifully deducts
$300 from $500, computes the new balance of $200, and updates the bank
record.

So, you started the day with $500, withdrew $800, and still have $200 left.
That sounds like a 100 percent rate of return in a single day. That’s not too bad
for a struggling VB developer, but it’s not too good for the bank. Concurrency
control seeks to solve this problem by somehow notifying a second process
trying to update a record that the record has been changed. In other words, the
ATM that your spouse was visiting should have been alerted that the $500
balance was updated by another user. At best, it should then have not given out

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

any money. At worst, it should at least have computed a balance of negative
$300.

This notice to a transaction that the underlying data has changed can also
impact—you guessed it—performance. In Chapters 5, 6, and 7, I used some
examples of transaction management and concurrency handling in illustrating
the use of DAO, RDO, and ADO. I showed you how you can be notified if a
record that has been retrieved from the database has since been altered. By
definition, to automate the process of determining whether the underlying
record has been changed involves frequent communication with the database
server, which negatively impacts performance at the client, server, and
network levels.

RDBMSs And Row Locking

When it comes to record locking, not all databases are created equally. For
some, it might not even matter.

When you lock a row on an Oracle database, only that row is locked. On the
other hand, when you lock a row on a Sybase database, every other row on
the same page of data is also locked. (Databases organize rows into pages. If
a record is small, a page might contain many rows.) Oracle, then, performs
what is known as row-level locking whereas Sybase performs page-level
locking. Microsoft SQL Server 6.0 performed page-level locking. Version
6.5 performed pseudo-row-level locking, whereby the row immediately
before and after the row to be updated was also locked. SQL Server 7.0
performs dynamic row-level locking, which is to say that it uses an algorithm
to determine whether to lock an individual row only or also the rows before
and after.

In a very high-volume, transaction-oriented environment, the locking level
could be an issue. Obviously, if a database locks 20 rows in addition to the
one being updated, the chance of another application being locked out is 20
times greater than if only one row is being locked. On the other hand, if the
nature of the updates is that they are random (occurring all over the table
instead of being concentrated in just a few pages) or if the transaction
volume is not that high, the nature of the locking mechanism might not be
that critical. Of more importance might be the duration of the transaction. If
a page-level locking database takes 1/100 of a second to update a row and a
row-level locking database takes 1/10 of a second to update a row, you might
be better off with the former.

As one might speculate, all of these issues—database resources and
concurrency handling—are part of the overall issue of transaction
management. The overall goals are:

• Ensure that all related updates of the database are handled as an
integrated whole.

• Ensure that consistency of data is maintained.

You accomplish these goals by ensuring that your transaction is both complete
and of as short a duration as possible, by appropriate record locking and update
query tuning.

Optimistic Vs. Pessimistic Locking

Is the glass half-full or half-empty? Pessimistic locking implies preparing for
the worst in terms of ensuring that the underlying data does not change
unexpectedly. It locks a record as soon as it is edited and does not release the
lock until the record has been updated. Optimistic locking takes the view that
either no one will change the underlying data, or that if they do, you will be
able to safely detect and accommodate the change. The safest—and
easiest—tactic is to simply perform pessimistic locking. For an application
with a small number of users, this may well suffice. For a larger application,
you are pretty much guaranteeing a poor performance model.

Because the database is ultimately used to do locking, pessimistic locking is
not available unless you use a server-side cursor model (CursorLocation =
adUseServer). The locking itself is set with the LockType property. Use
adLockPessimistic, adLockOptimistic, or adLockBatchOptimistic. The
default, adLockReadOnly, is not truly a database lock—it merely means that
the record set is not updateable, rendering the issue of locking level moot.

Assuming that you are going to use an optimistic locking model, then the
issues that face you are whether to perform batch processing, how to determine
if the underlying data has changed, and what to do about it if data has changed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The advantage of batch processing is that it lessens the workload on the server and
ultimately reduces network traffic because there are less roundtrip communications
between server and client. The disadvantage is that, because you are waiting before
sending updates to the server (instead of sending them as soon as changes are made),
there is a higher possibility of the underlying data being changed. To update records in
batch mode, use the UpdateBatch method of the record set. Use the Filter and Status
properties (as I showed you in Chapter 7) to find any records with conflicts—that is,
records whose underlying data has changed. Examine the Errors collection to determine
if there was a problem. You can iterate through the Fields collection of a record set to see
exactly what values changed.

The following example shows the UpdateBatch method being used to send all cached
changes to the database. The MarshallOptions property is used to send only modified
records back (this really only has implications when communicating with a middle tier or
perhaps a Web server). The Filter property is then set to show an example of how to
determine how many changes are pending. Next, the update is performed. The
adAffectAll argument specifies that all records, even those that do not meet the current
Filter criteria, should be updated to the database:

arsEmp.MarshallOptions = adMarshallModifiedOnly
arsEmp.Filter = adFilterPendingRecords
MsgBox "There are " & arsEmp.Recordcount & _
 " changes pending."
arsEmp.Filter = adFilterNone
arsEmp.UpdateBatch adAffectAll

Next, I will show you how to iterate through all records for which there were conflicts
and determine what fields on the underlying records were changed. The Filter property is
set to only “see” those records for which there was a conflict. I iterate through the Fields
collection of each one comparing the UnderlyingValue property (that is, the value of the
field as it currently exists on the database) to the OriginalValue field (the value of the
field when it was retrieved from the database). I also show the value of the field as it

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

exists in the database (because your application might have changed it as well):

Dim vField As Field
With arsEmp
 .Filter = adFilterConflictingRecords
 .MoveFirst
 Do Until .EOF
 For Each vField in .Fields
 If vField.OriginalValue <> vField.UnderlyingValue Then
 MsgBox "Conflict Detected." & vbcr & _
 "Field: " & vField.Name & vbcr & _
 "Value when retrieved: " & _
 vField.OriginalValue & vbcr & _
 "Current Value: " & vField.Value & vbcr & _
 "Changed Value: " & vField.UnderlyingValue
 End If
 Next
 .MoveNext
 Loop
End With

TIP
Dirty Data
You will occasionally run into database theory texts that talk about data being dirty or
clean. All jokes aside (and many come to mind), dirty data is data held in memory that no
longer reflects what is actually stored on the database. When a record has Field objects
with UnderlyingValue properties that are different than their OriginalValue properties,
the data is said to be dirty.

You can quickly set the record set to reflect all changes made using the Resync method.
This is not the same as re-executing the command that created the record set. The field
values will be updated to reflect changes made only to those records already in the record
set. Records added since the record set was created will not be reflected. If a record has
been deleted, then an error is generated.

Transaction Scope And Batch Updating

There is a basic dichotomy between the goals of batch updating and transaction
management. Transactions seek to group mutually depending database updates into a
single unit of work so that, if one fails, they all fail. This may be incompatible with some
approaches to batch updating, and you will want to think through the consequences of
your choices.

Consider that you are, perhaps, updating various employees on the database. You change
John’s home address, Cindy’s salary, and Bill’s job title. You then issue an UpdateBatch
method. If all the updates succeed, fine. But, if they don’t, should you perform a
Rollback? Is Cindy’s salary in any way connected to John’s home address? Generally,
the answer is probably no. So, you probably want to Commit the changes to the database
even though not all were successful.

If, on the other hand, you changed Cindy’s job title to Manager and changed John’s
manager to be Cindy, you might have to adopt a different strategy. Assume that the

update to Cindy failed but the update to John succeeded. You do not want that change to
be made permanent, because you now have John assigned to a manager who doesn’t
exist. Ain’t life grand?

The reason I discuss this is to point out how carefully you will want to consider whether
or not to use batch updates. As you can see, they tend to cluster together as a transaction
when, in fact, they may not really constitute a logical unit of work.

Dirty Data And Batch Updating

Another reason to pause before making a decision to perform batch updating is the
likelihood of dirty data. If the underlying database has a lot of activity against it, you
increase the likelihood of conflicts when you go to perform your batch update. This can
cause aggravation for both you and your users, and, if the application ends up spending
time dealing with the record conflicts, you might lose any efficiencies that the batch
processing was supposed to provide.

When To Use Batch Updating

My advice is to use batch updating mainly when the underlying database is not likely to
cause dirty data problems. If you have a record set that maintains related tables, such as
Orders and Line_Item, then you might want to use batch updating on it as well as a
convenience to logically group together the updates to Orders and Line_Item. However,
I would also perform an UpdateBatch whenever activity to any given order is complete.
In other words, don’t batch together updates against multiple orders.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

How Does ADO Handle Concurrency? When Is Concurrency
Violated?

DAO and RDO allow you to fine-tune your SQL WHERE clause on updates so that you have
control over conflict detection and, ultimately, concurrency management. In RDO, you use the
UpdateCriteria property (see Chapter 6).

There are several ways to format the WHERE clause in an update. Assume that you have
changed employee 100’s salary from $40,000 to $50,000:

• Primary key—In RDO, this is the rdKey option (UpdateCriteria = rdKey). This is the
loosest control in that it will not cause any conflicts to be detected unless the original
record itself was actually deleted.

 UPDATE employee SET emp_salary = 50000 WHERE emp_no = 100;

• Updated columns—In RDO, this is the rdKeyAndModified option. This method detects
any collision between changes you have made and changes that another user has made. In
other words, if another user had changed the salary from $40,000 to $55,000, then the
update would fail. However, if another user changed the employee’s status to “DEAD”, the
change would still succeed. The nature of your data dictates whether that is okay. (I
consulted for a large, national professional organization who shall remain nameless to
prevent lawsuits. They had three categories of dead: Possibly Dead; Reported Dead; and
Confirmed Dead. While there, a member called complaining that he had been declared
“Confirmed Dead” and he vigorously protested the classification. No, I don’t make that
stuff up.)

 UPDATE employee SET emp_salary = 50000 WHERE emp_no = 100
 AND emp_salary = 40000

• All columns—This option is the safest of all, because it guarantees that if any change has
been made to the underlying database, the update will fail. You can then determine, based
on the nature of what was changed, whether to force the update anyway. However, because
the generated update statements are so long, the client, network, and server have to work
harder.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 UPDATE employee SET emp_salary = 50000 WHERE
 emp_no = 100 AND emp_lname = 'Brown' AND
 emp_fname = 'Barbara' AND ...

• Primary key and timestamp—This option, rdKeyAndTimestamp in RDO, is just as safe
as all columns because the row’s timestamp column is modified any time the row is
modified, but it is much less resource intensive. It requires that a TIMESTAMP column
be defined for the table and that the column be included in the result set.

 UPDATE employee SET emp_salary = 50000
 WHERE emp_no = 100 AND emp_timestamp = ...

Unfortunately, Microsoft has not yet built into ADO similar WHERE clause tuning techniques.
To detect concurrency problems, it uses all columns in the WHERE clause. Thus, concurrency is
said to be violated under ADO when any underlying value has changed—even if, to you, it is not
important. Perhaps the capability to tune the WHERE clause will be added in a future release of
ADO.

TIP
To See The ADO Statements Generated
You can observe the statements that ADO sends to an ODBC data provider by turning on the SQL
Trace facilities. Go to the Control Panel, and select the ODBC Administrator applet. Select the
Tracing tab, and select the Start Tracing Now button. All SQL activities are written to the log file
that you specify, which you can then open in WordPad. Note that this places a tremendous burden
on the ODBC manager, so you should use this option only when needed. When done, select Stop
Tracing Now.

Where To Go From Here

In this chapter, I have introduced and refined various intermediate to advanced database subjects.
I highly recommend learning and using stored procedures and triggers as a matter of course
rather than relying on client-side code. You will want to pick up a text that is specific to your
RDBMS.

I also attempted to recap discussions of transaction management and concurrency handling
procedures discussed in Chapters 5, 6, 7, 9, and 10. For details of specific syntax, refer to Chapter
5 for DAO, Chapter 6 for RDO, and Chapter 7 for ADO.

A couple of texts that I like that you may want to consider are:

• Gray, J. N. and Andreas Reuter: Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers 1993. ISBN: 1-55860-190-2

• Hackathorn, Richard D.: Enterprise Database Connectivity. Wiley & Sons 1993. ISBN:
0-47157-802-9

While neither is Visual Basic or RDBMS specific, each discusses strategies and concepts in the
enterprise client/server model.

For SQL Server development, I also like Bill Vaughn’s VB/SQL Server tome (Vaughn, William
R.: Hitchhiker’s Guide To Visual Basic & SQL Server, Microsoft Press, 1997. ISBN:
1-57231-567-9). I have the fifth edition, which is current through Visual Basic 5 and SQL Server
6.5, but an updated edition should be available by the time you read this.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Part III
Visual Basic 6 And The Internet

Chapter 12
The ABCs Of XML
Key Topics:

• Regaining context with XML

• Understanding the XML ActiveX control

• Describing your documents with DTDs

• Building XML applications

The Extensible Markup Language (XML) has gone from being one of
thousands of fairly obscure acronyms to one of the hot test uses of the letter X
outside of Sculley and Mulder’s paranoia. A lot of this has to do with the
realization by companies such as Microsoft that one of the biggest problems
with information transfer today comes from the difficulty in specifying
context.

Regaining Context With XML

To understand why specifying context is a problem, it’s important to know that
HTML was originally designed as a contextual scheme for classifying
documents. <H1> was the primary header, <H2> the secondary, and
the emphasis within text. Blocks of text were contained within paragraph tags,
with each paragraph serving a distinct unit of thought. In theory, you could

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

understand the context of the page by sticking to the notion that a tag’s
appearance was less important than its meaning, an approach that is consistent
with a completely text-based browser such as Lynx.

Of course, this concept became immaterial once people wanted to do more
with Web pages than display articles about quantum effects within high-energy
particle collisions. Designers became far more interested in the markup aspect
of HTML. As the browser wars heated up, Web developers invented all kinds
of tags for pulling off specialized functions, such as the egregious <BLINK>.
A <BLINK> tag contains no contextual information (save perhaps that the
designer is a twit). One or two such tags were probably fairly harmless, but as
the faint call for a more graphically oriented page turned into a roar, other tags
such as appeared. Because any header tag could be replaced with a
properly designed FONT tag, the underlying structure and meaning of a given
page disappeared into a sea of FONT tags.

Because a network with billions of documents that contain little-to-no
contextual information will eventually become impenetrable, the W3C has
worked to create two complementary technologies—Cascading Style Sheets
(CSS) for presentation and XML for page context. Style sheets separate the
presentation layer from the data in a document, with some interesting
consequences. If you can create a structure for representing the data that is
separate from how that information is displayed, then the same data can be
shown in a wide variety of formats.

Internet Explorer 5 takes this notion literally: Beyond just changing the color
of an element, you can use Dynamic HTML (DHTML) behaviors to display
data in forms as diverse as a table and a pie chart by simply switching the
descriptor for a given element. In and of itself, this is mind-boggling because it
makes the presentation of data highly fluid. Anyone who’s ever had to display
a data form in Visual Basic in more than one mode can appreciate how
difficult that is to do with traditional development tools.

By adopting XML, which is more a coding convention than a language per se,
as the data layer, Web developers can provide a context upon which to hang
the presentation layer while simultaneously creating a data format that is
completely portable because it carries its context within itself. This portability
is one of the reasons that an XML-based “world” makes so much sense: As
long as your XML document is properly formed, any XML parser can read it.
To be sure, you might need to wrap the XML parser’s API set in containing
classes for a more complex application (hey, Web developers aren’t going to
be out of a job any time soon), but the data format can be read universally.
This feature becomes crucial for applications that may not necessarily be
connected to a server at all times and can even be facilitated by utilities that
convert SQL record sets into XML code for offline storage on a client’s
machine.

A second advantage in using XML comes from the rich structure that such a
document can contain. An XML document is hierarchical, a structure more
reminiscent of programming classes than SQL output. Indeed, although it is
certainly possible to use traditional database methods to output structured data,
such calls are fairly expensive to make frequently, and they are even more

difficult to update. With XML, the process is much easier—so easy in fact that
it is often more convenient to keep data in an XML object than attempt to map
it to external classes for processing. This is the approach that I take in this
chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Structuring XML

If you are contemplating moving to XML from HTML, and you are dreading the need to learn
dozens if not hundreds of new tags, terms, and attributes, put your mind at ease. The only tags
that you need to learn are those you create yourself. The reason is simple: For the most part,
XML is just a convention for writing out data, and it structurally resembles HTML quite
closely. Like its antecedent SGML, XML can get fairly complex, but for most of the uses
where Visual Basic programmers or Web developers need XML, the syntax is
straightforward. The example in Listing 12.1 provides most of the features of a “simple”
XML file.

Listing 12.1 An XML weather report.

<?xml version="1.0"?>
<!-- A basic weather report for select West Coast locations -->
<WEATHERREPORT>
 <STATE NAME="California">
 <CITY ID ="Los Angeles">
 <SKIES VALUE="PARTLYSUNNY"/>
 <HI C="31" F="87"/>
 <LOW C="18" F="65"/>
 Partly cloudy.
 </CITY>
 <CITY ID ="Sacramento">
 <SKIES VALUE="SUNNY"/>
 <HI C="36" F="97"/>
 <LOW C="13" F="64"/>
 Sunny and hot.
 </CITY>
 </STATE>
 <STATE ID ="Washington">
 <CITY ID ="Seattle">
 <SKIES VALUE="RAIN"/>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <HI C="12" F="54"/>
 <LOW C="9" F="49"/>
 Raining on and off throughout the day.
 </CITY>
 <CITY ID ="Olympia">
 <SKIES VALUE="CLOUDY"/>
 <HI C="11" F="49"/>
 <LOW C="8" F="47"/>
 30% chance of rain toward evening.
 </CITY>
 <CITY ID="Redmond">
 <SKIES VALUE="RAIN"/>
 <HI C="10" F="50"/>
 <LOW C="5" F="41"/>
 Rain, mixed with showers.
 </CITY>
 </STATE>
</WEATHERREPORT>

In Listing 12.1, the first line,

<?xml version="1.0"?>

identifies the document as an XML document through the preprocessor tag <?...?>. In more
sophisticated XML documents, this tag may also provide a link to a Document Type
Definition, an external file that makes the structure in an XML document more explicit. DTDs
will be covered in much greater depth in the section “Describing Your Data: The DTD” later
in this chapter.

NOTE
The preprocessor tags give information to the parser concerning the document’s
validity—whether the XML structure contained therein obeys a predefined format. If this
format isn’t explicitly defined, the document can be well formed (that is, follow the rules of
XML) without being valid. Much of the use of XML as a data-storage mechanism, especially
with respect to Microsoft’s parsers, actually works on the assumption that there is no explicit
definition of the data; as long as the document follows the rules of XML, it can be used to
store data.

As with HTML, comments should be an integral part of any page, describing structures,
specialized variables, and anything else that will help other people understand what you
intended to do with your XML document. As in HTML, the syntax for XML comments is
straightforward:

<!-- This is a comment -->

Comments can extend across multiple lines because XML structures ignore white space in
much the same way that HTML structures do. However, it is not possible to nest comments in
XML; the closing comment tag of any interior comment will terminate the comment body in
its entirety. In other words, the statement

<!-- This is an <!-- embedded --> comment -->

will fail to parse properly.

In a typical HTML document, the entire page is contained within the <HTML> </HTML>
tags. These tags acts as a container for everything else within the document, and there is never
more than one such element per document. An XML document likewise has a single
containing tag, although there are no restrictions about what you call it. For example, in
Listing 12.1, the document container is the <WEATHERREPORT> tag. The outermost
element in an XML document is usually referred to as the root element or node, in much the
same way that the foundation of a tree (or a family tree) is its root.

This family tree metaphor in Figure 12.1 can actually be useful in getting a better handle on
XML data structures. In all but the simplest XML documents (that is, one that has only a
root), the root node has a collection of child nodes. In a traditional text document, the child
nodes correspond to major headers, but in the data structure displayed in the figure, each child
of Weather Report is a State node, a branch off the main trunk. Each State in turn contains
one or more City nodes. (For example, the Washington State node contains the City nodes
corresponding to Seattle, Olympia, and Redmond.) These nodes may contain other branches
or, as in this case, leaf nodes. The leaf nodes terminate the tree at that point; a given node
cannot simultaneously be both branch and leaf.

Figure 12.1 The weather report XML data structure resembles a family tree.

One useful way of thinking about this structure is to associate each leaf with a property and
each branch with either a class or a collection of classes. For example, the Olympia,
Washington, node has a SKIES property, a HI and LOW property, and some associated text.
The Olympia node corresponds to the CITY class, the Washington node corresponds to the
STATE class, and the whole document is in turn a collection of STATE classes. This
relationship between classes and XML nodes is hardly accidental, and indeed, it is one of the
things that makes XML such a promising technology.

Within each node, in addition to the tag name for that node (such as STATE, CITY, LOW,
and so on), there may be one or more attributes. An attribute helps define a node more clearly
in exactly the same way that attributes in HTML clarify the role of the tag. An HTML
example illustrates this. The image tag () typically comes with several attributes that
define the name or identifier for the image (ID=“myPic”), the source URL of the image
(SRC=“http://www.mysite.com/images/mypic.jpg”), the dimensions of the image
(HEIGHT=“120” WEIGHT=“90”), and even what events the element supports
(ONMOUSEOVER=“HiliteMe();”).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/12-01.jpg',568,569)
javascript:displayWindow('images/12-01.jpg',568,569)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

An XML tag is not that different, except that you can define what attributes are
associated with a given tag. Thus, the HI and LOW tags have two attributes
each—the C for Celsius and F for Fahrenheit. An element doesn’t need any given
attribute, and although some attributes are more convenient (for example, an ID tag
is extremely useful in an XML document), none are strictly required. Additionally, a
tag doesn’t need any specific attributes defined. Here again, it’s worth looking at the
corresponding tag in HTML; although usually contains a SRC
attribute, such attributes as WIDTH and HEIGHT may or may not be provided, and
attributes such as BORDER may appear comparatively rarely. An XML tag likewise
could have one attribute, dozens, or none at all, although if a formal DTD is provided
with a given XML document, it is possible to have default values for given
attributes.

In the simplest form of XML documents, all attributes’ values are given as strings.
(It is possible to specify different formats with the appropriate parser, but this falls
beyond the scope of this book.) As a general rule of thumb, an attribute serves to
define a characteristic of a tag or provides a link to additional data about the tag. The
SRC attribute of an tag, for example, points to the location of a graphical
file to be used for the image.

NOTE
If you have an opening tag with no closing tag within your XML document, or if
you attempt to put a closing tag after a self-terminating tag, such as the one in the
following code snippet, the parser will fail.

The one primary difference in structure between XML and HTML concerns
strictness. XML treats every element as a container. In other words, any given tag
must have a closing tag, and any other tag defined between an opening and closing
tag must also be closed between the two. XML closes its tags exactly the same way
that HTML does: <TAG> is terminated with </TAG>.

Although most contemporary HTML authoring programs are moving toward

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

XML-like code, HTML does include certain elements that are invalid in XML. For
example, the tag in HTML is typically treated as a single element with no
closing tag. XML writes the same tag as .
However, because many nodes in an XML structure don’t have text associated with
them, XML also includes a shorthand notation, , with the terminating slash
moved to the end, so you don’t have to include the end tag. You can see an example
of this in Listing 12.1:

<SKIES VALUE="RAIN"/>

Text is treated in a slightly different way by XML than it is by HTML. XML
supporters tend to fall into two camps; one stresses XML as a document markup
language, and the other sees XML as a convenient database format. Because you can
use XML to describe documents, it is perfectly possible to have a block of text with
embedded XML elements. In this case, the text in each block is actually treated by
the parser as belonging to distinct nodes. For example, the expression

<WARNING>This is a <HILITE>test</HILITE>, this is only
a test.</WARNING>

is actually broken up internally as

<WARNING>
 <INTERNAL_TEXT>This is a </INTERNAL_TEXT>
 <HILITE>test</HILITE>
 <INTERNAL_TEXT>, this is only a test.</INTERNAL_TEXT>
</WARNING>

where <INTERNAL_TEXT> is a node that contains default text for the document.
This in turn means that any XML element has a text property that consists of all the
text of its subnodes. The text for <WARNING>, for example, is “This is a test, this
is only a test.” whereas the text for <HILITE> is just “test”. An advantage of this is
that a browser that doesn’t support an XML parser can still output the text of the
document, although it loses any relevant formatting.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Parsing XML

I’ve bandied about the term “parsing” throughout the last section without
really defining it. Like many computer expressions, “to parse” has a wide
variety of meanings depending on the context. For XML parsers, more
specifically, to parse means “to import the document into a dynamic data
structure that can be traversed recursively.”

I should explain that mouthful in simpler English. An XML parser is usually
built as a recursive descent parser. In short, this means that the parser program
performs the following steps:

1. Read the prolog, or preprocessor instructions, to get information
about the document not contained within the XML tree itself.

2. Read the first tagged element of the XML structure.

3. Record the name of the element as its tag name.

4. Read through the rest of the element to determine which properties
the given node supports and then assign these into attribute-value pairs.

5. If the next tag found is not a closing tag, read the next tag and define
it as a child of the current node. For this tag, jump to Step 3.
If the next tag found is a closing tag, the node is defined. Move to the
following node and determine whether it is a closing node (in which
case, the parent node is also closed) or a new node (in which case,
another child is defined for the parent node).

6. Let this process continue until all nodes have been added into this
structure.

In essence, the parser walks a tree, going up a branch until it hits a leaf, adds
all the leaves for a given branch, backtracks down a branch, and repeats the
process until all leaves are hit (see Figure 12.2). Programming this process is
perhaps not as immediately obvious as iterating through a linear list, but

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

programming recursive walks is not all that much harder either, as I discuss in
detail in the next section.

Figure 12.2 The parser starts at the root node, walks up each branch until it
reaches a leaf, moves to the next leaf, and then backtracks to the last branch
and takes the other fork.

Writing a simple XML parser is not a terribly complicated undertaking,
although supporting all the features of XML 1.0 adds considerably to the
amount of work involved. Fortunately, Microsoft has been a prime mover to
get XML into the marketplace, and it has built a number of reasonably
powerful XML parsers that automate the process of reading and traversing
XML documents. This book concentrates on the XML parser that is part of
Internet Explorer 5.0 because it has applications both in DHTML and Visual
Basic. Internet Explorer 4.0 includes a more primitive C++-based XML parser
that must be included as an ActiveX control, and Microsoft also supports a
Java-based parser, which can be useful in Web pages outside of Microsoft’s
Internet Explorer, but which has only limited utility in Visual Basic.

Internet Explorer 5.0 makes extensive use of XML. Indeed, you can make a
compelling argument that IE5 isn’t an HTML browser at all, but rather an
XML browser that can coincidentally parse HTML as well. XML appears all
over the place in IE5:

• XML can extend the presentation markup in the HTML document
stream. This subject is covered in some detail in Chapter 14.

• XML forms the foundation of dynamic properties and behaviors.

• XML can be embedded within HTML documents as data stores or
referenced via external files.

• The Client Capabilities, IE5’s successor to cookies, saves and
retrieves session, form, and property information in XML format.

Because of the pervasiveness of XML in Internet Explorer 5, Visual Basic
programmers can access and manipulate XML data either by using the IE5
Document Object Model (frequently referenced as the DOM) or by using the
Microsoft XML library. Each offers benefits and drawbacks, although in
general, if you are working with an HTML document with embedded XML,
you should go the former route, whereas if you want to deal purely with XML
files, you should use the XML library.

The MS XML library is fairly extensive, quite powerful, and more than a little
counterintuitive. Because it’s worth understanding how the library objects
work on their own before incorporating XML into DHTML applications, the
next several sections discuss the Microsoft XML parser 2.0 API in depth as
they are referenced from Visual Basic.

NOTE:
To directly manipulate XML documents, you need to include the XML

javascript:displayWindow('images/12-02.jpg',568,349)
javascript:displayWindow('images/12-02.jpg',568,349)

library in your Visual Basic project. To do this, select References from the
VB project menu. Find and check Microsoft XML, version 2.0
(MSXML.DLL) to add it to the associated references and then press OK.
Note that this is version 2.0 of the Microsoft XML parser, not a 2.0 version
of XML itself.

Leveraging The MS XML API

Any time you deal with database structures, you’re going to find the API to be
complex, sometimes cumbersome, and yet never quite as complete as you’d
like. The XML API is much like that; the improvements from earlier versions
are noticeable, but you still need to put some effort into getting anything useful
out of them. Still, there are only a handful of objects to worry about in the
library—the DOMDocument, IDOMNodes, IDOMNodeLists, and IDOMError
classes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Documents Of DOM

DOM, of course, refers to the Document Object Model, the term that
Microsoft has applied to the architecture of Internet Explorer 5 pages. Note
here that there’s no specific mention of XML in any of the class names—yet
another indication that Microsoft sees XML as the foundation of HTML
development in the future.

Of all the classes, the DOMDocument acts as the primary interface to the
XML library. From this class, you can load and save XML documents,
navigate to specific nodes in the XML tree, add, remove, or relocate nodes
within the tree, and even determine when things have gone wrong. The
methods and properties of the DOMDocument are summarized in Tables 12.1
and 12.2, with detailed descriptions following.

Table 12.1 Methods of the DOMDocument object.

Method Name Description

Abort Aborts an asynchronous download

CreateNode Creates a new node

GetAttribute Retrieves a root node’s attribute by name

GetTypedAttribute Retrieves a root node’s attribute as a typed
value

InsertNode Positions a node into the tree

Load Loads an XML document from a file

LoadXML Loads an XML document from a string

NodeFromID Retrieves a node with the given ID

RemoveAttribute Removes an attribute from the node

RemoveNode Removes the node from the XML tree

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

ReplaceNode Replaces one node with another

SaveNode Returns an XML string of the current
document

SetAttribute Sets the value of a named attribute to a string

SetTypedAttribute Sets the value of a named attribute to a
specific type

Table 12.2 Properties of the DOMDocument.

Property Name Type Description

Async Boolean If XML file can load
asynchronously, then Async is true

Attributes IDOMNodeList
A list of attributes within a given
node

ChildNodes IDOMNodeList A collection of the children of the
current node

DataType Variant The data type of the node

Definition IDOMNode The definition of the node within
the DTD or schema

DocumentNameSpaces IDOMNodeList A collection of namespaces for the
document

DocumentNode IDOMNode The document’s root node

DocumentType IDOMNode Information from the prolog’s
!DOCTYPE node

LastError IDOMError The last error that occurred

NameSpace IDOMNode The definition for the namespace
on the node

NodeName String The name of the node’s tag

NodeType XMLNodeType The type of node (text, node,
prolog, processing instruction (PI),
comment, and so on)

NodeTypedValue Variant
The value of a node, as a typed
constant

NodeValue String The value or text of a node

ParentNode IDOMNode The node to which the current
node belongs

QualifiedNodeName String Returns the name of the node
without its namespace qualifier

ReadyState Long
Gets the load state of the XML
document

Specified Boolean Indicates whether a definition
exists for the node in the DTD

URL String
The read-only URL of the XML
document

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Loading A Document

Before you can work with an XML document, you need to load it into the data structure.
The DOMDocument provides three ways to do this: loading the document from a file,
loading the document asynchronously from a URL, or converting a string into a
document. Of the three, loading a document from a file is far and away the easiest.
Listing 12.2 prompts the user for an XML file to load and then loads it, generating an
error if the document couldn’t load properly.

Listing 12.2 The LoadXMLFile function returns an instance of the DOMDocument.

' Declare a public variable in form or module
' to hold XML structure
Public DOMDoc as DOMDocument

Public Function LoadXMLFile(Optional Filename As String) _
 As DOMDocument
 Dim CurReason As String
 Set LoadXMLFile = Nothing
 ' If no filename is supplied, prompt for one
 If Filename = "" Then
 With Screen.ActiveForm.CommonDialog1
 .Filter = "XML Files (*.xml)|*.xml"
 .Filename = "*.xml"
 .CancelError = True
 .DialogTitle = "Select an XML File to Load"
 On Error GoTo CancelLoad
 .ShowOpen
 On Error GoTo 0
 Filename = .Filename
 End With

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 End If
 ' Initialize the document object
 Set XMLDoc = New DOMDocument
 ' Load the document.
 ' Load Syntax: Sub load(bstrUrl As String)
 XMLDoc.Load Filename
 ' Check to see if error occurred ("" indicates no error)
 If XMLDoc.lastError.reason <> "" Then
 MsgBox "XML Document unable to load. Reason:" _
 + XMLDoc.lastError.reason
 Else
 Set LoadXMLFile = XMLDoc
 End If
 Exit Function
CancelLoad:
 On Error GoTo 0
End Function

The LoadXMLFile function calls upon the Common Dialog box to show an open box.
(Indeed, most of the code in the function is involved in setting up the dialog.) When an
XML file is located, it is loaded into the parser. If the XML file is well formed—that is, it
conforms to XML logic—then an instance of the new DOMDocument is returned, which
contains the full XML structure.

Especially if you are creating XML structures by hand, it can be notoriously difficult to
get an XML document to parse. The LastError property will retrieve a description of the
last error that occurred, including the exact location of the error in the XML file that the
parser aborted. LastError is an IDOMError class that is covered later in this chapter.

In today’s wired world, it is just as likely that the source of your file will come from the
Internet as it will from a local directory. Although XML files are usually fairly compact,
an XML document with thousands (or even tens of thousands) of nodes is not altogether
rare. As a consequence, sometimes you will want to download the file asynchronously.
Although the DOMDocument object does support this, it doesn’t raise any events,
making it necessary to set up a timer or make a SetTimer API call to determine whether
the document is done loading. On the other hand, Visual Basic 6 also includes a new
capability that lets you add a control to a form at design time—without putting a base
control on the form first. The advantage is that you can make your code much more
portable; as long as a reference to the active form can be obtained, you will be able to
create the required control.

The code in Listing 12.3 demonstrates one way of making an asynchronous load. You
should place this code within a form because it relies on the form as a container for the
timer.

Listing 12.3 Loading an XML file asynchronously.

Option Explicit

Public DOMDoc As DOMDocument
Public Node As IDOMNode
Public NodeList As IDOMNodeList

Public WithEvents DownloadTimer As Timer

Private Sub DownloadTimer_Timer()
 Static dtCount As Integer
 Dim Response As Integer
 dtCount = dtCount + 1
 If DOMDoc.readyState = 4 Then
 ' A readystate of 4 indicates that the download
 ' is done or it failed.
 DownloadTimer.Enabled = False
 Me.Controls.Remove DownloadTimer.Name
 dtCount = 0
 If DOMDoc.lastError.reason <> "" Then
 MsgBox (DOMDoc.lastError.reason)
 Exit Sub
 End If
 Else
 If dtCount Mod 20 = 0 Then
 Response = MsgBox("Load is taking longer" & _
 "than expected. Do you wish to" & _
 "continue?",
 vbYesNo)
 If Response = vbNo Then
 DownloadTimer.Enabled = False
 Me.Controls.Remove DownloadTimer.Name
 dtCount = 0
 End If
 End If
 End If
End Sub

Public Sub AsynchXMLLoad(URL As String)
 Static Ct As Integer
 Set DownloadTimer = Me.Controls.Add("VB.Timer", _
 "CTimer" + CStr(Ct))
 Ct = Ct + 1
 DownloadTimer.Interval = 1000
 DownloadTimer.Enabled = True
 DOMDoc.async = True
 DOMDoc.Load (URL)
End Sub

Private Sub Form_Load()
 Set DOMDoc = New DOMDocument
 AsynchXMLLoad ("c:\bin\EmbeddedXML.xml")
End Sub

The code involving the DOMDocument object is not all that different from the initial
call; to perform an asynchronous load, you need to set the Async property of the object to
true, which indicates that the DOMDoc can continue loading in the background while

other activities take place. Setting Async to false forces the program to halt until the file
is completely downloaded or an error occurs.

To ascertain whether either of these two states has occurred, you need to check the
readyState property of the DOMDocument. This is exactly the same property as the
readyState associated with the Internet Explorer browser upon downloads. When this
property is set to 4, the download has either completed or has raised an error that can be
checked.

Until the download is complete, the program checks a timer that has been added at
runtime. This is a new feature of Visual Basic 6; in earlier versions of VB, you would
specifically have to create the timer at runtime. Because the only reason to have the timer
in place is to help handle downloads, it makes more sense to create it when needed and
then destroy it when the task is handled. To do this, the Controls collection now supports
two new methods: add and remove:

Function add(ControlIdentifier as String, _
 ControlName as String, _
 Optional Container as Object) as Object

Sub remove(ControlName as string)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

ControlIdentifier is the pair ProgID.ClassID, such as “Excel.Work-Book” or
“VB.Timer”, ControlName is the Name property of the new control, and
Container, which is optional, is the form or other container that owns the
control. In Listing 12.2, the timer control was added, supplied a unique name,
and then set to fire once a second. When you declare a variable called
DownloadTimer as a Timer variable with events, the program intercepts the
event when the timer does fire and calls the DownloadTimer_Timer() event
handler. This in turn checks to see if the file has finished downloading,
displaying an error message if the file wasn’t found or failed to parse. If the
file is still downloading, it will continue until either the file does finish or 20
seconds have passed. The user is then prompted about whether he or she wants
to extend the download period or terminate the file retrieval.

Other than the extended code involved in querying the download, there is no
real difference between LoadXMLFile and AsyncXMLLoad. In both cases,
the XML parser handles the hard part of converting the file into an internal
document. Loading from a string is just about as straightforward, although it is
covered in Chapter 14.

Troubleshooting Your XML Document

The IE5 XML parser is unforgiving of errors in the documents it parses. For
people accustomed to the fairly generous ways that most browsers accept bad
HTML, this can come as a bit of a shock, but it actually comes from necessity.
In HTML, the parser can usually make a pretty good guess about the intent of
the code because an already established structure is in place. If you
inadvertently switch the order of closing format tags, such as <I>This is a
test</I>, the browser’s parser knows enough to switch them back
internally.

However, with XML, you are the one defining that structure. The parser
knows only the rules that XML provides and can’t second-guess the creator of

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the XML document. You might accidentally create bad code in several places:

• In the prolog, the tag begins with <?xml—no spaces and all
lowercase. The version number appears next, again in lowercase:
version=“1.0”. Finally, the closing bracket should include a question
mark as well: ?>.

• In the word processor used to create the XML, disable curly quotes. In
general, you should probably write an XML file in an editor specifically
designed for creating HTML, but avoid WYSISIG editors; they have a
tendency to alter erroneous tags, and certain formats for XML tags look
wrong to these editors. I’d recommend an application such as Visual
InterDev, Allaire’s Home Page (my personal favorite), or HoTMetaL.

• Some XML parsers are case sensitive, but others are not; assume the
worst, and establish a convention for your tags and attributes as all
uppercase or lowercase. The IE5 parser in particular is case-sensitive, so
<MYTAG></mytag> will generate an error.

• Attribute values must be surrounded by quotes. This differs from most
modern strains of HTML, where such expressions as are valid. This will generate an error in XML.

• Any standalone tag must be terminated with a slash. For example
<IMAGE REF=“myImage.gif”/> is valid, but <IMAGE REF=
“myImage.gif”> is not unless a corresponding </IMAGE> tag exists.

• Similarly, a standalone tag cannot enclose any text, nor have a closing
tag. In other words, <IMAGE REF=“myImage.gif”/>This is my
picture</IMAGE> will generate an error because of the terminating
back slash in the IMAGE tag.

• You can embed HTML text into XML documents, but to do this, you
need to set the data type of the node through a DTD structure. Without
this, the XML parser will attempt to interpret HTML as if it were XML
with all kinds of headaches as a consequence. Embedding HTML in an
XML document is discussed later in this chapter in the section
“Describing Your Data: The DTD.”

• Finally, outside of the prolog, there can be only one root node in an
XML document; it encompasses all other nodes. Although this root node
doesn’t need to have the name <DOCUMENT>, it usually serves as a
convenient identifier for the root.

In addition to this, if you do provide a DTD—in essence, the rule book of the
document—then you need to follow all the naming and data conventions of
that document as well. You make the rules; you have to live by them.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Navigating An XML Document

Once you load an XML document, the information is stored in a fairly complex data tree in
memory. The key to accessing this tree lies in getting a handle on the root node of the tree.
Fortunately, the DOMDocument returns a reference to that very root, although it is not
necessarily the root of the data tree. If the document has no prolog or XML header (it doesn’t
necessarily need one, by the way), then the DOMDocument object contains the root of the
data set. However, if the prolog is included or there are any comments outside of the data set,
then the start of the data section could be one of several nodes.

The documentNode property of the DOMDocument always contains the start of the data
set—that part of the XML document that actually holds the data. For example, Listing 12.4
shows the weather report document with special nodes indicated.

Listing 12.4 An annotated XML weather report.

<!-- Root Node for the Document, has no name or tag -->
<!-- Root ChildNode 0, nodeName is XML -->
<?xml version="1.0"?>
<!-- Root ChildNode 1, nodeName is ! -->
<!-- A basic weather report for select West Coast locations -->
<!-- Root ChildNode 2, nodeName is WEATHERREPORT -->
<!-- node is documentNode -->
<WEATHERREPORT>
 <STATE NAME="California">
 <CITY ID ="Los Angeles">
 <SKIES VALUE="PARTLYSUNNY"/>
 <HI C="31" F="87"/>
 <LOW C="18" F="65"/>
 Partly cloudy.
 </CITY>
 <CITY ID ="Sacramento">
 <SKIES VALUE="SUNNY"/>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <HI C="36" F="97"/>
 <LOW C="13" F="64"/>
 Sunny and hot.
 </CITY>
 </STATE>
 <STATE ID ="Washington">
 <CITY ID ="Seattle">
 <SKIES VALUE="RAIN"/>
 <HI C="12" F="54"/>
 <LOW C="9" F="49"/>
 Raining on and off throughout the day.
 </CITY>
 <CITY ID ="Olympia">
 <SKIES VALUE="CLOUDY"/>
 <HI C="11" F="49"/>
 <LOW C="8" F="47"/>
 30% chance of rain toward evening.
 </CITY>
 <CITY ID="Redmond">
 <SKIES VALUE="RAIN"/>
 <HI C="10" F="50"/>
 <LOW C="5" F="41"/>
 Rain, mixed with showers.
 </CITY>
 </STATE>
</WEATHERREPORT>

In this case, the root node has three children—the prolog tag, a comment, and the document
node. The length property can confirm this. For either the DOMDocument or most
DOMNodes, length will return the number of children that the node supports. (This also gives
a hint of how Java is influencing even Internet Explorer; length refers to the number of items
in a given collection in Java or JavaScript.)

To actually retrieve the node, you need to use the childNodes collection. Each node has a
childNodes property, an instance of an IDOMNodeList. The IDOMNodeList provides much
of the navigation capability within the XML structure and can be used to retrieve specific
nodes. However, it should be pointed out that the IDOMNodeList is not a collection in the
traditional Visual Basic sense. It doesn’t support For Each style enumeration, and it doesn’t
have a default index (or a key, for that matter) as a collection does. Instead, it relies on the
item(n) function, where n is the zero-based index of the members of the collection. Thus, the
first node is item(0), the second node item(1), and so forth. For the weather report, then, the
documentNode is the same as the third child (index of 2) of the root node:

DOMDoc.documentNode=DOMDoc.childNodes.item(2)

The item() function returns an IDOMNode object, which has a subset of the same methods
and properties as the DOMDocument object. The IDOMNodeList methods are outlined in
Table 12.3, and the methods and properties for the IDOMNode object are listed in Tables 12.4
and 12.5. Neither IDOMNodes nor IDOMNodeLists are directly createable in Visual Basic;
you can’t use the New operator to create a standalone IDOMNode. Similarly, IDOMNodes
don’t raise any events, although with some clever programming, it’s possible to create an
IDOMNode surrogate that will (as shown later in this chapter).

Table 12.3 Methods and properties of the IDOMNodeList.

Method Name Description

CurrentNode Returns a pointer to the current node in the list

Item Returns a pointer to the indexed node in the list

Length (property) The number of nodes in the list

MoveTo Sets the current node to the indexed item

MoveToNode Sets the current node to the passed node

NextNode Sets the current node to the next node in the list

PreviousNode Sets the current node to the previous node in the list

Table 12.4 Methods of the IDOMNode object.

Method Name Description

GetAttribute Retrieves a root node’s attribute by name

InsertNode Positions a node in the tree

RemoveAttribute Removes an attribute from the node

RemoveNode Removes the node from the XML tree

ReplaceNode Replaces one node with another

SetAttribute Sets the value of a named attribute to a string

Table 12.5 Properties of the IDOMNode.

Property Name Type Description

Attributes IDOMNodeList A list of attributes within a given node

ChildNodes IDOMNodeList A collection of the children of the current
node

NodeName String The name of the node’s tag

NodeType XMLNodeType The type of node (text, node, prolog,
comment, and so on)

NodeValue String The value or text of a node

ParentNode IDOMNode The node to which the current node belongs

Specified Boolean Indicates whether a definition exists for the
node in the DTD

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Navigating through the XML tree is unfortunately not as intuitive as it could be, but it’s still
relatively powerful. The key is to realize that navigation happens primarily through the
ChildNodes collection of each node. One of the properties of this collection is the
currentNode object, which acts as a pointer into the list of nodes in each child node
collection. You can then move this pointer by invoking one of the member functions of the
child nodes object.

This can best be seen in the weather report, a fragment of which is repeated in Listing 12.6 for
reference. The child nodes are evident, by the way, not just by being enclosed in wrapper tags
but also by being indented. Indenting is an invaluable visual aid for deciphering the structure
of an XML document.

Listing 12.6 Navigating through the weather report.

<?xml version="1.0"?>
<!-- A basic weather report for select West Coast locations -->

<WEATHERREPORT> -- DocumentNode
 <STATE NAME="California">
 <CITY ID ="Los Angeles">
 <SKIES VALUE="PARTLYSUNNY"/>
 <HI C="31" F="87"/>
 <LOW C="18" F="65"/>
 Partly cloudy.
 </CITY>
 <CITY ID ="Sacramento">
 <SKIES VALUE="SUNNY"/>
 <HI C="36" F="97"/>
 <LOW C="13" F="64"/>
 Sunny and hot.
 </CITY>
 </STATE>
 <STATE ID ="Washington"> -- MoveTo(1) (i.e., 2nd item)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <CITY ID ="Seattle"> -- MoveTo(0) (i.e., 1st item)
 <SKIES VALUE="RAIN"/>
 <HI C="12" F="54"/>
 <LOW C="9" F="49"/> -- MoveTo(2), then _
 getAttribute("F")
 Raining on and off throughout the day.
 </CITY>
 <CITY ID ="Olympia">
 <SKIES VALUE="CLOUDY"/>
 <HI C="11" F="49"/>
 <LOW C="8" F="47"/>
 30% chance of rain toward evening.
 </CITY>
 <CITY ID="Redmond">
 <SKIES VALUE="RAIN"/>
 <HI C="10" F="50"/>
 <LOW C="5" F="41"/>
 Rain, mixed with showers.
 </CITY>
 </STATE>
</WEATHERREPORT>

For example, to retrieve the low temperature node from the weather report in Seattle,
Washington, you could use the MoveTo method in conjunction with the CurrentNode
method:

DOMDoc.documentNode.MoveTo 1 ' This moves the pointer to
 ' the Washington State node
DOMDoc.documentNode.CurrentNode.ChildNodes.MoveTo 0
 ' This moves the pointer to
 ' the Seattle City node
DOMDoc.documentNode.CurrentNode.ChildNodes.CurrentNode. _
 ChildNodes.MoveTo 2 ' This moves the pointer to
 ' the Low node.

Of course, because the MoveTo method returns the CurrentNode, this can be shortened to
the following:

DOMDoc.documentNode.MoveTo(1).MoveTo(0).MoveTo 2

Similarly, you use the PreviousNode and NextNode methods to move the CurrentNode to
the previous or next node in the list. One caveat in using any of these navigational moves:
You can move outside the bounds of the list by calling PreviousNode at the first node,
NextNode at the last node, or passing an index beyond the bounds of the ChildNodes list.

The MoveToNode method is one of those functions that makes you wonder why it was
added. MoveToNode takes a node as a parameter and sets the CurrentNode to that node—if
the node being passed is in the ChildNodes list that calls the function. Otherwise, it sets the
current node to Nothing. I’m sure that somewhere someone has a need for that function, but
I’m puzzled about what the need would be.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Node Names, Node Values, And Attributes

The nodeName property retrieves the name of the tag associated with a given node. It’s worthwhile
here to distinguish between a node and a tag. A start tag acts as the opening delimiter for a node,
just as the end tag acts as a closing delimiter. Everything within those two tags forms a part of the
node; a node’s children are, technically speaking, a part of the node as a consequence, as is its text.

The documentNode property of the DOMDocument in the weather example has a nodeName of
“WEATHERREPORT”, whereas the second child of that node has the nodeName of “STATE”.
Because the node is a container, you’ll never end up retrieving a “/STATE” or
“/WEATHERREPORT” nodeName; that serves simply as the terminator for the node.

The nodeValue property, on the other hand, can be a little confusing. For example, the nodeValue
of WEATHERREPORT is “Partly cloudy. Sunny and hot. Raining on and off throughout the day.
30% chance of rain toward evening. Rain mixed with showers.”

This confusing (and contradictory) weather report was brought to you by the twisted notion of
nodeValue; everything that isn’t a tag is returned as a string into nodeValue. This makes sense if
you look at XML’s other role as a document markup language. The formatting of a page should be
independent of its content, such that you could retrieve the text of the entire document if you need
it.

The weather report resolves itself only when the document’s scope narrows to the CITY level. For
example, to retrieve the forecast for Olympia, Washington, you’d navigate as follows:

Dim Node as IDOMNode
Set Node=DOMDoc.DocumentNode
Set Node=Node.ChildNodes.MoveTo(1) ' Move to Washington
Set Node=Node.ChildNodes.MoveTo(1) ' Move to Olympia
MsgBox "Today's forecast for Olympia,Washington is" +Node.NodeValue

NOTE
You can set the nodeValue of a given node, but you should do so only with a node that contains only
text. If it contains any children nodes, those nodes will be deleted and replaced with the new text.

This will cause a dialog box to pop up with the message “Today’s forecast for Olympia,
Washington is 30% chance of rain toward evening.”

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Of course, it would be useful to get the rest of the information about that weather report. To do that,
you need to read the attributes of a given node. The implementation of attributes in the IE5 parser
uses a clever trick; it treats the collection of attributes in a given node as if it was a second
DOMNodeList belonging to that node. This IDOMNodeList is contained in the Attributes
property. The attribute name is then given for each attribute by the nodeName, and the value of the
attribute is given by the nodeValue.

For example, to retrieve the low temperature in degrees Fahrenheit in Olympia, you navigate to the
LOW node for that city and then retrieve the attribute from its index:

Dim Node as IDOMNode
Set Node=DOMDoc.DocumentNode
Set Node=Node.ChildNodes.MoveTo(1) ' Move to Washington
Set Node=Node.ChildNodes.MoveTo(1) ' Move to Olympia
Set Node=Node.ChildNodes.MoveTo(1) ' Move to the LOW
 ' temperature node
Set Node=Node.Attributes.MoveTo(1) ' Retrieve the attributes
 ' property
 ' and get the second node
 ' ("F")
MsgBox "The low for Olympia was "+Node.NodeValue+ _
 "degrees "+Node.NodeName
' Displays a dialog box saying
' "The low for Olympia was 47 degrees F"

Obviously, it is more preferable to just reference the attribute by name. The GetAttribute and
SetAttribute functions do just that:

Dim Node as IDOMNode
Set Node=DOMDoc.DocumentNode
' Move to Washington
Set Node=Node.ChildNodes.MoveTo(1)
' Move to Olympia
Set Node=Node.ChildNodes.MoveTo(1)
' Move to the LOW temperature node
Set Node=Node.ChildNodes.MoveTo(1)
MsgBox "The low for Olympia was "+Node.GetAttribute("F")+ _
 " degrees F"
' Displays a dialog box saying
' "The low for Olympia was 47 degrees F"
Node.SetAttribute "F","50"
MsgBox "The low for Olympia was "+ _
 Node.GetAttribute("F")+ _
 " degrees F"' Displays a dialog box saying
 ' "The low for Olympia was 50 degrees F"

The SetAttribute method takes both the attribute name and the new value, creating the attribute if it
doesn’t already exist. The GetAttribute function takes only the attribute name, and if that attribute
doesn’t exist, the function returns a null value. This can in fact be a useful test to determine whether
a given attribute exists because even if an attribute has been set to a blank string, a blank string is
still not the same as a null and can be tested with the IsNull() function. The IsValidAttribute()
function illustrates this:

Function IsValidAttribute(Node as IDOMNode, _
 Attribute as String) as Boolean

 ' Returns true if the given node has the attribute ' listed
 IsValidAttribute=Not IsNull(Node.GetAttribute(Attribute))
End Function

These functions provide the building blocks for navigation, but obviously, you will probably not
want to access elements in an XML structure by specifying the third child of the first child of the
second child of the root node. To get more out of XML, you need to be able to walk the tree.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Walking The Tree

In Internet Explorer 4 and 5, you can use the all() method of the document to retrieve
an object that has a specific ID value. It’s useful to provide a similar function for your
XML document; reference a collection of all records that have an ID property (or any
property, for that matter), and return the object that corresponds to that property. You
can break this down into two distinct steps—building the list and then retrieving the
appropriate keyed item.

As mentioned earlier, XML makes use of a recursive descent parser to interpret the
document. You can take advantage of this same structure to get information out of the
XML tree by using recursion. In other words, the way to retrieve something from the
document is to process a node and then process the node’s children, then their
children, until eventually, the whole tree is handled. Because you use the same
operation throughout the tree, this process essentially involves calling the processing
function within itself.

The GetAttributeNodes function uses recursion to populate a dictionary object with
pointers to each of the nodes that have the requested attribute. Because these are object
references, they can be used to retrieve the actual node within the XML structure. The
code for GetAttributeNodes is shown in Listing 12.7.

NOTE
The dictionary object is available as part of the Scripting ActiveX component that
comes with IE5 and provides much of the functionality of a collection without the
overhead or error handling. To add it to your Visual Basic projects, select References
from the Project menu and check Microsoft Scripting Runtime (SCRRUN. DLL). The
beta version of the Visual Basic documentation indicates that it may actually be
included in the VB language itself as a default type, but the current beta doesn’t
include it as a native function.

Listing 12.7 Walking an XML tree to retrieve a list of nodes.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Public Function GetAttributeNodes(Node As IDOMNode, _
 Attr As String, Optional ByRef AttrList As Dictionary) _
 As Dictionary
 Dim isRoot As Boolean
 Dim index As Integer
 Dim ChildNode As IDOMNode
 If AttrList Is Nothing Then
 Set AttrList = New Dictionary
 isRoot = True
 End If
 If Not IsNull(Node.getAttribute(Attr)) Then
 AttrList.Add Node.getAttribute(Attr), Node
 End If
 For index = 0 To Node.childNodes.Length - 1
 Set ChildNode = Node.childNodes.Item(index)
 If ChildNode.nodeType = NODE_ELEMENT Then
 GetAttributeNodes ChildNode, Attr, AttrList
 End If
 Next
 Set GetAttributeNodes = AttrList
End Function

Not all nodes are created equal. Nodes that handle text don’t have children, but nodes
that handle elements do. Attribute nodes can’t contain data structures but do have
nodeNames. Comments are handled differently as well.

The action that a node can take is known as its nodeType. The node-Type of an XML
node determines whether a node is an element, text, a comment, or some other XML
structure. Only element node types have children and attributes; any other type of
node causes the tree walker to fail. Table 12.6 contains a list of all the node types.

Table 12.6 Node type values.

Node Type Description

NODE_ATTRIBUTE Specifies an attribute node

NODE_CDATA A text node that contains protected characters

NODE_COMMENT A comment within the XML body

NODE_DOCTYPE The initial declaration of the document as an XML
document

NODE_DOCUMENT The documentNode object

NODE_ELEMENT A structural node

NODE_ENTITYREF A node in the DTD that defines a replaceable entity

NODE_NAMESPACE A node in the DTD that contains a namespace

NODE_PCDATA A text node (Parsed Character Data)

NODE_PI A node in the DTD containing a processing instruction

NODE_WHITESPACE Indicates that node preserves white space

NODE_XMLDECL An element declaration node within a DTD

Recursion is a powerful programming technique that works especially well with XML.
The GetAttributeNodes function is initially called with only two arguments—the
document node of the XML structure to parse and the attribute to search for. The third
argument, an optional dictionary list, will be created if a dictionary object isn’t passed
as a parameter. The routine then adds the node to the list if it has the requisite attribute
explicitly defined. Finally, it iterates through all the children of the list and calls the
same function for each child.

You can use the GetAttributeNodes function to implement an ID lookup function, as
mentioned previously. By passing the attribute “ID” to the function and then looking
up the requested ID value in the returned dictionary, you can retrieve a pointer to the
node that has that particular ID. The GetIDNode function in Listing 12.8 does just
that.

Listing 12.8 The GetIDNode function returns a pointer to the requested ID node.

Public Function GetIDNode(xmlNode As Object, RequestedID _
 As String, optional IDTag as string) As IDOMNode
 Dim TargetNode As IDOMNode
 Dim IDList As Dictionary
 Dim startNode as IDOMNode

 ' If no IDTag is supplied, use "ID"
 if IDTag="" then IDTag="ID"
 ' If the root node is passed, get the document node
 If typename(xmlNode)="IXMLDOMDocument" then
 Set startNode=xmlNode.documentNode
 Else
 ' Otherwise use the current node
 Set startNode=xmlNode
 End If
 Set TargetNode = Nothing Set IDList = _
 GetAttributeNodes(startNode, IDTag)
 If Not TypeName(IDList(RequestedID)) = "Empty" Then
 Set TargetNode = IDList(RequestedID)
 End If
 Set GetIDNode = TargetNode
End Function

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

This is a convenient way to get at “named” entries in your XML document. For example, to retrieve the
node associated with Olympia, Washington, you simply need to say:

Set node=GetIDNode(DOMDoc,"Olympia")

You can use three other routines in conjunction with the GetIDNode function to simplify navigation
further. GetNamedNode, GetNamed-NodeCount, and GetNodeIndex query the children of the node
passed to it. GetNamedNode (see Listing 12.9) returns the first node it finds with the requested name,
although you can pass in an index that will cause it to get the second, third, and so on node instead.
GetNamed-NodeCount (see Listing 12.10) indicates how many children nodes of the passed node have
the requested node name. Finally, GetNodeIndex (see Listing 12.11) returns the position of the current
node within the set of childNodes.

Listing 12.9 Code for the GetNamedNode function.

' Function GetNamedNode()
' Takes as an argument the parent node of the nodes to be
' searched, the nodeName to be searched for, and a 0-based
' index for retrieving subsequent nodes if more than one node
' in the children collection has the requested name.
' Defaults to 0, the first node found.
' If no nodes match the name, the function retrieves
' the value Nothing.
' Usage:
' dim node as IDOMNode
' dim CityNode as IDOMNode
' ' Set CityNode to the CITY node associated with
' ' Olympia, Washington
' ' Retrieve the first FORECAST node
' set node=GetNamedNode(CityNode,"FORECAST")
' ' or
' set node=GetNamedNode(CityNode,"FORECAST",0)
' ' Retrieve the second FORECAST node
' set node=GetNamedNode(CityNode,"FORECAST",1)
Public Function GetNamedNode(node As IDOMNode, _
 tagName As String, Optional position As Integer) As IDOMNode
 Dim NamedNodeList As Dictionary
 Dim TargetNode As IDOMNode
 Dim NumNodesFound As Integer

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Dim Index As Integer
 Dim tempNode As IDOMNode
 NumNodesFound = 0
 Set TargetNode = Nothing
 Set NamedNodeList = New Dictionary
 If node.nodeType = NODE_ELEMENT Then
 For Index = 0 To node.childNodes.Length - 1
 Set tempNode = node.childNodes.Item(Index)
 If tempNode.nodeType = NODE_ELEMENT Then
 If tempNode.nodeName = tagName Then
 If NumNodesFound = position Then
 Set TargetNode = tempNode
 Exit For
 Else
 NumNodesFound = NumNodesFound + 1
 End If
 End If
 End If
 Next
 End If
 Set GetNamedNode = TargetNode
End Function

Listing 12.10 Code for the GetNamedNodeCount function.

' Function GetNamedNodeCount()
' Takes a parent node and the nodeName to be searched
' and returns the number of nodes in the parent's
' children that have that nodeName.

' Usage:
' dim node as IDOMNode
' dim CityNode as IDOMNode
' dim ForecastCount as Long
' ' Set CityNode to the CITY node associated with
' ' Olympia, Washington
' ' Retrieve the number of FORECAST nodes
' ForecastCount=GetNamedNodeCount(CityNode,"FORECAST")

Public Function GetNamedNodeCount(node As IDOMNode, _
 tagName As String) As Long
 Dim nodeCount As Long
 Dim childNode As IDOMNode
 Dim Index As Long
 nodeCount = 0
 For Index = 0 To node.childNodes.Length - 1
 Set childNode = node.childNodes.Item(Index)
 If childNode.nodeType = NODE_ELEMENT Then
 If childNode.nodeName = tagName Then
 nodeCount = nodeCount + 1
 End If
 End If
 Next
 GetNamedNodeCount = nodeCount
End Function

Listing 12.11 Code for the GetNodeIndex function.

' Function GetNodeIndex()
' Takes a parent node and a possible child node,
' and returns the position of the child within the parent's
' children. If not found, the function returns -1.
' Usage:
' dim node as IDOMNode
' dim CityNode as IDOMNode
' dim ChildNodePosition as Long
' ' Set CityNode to the CITY node associated with
' ' Olympia, Washington
' ' Retrieve the first FORECAST node
' set node=GetNamedNode(CityNode,"FORECAST",0)
' ' Determine its position in the list of CityNode's
' ' Children
' ChildNodePosition=GetNodeIndex(CityNode,node)

Public Function GetNodeIndex(parentNode As IDOMNode, _
 childNode As IDOMNode) As Long
 Dim Index As Long
 GetNodeIndex = -1
 For Index = 0 To parentNode.childNodes.Length - 1
 If parentNode.childNodes.Item(Index) Is childNode Then
 GetNodeIndex = Index
 Exit For
 End If
 Next
End Function

These functions can work together as an alternative navigational system. For example, to find the HI
temperature in degrees Fahrenheit for Olympia, you could use the following:

Dim OlywaNode as IDOMNode
Dim temperature as string
Set OlywaNode=GetIDNode(DOMDoc,"Olympia")
Temperature= OlywaNode.GetNamedNode("HI").getAttribute("F")
Msgbox "The HI temperature for Olympia was "+Temperature +" F"

Similarly, to print the forecasts for all the cities in the list, you could use the code in Listing 12.12.

Listing 12.12 The subroutine PrintForecast outputs the first forecast of each city and state.

Public Sub PrintForecast()
 Dim StateIndex as Integer
 Dim CityIndex as Integer
 Dim StateNode as IDOMNode
 Dim CityNode as IDOMNode
 Dim Forecast as string
 Dim Buffer as string
 For StateIndex=0 to GetNamedNodeCount(DOMDoc,"STATE")
 Set StateNode=GetNamedNode(DOMDoc,"STATE", _ StateIndex)
 For CityIndex=0 to GetNamedNodeCount(StateNode, _ "CITY")
 Set CityNode=GetNamedNode(StateNode,"CITY", _ CityIndex)
 Forecast=GetNamedNode(CityNode, _ "FORECAST").NodeValue
 Buffer= CityNode.GetAttribute("ID")+","
 Buffer=Buffer+StateNode.GetAttribute("ID")+":"
 Buffer=Buffer+Forecast
 Print Buffer
 Next CityIndex
 Next StateIndex

End Sub

You could create a simple XML weather-report client with what I have already covered in this chapter.
However, there is much more to XML than a simple tree. XML documents can hold HTML and more
structured data types than text. To unlock these capabilities, it’s necessary to dig into the Document Type
Description.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Describing Your Data: The DTD

You’ve just developed a weather browser that will be used by thousands of
people across the world. The product takes off, but there’s a problem. Your
competitor, Wacky Weather Tools, has come out with a product that also holds
a significant share of the weather browser market. While you and your
competitor stare across the street at one another, your customer base begins to
complain about the fact that Jane in Hoboken (a loyal customer of your
service) can’t share her data with Fred in Peoria (a dirty, treacherous customer
of that other company) (see Figure 12.3). Indeed, it may even cause the Sunny
Days Browser Company, a small upstart, to get a foothold in the industry.

Figure 12.3 With propietary formats, duplication of data and incompatibility
between machines becomes common.

This incompatibility is a problem perfect for XML. Although your marketing
department and their marketing department are fencing with press releases,
you call Jan over at Wacky Weather Tools to discuss the idea of developing a
weather standard, an XML data format that both companies can use in addition
to your own proprietary formats. A couple calls to Sunny Days brings them on
board as well, and the three of you hammer out a Document Type Description,
or DTD, that provides the necessary information for all three of your browsers
to get a minimal amount of functionality. This DTD is then provided to all
interested parties as a set of guidelines for creating documents (see Figure
12.4).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/12-03.jpg',568,337)
javascript:displayWindow('images/12-03.jpg',568,337)

Figure 12.4 A DTD makes it much easier to consolidate data, as well as share
it.

DTDs gain a considerable amount of their power from the fact that they are
parsed in with your XML documents. If your XML is improper, the parser
won’t compile the document, although better parsers will indicate where
you’ve gone wrong. This prevents data standards from deviating accidentally
and ensures that everyone who needs to use your DTD can in fact read it,
either manually or via specialized viewers.

This scenario is precisely what has happened for a number of industries and
scientific disciplines, although in many cases, the documents were based upon
the older (but lexically similar) SGML. For example, the mathematics
community has set a standard convention called the Mathematical Markup
Language for use in transcribing complex mathematical notation. The
materials and chemicals discipline has the Chemistry Markup Language, a way
of describing complex molecules in a consistent fashion. Recently, the Open
Financial Exchange (OFX) was ratified by a board of banks and financial
institutions, providing a standard for transmission of financial data into the
21st century. All of these standards are instance languages of SGML.

XML is likewise beginning to spawn children of its own. The Channel
Definition Format used by Microsoft to specify channel information on the
Internet was instrumental in bringing XML to the attention of Web developers.
More recently, Macromedia, Microsoft, Hewlett-Packard, AutoDesk, and
Visio submitted the Vector Markup Language to the W3C, the committee that
arbitrates decisions concerning Internet standards. This language is used for
transmitting two-dimensional vector-based graphics over the Internet, and it is
based on the XML format. You can view its proposal on the Web at
www.w3.org/TR/NOTE-VML.

Similarly, SMIL (Synchronized Multimedia Integration Language) is an
XML-based proposal before the W3C that would provide synchronization
information for integrated media, essentially an HTML for digital video and
audio (the proposal for SMIL is located at www.w3.org/TR/REC-smil/). This
technology is still in its infancy but could revolutionize our ability to access
information from any media, not just text.

NOTE
A competing specification backed by Adobe, Netscape, IBM, and Sun is the
Precision Graphics Markup Language (PGML), which is based upon
Adobe’s PDF and PostScript formats. The specification for PGML can be
found at www.w3.org/TR/1998/NOTE-PGML. This should be taken as an
indication that not everyone in the industry is behind XML as a data
standard, as well as give you an idea about the amount of back-room
politicking involved in getting a standard that everyone agrees upon.

In all of these cases, what has been agreed upon is a common description (the

javascript:displayWindow('images/12-04.jpg',510,316)
javascript:displayWindow('images/12-04.jpg',510,316)
http://www.itknowledge.com/reference/standard/1576102823/ch12/www.w3.org/tr/note-vml
http://www.itknowledge.com/reference/standard/1576102823/ch12/www.w3.org/tr/rec-smil/
http://www.itknowledge.com/reference/standard/1576102823/ch12/www.w3.org/tr/1998/note-pgml

DTD) that serves as the guide and enforcer of standards. In most cases, you
probably will not need DTDs developed at the same level as those that govern
the behavior of major software companies, banks, or colleges, but the same
reasons that make XML DTDs useful to these companies apply to your
department, company, or studio:

• A DTD ensures that the XML data files that you create will work for
others who rely on the same format.

• An application that uses a DTD may be able to correct errors in the
document before they get promulgated.

• A DTD can be set up to provide default values, simplifying the
amount of coding needed for a given file.

• A DTD can define entities, macro expressions that can be replaced by
other expressions or even entire documents.

• A DTD makes linking between documents possible.

• A DTD can define certain attributes and node values as having data
types other than strings (for example, dates).

Building a DTD is not a trivial undertaking, which is part of the reason it is not
always required. A simple application (such as the weather report example)
doesn’t require a lot of definition, but a true interchange format (such as a real
weather browser application) might have a DTD that runs thousands of lines
long. Moreover, because one of the advantages of XML is its ability to
incorporate relational information, the final creation of such a DTD can be
serious work. Is it worth it? Usually, yes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Specifying The Elements

One of the primary tasks of the DTD is to establish a framework in which the document
lives—its rule book, so to speak. This rule book can determine the relationship between
different tags, such as how a <LOW> tag relates to a < CITY> tag. An internal DTD (one
contained within the same document as the XML data) may look similar to Listing 12.13.

Listing 12.13 The weather report XML structure with an internal DTD.

<?xml version="1.0"?>
<!DOCTYPE WEATHERREPORT [
<!ELEMENT WEATHERREPORT (STATE)*>
<!ELEMENT STATE (CITY)*>
<!ELEMENT CITY (SKIES,HI,LOW,PRECIPITATION?,FORECAST)>
<!ELEMENT SKIES (#PCDATA)>
<!ELEMENT HI (#PCDATA)>
<!ELEMENT LOW (#PCDATA)>
<!ELEMENT FORECAST (#PCDATA)>
<!ELEMENT PRECIPITATION (#PCDATA)>
<!ATTLIST STATE
 ID ID #REQUIRED
 TITLE CDATA #IMPLIED>
<!ATTLIST CITY
 ID ID #REQUIRED
 TITLE CDATA #IMPLIED>
<!ATTLIST SKIES
VALUE (SUNNY|PARTLYSUNNY|PARTLYCLOUDY|CLOUDY|SHOWERS|RAIN)
"SUNNY">
<!ATTLIST HI
 C CDATA #REQUIRED
 F CDATA #IMPLIED>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<!ATTLIST LOW
 C CDATA #REQUIRED
 F CDATA #IMPLIED>
<!ATTLIST PRECIPITATION
 CM CDATA #IMPLIED>
]>
<WEATHERREPORT>
 <STATE ID="California">
 <CITY ID="Los Angeles">
 <SKIES VALUE="PARTLYSUNNY"/>
 <HI C="31" F="87"/>
 <LOW C="18" F="65"/>
 <FORECAST><![CDATA[Partlycloudy]]>
 </FORECAST>
 </CITY>
 <CITY ID="Sacramento">
 <SKIES VALUE="SUNNY"/>
 <HI C="36" F="97"/>
 <LOW C="13" F="64"/>
 <FORECAST>Sunny and hot.</FORECAST>
 </CITY>
 <CITY ID="San Francisco">
 <SKIES VALUE="PARTLYCLOUDY"/>
 <HI C="26" F="79"/>
 <LOW C="14" F="58"/>
 <FORECAST>Partly cloudy and humid.</FORECAST>
 </CITY>
 </STATE>
 <STATE ID="Washington">
 <CITY ID="Seattle">
 <SKIES VALUE="RAIN"/>
 <HI C="20" F="68"/>
 <LOW C="15" F="59"/>
 <PRECIPITATION CM="2.4"/>
 <FORECAST>Raining on and off throughout the day.
 </FORECAST>
 </CITY>
 <CITY ID="Olympia">
 <SKIES VALUE="PARTLYSUNNY"/>
 <HI C="23" F="73"/>
 <LOW C="14" F="57"/>
 <FORECAST>Partly sunny after morning clouds.
 </FORECAST>
 </CITY>
 <CITY ID="Redmond">
 <SKIES VALUE="RAIN"/>
 <HI C="18" F="65"/>
 <LOW C="12" F="54"/>
 <PRECIPITATION CM="4.2"/>
 <FORECAST>Snowstorms in the afternoon.</FORECAST>
 </CITY>

 </STATE>
</WEATHERREPORT>

The DTD is contained as part of the prolog and should appear immediately after the <?xml
declaration. Such a DTD starts out with a <!DOCTYPE node, which essentially points to
the root tag of the XML data. The term after the DOCTYPE will usually have the same
name as the root node of the structure (in this case, WEATHER-REPORT). An internal
DTD, such as shown here, usually doesn’t require much elaboration beyond this point,
although the rules differ somewhat for an external DTD, covered later in this chapter.

The internal DTD, bounded by square brackets, contains a number of different data types
The <!ELEMENT> node lists a given element and describes what children elements it
contains:

<!ELEMENT WEATHERREPORT (STATE)*>
<!ELEMENT STATE (CITY)*>
<!ELEMENT CITY (SKIES,HI,LOW,PRECIPITATION?,FORECAST)>
<!ELEMENT SKIES (#PCDATA)>

NOTE
If an element can hold all the elements defined within the document, you can also use the
simpler ALL argument: <!ELEMENT WEATHERREPORT ALL>. This is especially
useful when dealing with external entities (discussed later in this chapter).

This example declares that the WEATHERREPORT element contains zero or more
STATE elements; the asterisk (*) tells the parser that if it had been left off, the weather
report could have had one and only one state within it. Likewise, the STATE element has
zero or more CITY elements. Just on the basis of these declarations, the XML tags
<WEATHERREPORT/> and <WEATHERREPORT> <STATE
ID=“California”/></WEATHERREPORT> would both be considered perfectly
legitimate.

The CITY element is more complex. It shows that the CITY must contain SKIES, HI,
LOW, and FORECAST, and may include the PRECIPITATION node (the question
mark at the end makes the element optional). Moreover, because the list is separated by
commas, these elements must appear in the order given; you can’t have the LOW tag
appearing before the HI tag, for example. If the order of the data is unimportant or if it
may be coded in more than one order, you can use the pipe character (|) to separate the
elements instead.

Note here that the CITY element can have only one instance of the listed children; there is
no asterisk terminating the list. This makes sense here because more than one LOW or
FORECAST for a given city makes no sense.

The SKIES node in turn indicates that the data it contains is parsed character data
(PCDATA). To signal to the parser that PCDATA is not a tag name itself, you need to
precede it with a pound sign (#PCDATA). Parsed character data includes any and all
forms of text, including no text at all—which is the reason that a SKIES node takes the
#PCDATA notation, even though it doesn’t actually contain any text.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

An element can contain a mixture of both other elements and text. In this case, it is
necessary to use the pipe character to indicate this fact. For example, in the first XML listing
in this chapter, a city node’s forecast wasn’t encased in <FORECAST> tags. To create the
DTD to allow this, you’d use the following expression:

<!ELEMENT CITY (#PCDATA|SKIES|HI|LOW|PRECIPITATION|FORECAST)*>

This indicates that there may be zero or more of any of the defined elements, including
generic text. Note that you don’t need to indicate that a given entry is optional; with the pipe
notation, all elements are optional.

Adding Attributes

A data file has a number of different ways of presenting information. Although it is tempting
to have a unique element—a separate node—for each piece of information that you need,
this approach often works indifferently at best in an OOP environment. On the other hand, it
usually doesn’t make a lot of sense to put large quantities of text within an attribute string
(especially when that text could potentially have embedded quotes that play havoc with the
parser). Finding a good balance between using too many and too few attributes takes
practice and experience and realistically is a critical part of creating the DTD in the first
place.

The <!ATTLIST> directive tells the parser to associate a given parser name (and potential
values) to a node. As long as the node <!ELEMENT> has been defined previously, the <
ATTLIST> for that element can appear anywhere, although the normal convention is to
place it after the elements have been defined. A simple < ATTLIST> for the HI element
shows the basic structure:

<!ATTLIST HI
 C CDATA #REQUIRED
 F CDATA #IMPLIED>

The term immediately following the <!ATTLIST directive is the element that the attribute

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

list belongs to. After that comes the name of the attribute (here “C”) and an indication of
what type of data the attribute is. In this case (as will typically be the case), the attribute is a
CDATA, or character data, type, which simply means that it contains text characters.

The final term can take one of these three values: #REQUIRED, #IMPLIED, or #FIXED.
A required attribute must be defined within the tag. Omitting it causes the parser to raise an
exception. An implied attribute, on the other hand, doesn’t have to be given. For example,
with the value given previously, because the Fahrenheit temperature can be ascertained from
the Celsius temperature, it is not, strictly speaking, required. An example where it makes
more sense is a tag that points to an image file. You can create an <!ATTLIST> where the
WIDTH and HEIGHT are implied. If they are left out, then the browser displaying the
image can retrieve this information directly from the image file, whereas if they are
included, these values overwrite the document defaults and the image gets scaled.

In some cases, it is worthwhile to have an attribute that provides a default value. For
example, suppose that the CITY attribute had another field called SRC, which indicated
who provided the data. Typically, the data is collected by the National Weather Service,
which makes it a logical default value. You can indicate this within an <!ATTRLIST> tag
simply by providing the default:

<!ATTLIST CITY
 SRC CDATA "National Weather Service">

If this is the only source, you might want to set this value as a fixed value. In this case, you
apply the #FIXED attribute to the end of the expression:

<!ATTLIST CITY
 SRC CDATA "National Weather Service" #FIXED>

Now, if you attempt to load or change the value of the attribute, the parser will raise an
exception. Fixed attributes are useful mechanisms to enforce version-specific information in
an XML document.

In some cases, you might want to limit what value a given attribute can take by providing
enumerated values. You can provide a list of possible values, and the XML document will
only parse the document if the attribute value is in that list. An example of this appears in
the SKIES declaration:

<!ATTLIST SKIES
VALUE (SUNNY|PARTLYSUNNY|PARTLYCLOUDY|CLOUDY|SHOWERS|RAIN)
"SUNNY">

The CDATA expression has been replaced with a list of possible values, from SUNNY to
RAIN, with a default value of SUNNY. If you attempt to set the SKIES attribute to SNOW,
the parser will complain, but it will be perfectly happy with PARTLYCLOUDY. This
technique is especially useful for situations where an attribute can take a Boolean value:
<!ATTLIST ISRAINING VALUE(TRUE,FALSE) “TRUE”>, for example, will let you
set the ISRAINING attribute to either TRUE or FALSE, but nothing else.

NOTE
At the time of writing, the IE5 parser will properly disallow changes to fixed or enumerated
attributes but doesn’t seem to support defaults. Check with the Internet Client SDK at
www.microsoft.com/sitebuilder/workshop for updated information on this and related topics.

http://www.itknowledge.com/reference/standard/1576102823/ch12/www.microsoft.com/sitebuilder/workshop

In addition to enumerated lists, the <!ATTLIST> also supports IDs. If you want to use
XML as a data structure, IDs are pretty much essential. In the preceding section of this
chapter, the GetIDNode function iterated through the document to find all ID references.
However, if you have a DTD, you can get this capability automatically by setting the type of
the attribute to ID instead of CDATA. For example, the STATE node in Listing 12.12 uses
this capability:

<!ATTLIST STATE
 ID ID #REQUIRED
 TITLE CDATA #IMPLIED>

Here, the first ID is the property name, and the second ID indicates that the attribute should
be stored in the internal ID list. One problem with native ID support is that each ID in the
document must be unique and must follow variable-naming conventions (such as an ID
cannot start with a number, and only alphanumeric characters and the underscore character
are allowed). For example, “Los Angeles” is not a valid ID name, although “LosAngeles” or
“los_angeles” is. Because such IDs often can be rather cryptic to read, a good idea is to
include a TITLE attribute as well. This attribute contains the “friendly name” of the node.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

To access an ID node, you can use the DOMDocument’s nodeFromID method. It takes
an ID as an argument and returns the corresponding node and is similar in function to the
GetIDNode defined in this chapter. To get the Los Angeles node, for example, you could
call:

Set node=DOMDoc.nodeFromID("los_angeles")
Msgbox node.getAttribute("TITLE")

This will raise a dialog box with the expression “Los Angeles” in it. The nodeFromID
method is faster than the GetIDNode function but won’t work unless a DTD is present
that defines ID nodes.

Entertaining Entities And Embedded HTML

Here’s a quandary. Your weather browser is, well, dull. It contains just text, raw text,
with no pictures to relieve it. Your marketing people warn you about the fact that your
competitor’s Wacky Weather Browser has pictures and fancy formatting of the forecasts,
and as a consequence, its browser is outselling yours two to one. How do you add a little
bit of levity to the weather?

This particular problem actually has several different solutions (why do you think I chose
it, after all?), depending upon the level of sophistication you want to integrate into your
XML application. At the very lowest level, embedding HTML into text, you can gain
fine-grain control of your data, although usually at the cost of the most work.

Why embedding HTML into XML causes a problem should be obvious with a little bit of
examination. For example, if you want an image to appear within your XML document,
the most logical course is to do something like this:

<CITY>

 ...

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <FORECAST>
 Skies will be clear
 and warm today, with high clouds forming late.
 </FORECAST>

There’s only one minor problem with this approach. The parser will see the tag
as an XML tag. If the document has a DTD, the document won’t parse at all because the
 tag isn’t defined. Even if the document doesn’t have a DTD, the tag will still
cause the parser to fail because it lacks a closing tag. Either way, you won’t be able to get
the document to load, let alone give you anything meaningful.

As it turns out, one solution to this dilemma involves invoking the same mechanism used
to display HTML markup code in a browser window. There, obviously, HTML passed to
the browser is interpreted as HTML. One way around having tags be interpreted as
HTML is to replace the tag symbols “<” and “>” with substitute expressions: < and
> (for less than and greater than). Not surprisingly, because this syntax originated
within SGML, you can do exactly the same thing here:

<FORECAST>
Skies will be
clear and warm today, with high clouds forming late.
</FORECAST>

The characters & and ; act as escape characters, and within XML any expression defined
to be so escaped is called an entity. Entities act as macros, replacing simple expressions
with more complex ones. For example, the < entity replaces the string lt with the
character “<” when the document parses, ensuring that the bracket won’t be taken as the
start of a new XML element tag. XML automatically predefines only five entities, given
in Table 12.7.

Table 12.7 Predefined entities in XML.

Entity Symbol Is Replaced By

< < (Less-than sign)

> > (Greater-than sign)

& & (Ampersand)

' ‘ (Apostrophe)

" “ (Double quote mark)

However, entities are so useful in XML that they extend far beyond these predefined
objects. Essentially, an entity in XML can replace an expression with any other
expression; through the use of entities, you can essentially define a whole separate macro
language.

To build an entity, you need to declare it within the DTD of your document. For example,
you might want your output to replace the character F with the expression “degrees
Fahrenheit”. To do this, you set up the entity tag somewhere within the DTD as follows:

<!ENTITY F " degrees Fahrenheit">

Then, within the body of the XML document, you use the &F; notation to signal that you

want the entity to be replaced:

<FORECAST>The temperature will be 25 &F;</FORECAST>

When the document parses, this will get converted to:

<FORECAST>The temperature will be 25 degrees Fahrenheit
</FORECAST>

Obviously, it would be better if, instead of the word degrees, the ° symbol could appear.
You can accomplish this by using character equivalents. They may be familiar to you if
you’ve ever needed to embed a nonstandard character into an HTML page. In this case,
the character is represented by a numeric value as defined by the 10,646
character-encoding scheme. This number, called a character reference, can be used to
represent any character in any alphabet. In the Windows world, these values are the
Unicode values for displaying characters.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

For example, the character reference value for the degree symbol is 136, and the
character is referenced as ˆ (the pound sign signals to the parser that the
following number should be treated as a character reference rather than a straight
entity). The entity declaration for this might then be:

<!ENTITY deg "ˆ">

It should be noted that you don’t need to restrict an entity to text fields in the XML
data structure. You can just as readily put entities in attribute tags or even in XML
tags. For example, the LOW and HI temperature references might look like this

<LOW C="10 °C" F="40 °F">

which would be parsed into:

<LOW C="10 °C" F="40 °F">

This is fine for output to straight text, but the degree character will probably not show
up properly if the text is used for HTML output. To do that, you can cause the parser
to defer expanding escaped characters by replacing the ampersand, its own expansion
character, in the entity definition

<!ENTITY DEG "&#136;">
...
<FORECAST>The temperature is 25 &DEG;C</FORECAST>

which would be parsed into:

<FORECAST>The temperature is 25 ˆC</FORECAST>

NOTE
The particularly observant reader may have noted that I used an entity expression

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

within the definition of an entity. One of the things that make entities so powerful is
that you can use one entity to create another entity—anywhere within a DTD. This
feature can also lead to a certain loss of control within the DTD, so it should be used
sparingly.

When an HTML browser then displays that expression, it converts the ˆ into a
degree symbol inside the Web page.

Back to the initial problem of displaying the graphic image, it is worth noting that you
could also actually embed HTML code into an entity:

<!ENTITY imgSunny "<IMG SRC='images/sunny.jpg'
ALIGN=left>">
...
<FORECAST>&imgSunny; It will be clear and sunny
day today.</FORECAST>

It’s still necessary to turn the tag brackets into entity declarations because the
expression gets interpreted during the parse. Still, this is a superb way of setting up a
table of predefined graphics (such as imgPartlyCloudy, imgRain, and so forth) that
could then be referenced as needed. The nodeValue for the forecast node then appears
as:

 It will be a clear
and sunny day today.

Still, it would be nice not to have to deal with escaped characters at all, because:

• They require a certain amount of editing of straight HTML files in order to be
useful.

• They make the markup less legible than brackets and other characters do.

• They can be especially inconvenient when dealing with dynamic HTML.

So what other alternatives are available?

Because this particularly vexing problem was understood when the XML spec was
initially created, there is a mechanism in place for retaining both formatting and
“dangerous characters.” Within a given text node in the document’s main body, you
can indicate to the parser that the enclosed text is “dangerous” by encasing it within a
<![CDATA[> tag. This tag declares that the enclosed text is character data that should
not be interpreted by the parser. For example, the forecast given previously can also be
displayed as:

<FORECAST>
<![CDATA[
 It will be a clear
and sunny day today.
]]>
</FORECAST>

In this case, the entire expression is protected and will output exactly as displayed. An
interesting consequence of this is that you can use the CDATA tag to display code,

which relies heavily on line breaks to indicate functionality, as is the case with the
forecast in Listing 12.14.

Listing 12.14 Using CDATA to store code in an XML document.

<FORECAST>
<![CDATA[
<SCRIPT LANGUAGE="JAVASCRIPT">
function rollover(me){
 me.src='images/sunnyHi.jpg";
 }
function rollout(me){
 me.src='images/sunny.jpg";
 }
</SCRIPT>
<IMG SRC='images/sunny.jpg'
 ONMOUSEOVER='rollover(this);"
 ONMOUSEOUT="rollout(this)
 ALIGN=left>
 It will be a clear and sunny day today.
]]>
</FORECAST>

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Examining External Entities And DTDs

By now, wheels may be turning in your head about the potential usefulness of entities in
XML. I’ve saved the best for last. Entities aren’t specifically limited to objects defined
within the XML document. An entity can also retrieve text or binary information from an
external file, something called an external entity. External entities come in two
flavors—PUBLIC, which references a file or data stream via a URL, and SYSTEM,
which pulls the file up through the native file system. The declaration for either flavor is
identical:

<!ENTITY EntityName PUBLIC "myURL">

<!ENTITY EntityName SYSTEM "myFilePath">

An external entity could be an XML document; indeed, this is typically the case for
documents that serve as collections of other documents. Consider the weather report
again in this light. Each state node (and subnodes) could actually make up a distinct
document—Alabama.XML, Alaska.XML, and so forth. A complete weather report for
the nation could then consist of the reports for each state, as shown in Listing 12.15.

Listing 12.15 An XML document made up primarily of external entities.

<?xml version="1.0">
<!DOCTYPE NATION [
<!ELEMENT NATION ALL>
<!ENTITY ALABAMA SYSTEM "c:\weather\Alabama.XML">
<!ENTITY ALASKA SYSTEM "c:\weather\Alaska.XML">
<!ENTITY ARKANSAS SYSTEM "c:\weather\Arkansas.XML">
...
<!ENTITY WYOMING SYSTEM "c:\weather\Wyoming.XML">
]>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<NATION>
 &ALABAMA;
 &ALASKA;
 &ARIZONA;
 ...
 &WYOMING;
</NATION>

This example begins to illustrate some of the power of external entities in an XML
document. If the files in question were generated on a recurring basis, an XML structure
such as Listing 12.15 could serve as a collector of this data for later processing by a
JavaScript applet or a Visual Basic DHTML application. Moreover, a program could
actually generate an XML file that passed parameters to a server-side application, which
in turn returns additional XML files, as shown in Listing 12.16.

Listing 12.16 An example of how an XML file could be generated from server-side
Active Server Pages (ASP) calls.

<?xml version="1.0">
<!DOCTYPE NATION [
<!ELEMENT NATION ALL>
<!ENTITY ALABAMA PUBLIC "http://www.WeBWeather.com/cgi-bin/
GetWeather.asp?state=Alabama&time=0125PM">
<!ENTITY ALASKA PUBLIC "http://www.WeBWeather.com/cgi-bin/
GetWeather.asp?state=Alaska&time=0125PM">
<!ENTITY ARKANSAS PUBLIC "http://www.WeBWeather.com/cgi-bin/
GetWeather.asp?state=Arkansas&time=0125PM">
...
<!ENTITY WYOMING PUBLIC "http://www.WeBWeather.com/cgi-bin/
GetWeather.asp?state=Wyoming&time=0125PM">
]>
<NATION>
 &ALABAMA;
 &ALASKA;
 &ARIZONA;
 ...
 &WYOMING;
</NATION>

Because these calls are handled by the parser, the data reaches the client transparently,
structured in a navigable form and easily integrated into an HTML client through the use
of Internet Explorer 5’s support of XML tags.

NOTE
You can import HTML documents into an XML structure in a similar manner, but you’ll
need to make a few minor changes to the document first. If you define an HTML page as
an entity, the parser will attempt to parse the text as it loads, which, given the slight
incompatibility between HTML and XML, almost guarantees that the load will fail. If
you place <![CDATA[and]]> tags before and after the document, the whole document
will be treated as one long CDATA block by the parser, effectively transparent to the
program.

The use of PUBLIC and SYSTEM isn’t limited to entities. In most cases, especially
when working with a preexisting data structure format, you can link the DTD itself to an
external file. The syntax for this is straightforward; in the prolog, the declaration
becomes:

<!DOCTYPE MyRootnode SYSTEM "c:\myPath\myDTDFile.dtd" [
<!ELEMENT ...>
<!ATTRIBUTE ...>
<!ENTITY ...>
]>

It can also become:

<!DOCTYPE MyRootnode SYSTEM
"http://www.myServer.com/myDTDFile.dtd" [
<!ELEMENT ...>
<!ATTRIBUTE ...>
<!ENTITY ...>
]>

The DTD file itself then consists of everything that would have been inside the brackets
of an inner DTD:

<!ELEMENT WEATHERREPORT (STATE)*>
<!ELEMENT STATE (CITY)*>
...
<!ATTLIST LOW
 C CDATA #REQUIRED
 F CDATA #IMPLIED>
<!ATTLIST PRECIPITATION
 CM CDATA #IMPLIED>

It is perfectly acceptable to have both an external DTD file and an internal one; anything
declared within the internal file will automatically override element declarations or entity
definitions in the external DTD. Also, because entity definitions typically concern
individual documents rather than the data structure as a whole, entities will typically be
defined within the internal DTD.

The Document Type Definition serves as a blueprint for the XML document, one that
you can update dynamically and use to incorporate other documents and provide
validation and defaults for the data contained therein. It can also be frustratingly
complicated; the last couple of sections only begin to hint at the degree of complexity and
sophistication that XML (“a simplified version of SGML for the Web”—hah!) brings to
both Web developers and Visual Basic programmers.

Still, although XML makes an effective data transfer mechanism, it also forms much of
the underpinnings of the new Web, and Internet Explorer 5 and Visual Basic 6 are the
perfect vehicles for realizing this. It’s worth examining XML in a different light—as the
successor to HTML.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Building An XML Application

It’s sometimes hard to remember that HTML is not yet even 10 years old.
Certainly in its brief life, that child of SGML has become one of the most
pervasive media on the planet. However, like any technology that explodes
into prominence, HTML may make it difficult for new and possibly better
formats to succeed. Already, Web developers face the daunting (and all too
common) problem of creating Web pages that work for even a handful of the
browsers currently on the market. Adaptable plug-ins such as Macromedia
Shockwave or Adobe Acrobat can provide a certain degree of uniformity, but
at the cost of requiring specialized production software. The two versions of
DHTML that Microsoft or Netscape offer are so different from one another
that using one for specialized page display virtually guarantees that your Web
page will fail (sometimes spectacularly) on the other. Java applets, even when
they do live up to the promise of develop-once-play-anywhere, often perform
sluggishly and unpredictably; again, to do any significant development with
them, you need a real programming environment to support it with associated
costs.

What about XML? Is it the panacea for the common site? In a word, no. XML
is cool technology, and people are only just beginning to understand where it
can be used. In time, it may replace HTML in many applications, although
certainly not all of them. For starters, with XML, not only do you have to
define the data, but you also become responsible for formatting output and
displaying that data, something that HTML has already become fairly adept at
assuming. Additionally, there is no consistency yet with XML parsers; the API
set that one supports may be completely different from that which any other
parser supports, making it exceedingly difficult to use on all platforms.

You can still build HTML applications targeted toward a specific browser or
browser set. If you are using Internet Explorer (any version, not just IE5), you

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

can also leverage the powers of DHTML applications that I’ll be creating in
Chapter 14, simply by incorporating the IE5 MSXML.DLL component into
your VB application. IE5 gives you advanced support of XML and is the target
of choice if you’re using XML for formatting as well as data display.
However, through the use of DHTML applications, you can also target Internet
Explorer 3.0 and 4.0, and using Visual Basic IIS applications let you extend
that to any browser, although at a loss of interactive control.

With a standard in place, it’s now time to get the next browser out the door,
one that takes advantage of all the capabilities hammered out in the WIML
format (that is, the Weather Information Markup Language, based on XML).
Determining which pieces you need to develop illustrates both the power and
dilemma of the new Internet programming paradigm. Where does your
application reside? Consider the following constraints in building such a
“browser” (see Figure 12.5):

Figure 12.5 XML data can come from a database query as readily as from a
static local file.

• The primary browser will use XML principally as a data source
running within an ActiveX-compatible browser. Although you can use
XML purely as a markup language, this solution makes sense from the
standpoint of supporting the largest number of ActiveX-compatible
browsers.

• The XML data source is a WIML-compatible file residing at a URL.
The XML document itself will almost certainly have external entity
references, which are in turn generated from an SQL Server database
that is updated every 10 minutes with information from all over the
country. From the standpoint of the client, however, the XML document
exists as a complete entity. The browser doesn’t need to know anything
about how the document is made. The server in turn only needs to know
how to generate and transmit the XML file; it is ignorant of what the
client will do with the data.

• The logic of the client page is generated by a DHTML application
component written in VB6. The component may be sensitive to some of
the advanced features of IE5, but it degrades easily to IE4.

• For non-DHTML browsers (or ones that don’t support ActiveX), a
page server written as an IIS control in VB6 resides within a separate
ASP page, providing HTML 3.2 compliant code.

This spanning between client and server provides a good example of where
application development is moving. The client and server are both intelligent,
with both containing not only the logic of their respective environments but
also any specialized modules such as the weather client and weather server
programs. Even “shrink-wrapped” products are moving to this paradigm: The
client resides within an application rather than a Web page, but with Visual

javascript:displayWindow('images/12-05.jpg',569,469)
javascript:displayWindow('images/12-05.jpg',569,469)

Basic 6, the logic that handles the mediation between client and server could
very well be the exact same module.

Where To Go From Here

This chapter examined XML in some depth, especially as it applies to data
usage in Visual Basic. Microsoft has made it quite clear that its future product
strategies will be very XML dependent, and while some of the material
covered here is still in a preliminary state, XML is likely going to end up as
one of the primary formats for communicating disparate types of data between
applications, computers, and networks.

Over the next few chapters, the WeBWeather browser and server will be built,
piece by piece, incorporating DHTML, ADO, ASP, and the whole host of
other acronyms that make up Microsoft’s take on the Internet. I still have yet
to cover a few facets of the XML parser (such as creating and saving XML on
the fly), but they will be discussed in more detail in the next couple of
chapters.

Now it’s time to beat Wacky Weather in the weather browser war…. (May the
best cold weather front win.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 13
Serving Up The Web
Key Topics:

• The history of serving up the Web

• The problems with scripting

• Web Classes—VB’s Web solution

• Beyond the canon: real-world Web

• Linking events

• Getting browser capabilities

The balance between client and server was once fairly well defined; the client
was a dumb terminal with just enough intelligence to display pixels on the
screen and maybe to sound a bell. The server was the computer; it did all the
processing, database management, and computation. As the client has gained
in strength and speed, the server’s role has shifted as well because it
increasingly acts as a source of data and little more. The Internet also changes
this equation—to the extent that it is sometimes difficult to tell where the
server ends and the client begins.

Visual Basic 6 blurs this distinction to a point where the server and client roles
switch from one machine to the other several million times a second.
Microsoft has introduced several significant additions to Visual Basic’s
lexicon that make it a viable Web tool on both the client and the server.

Serving With Distinction: A History Of CGI

The earliest Web developers (the Neolithic protohumans of the late 1970s,

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Homo unixis) wrote server programs as a way of sending documents from one
computer to another. The Internet’s architecture brings with it a situation that
is atypical of most dedicated servers: The system was essentially designed as a
way of maintaining computer-to-computer communications in the event of a
major disaster. Because of that, such networks are fundamentally stateless: A
computer is connected to another computer only at the time of the transaction.
Before and after that time, the computer knows absolutely nothing about the
other computer. This communication protocol is remarkably robust because it
places the emphasis on the information being communicated rather than the
source, but it makes the other type of server transaction—database
processing—considerably more complicated.

People deal with the world symbolically, and their relationship with computers
seems especially filled with the baggage of mankind’s metaphors. One notable
example of this is the notion of a “file.” In the material world, a file is a
container, a holder of data about a thing or process. All the information in a
file is related in some way, and the whole is kept together under a convenient
name (usually written with a messy ink on a peeling label that is guaranteed to
fall off at the most inconvenient time).

From the standpoint of a computer, however, a file is simply a string of bytes
transferred from one location to another. A file server reads the data from the
file into a stream of bits being sent out through a modem, where it is probably
turned into acoustical waves and then into modulated pulses of
electromagnetism. A Transport Communication Protocol/Internet Protocol
interpreter, better known as a TCP/IP stack, takes the file before it is sent and
breaks it into discrete chunks that have absolutely no respect for where the cuts
occur, collects the packet on the other end, and then reassembles the chunks
into something resembling the initial file. Finally, a program on the client side
does something with that file, either storing it on a hard drive or blasting it into
memory to be interpreted.

The earliest Internet protocols dealt strictly with files as discrete units,
although not everything that is transported is a file. The File Transport
Protocol (FTP) illustrates this point well; most FTP commands obviously
handle the transmission or receipt of files from one computer on the Internet to
another. However, most FTP calls request additional information from the
computer that is generated by the server without files to reference. For
example, MKDIR sends a command to the host computer to create a new
directory, usually with some additional status information indicating that the
command succeeded or failed.

The Hypertext Transport Protocol (HTTP) takes the model one step further.
The backbone protocol for the Web, HTTP is a file transfer mechanism
coupled with a linking mechanism. Although part of the purpose of a browser
is to display the information contained within an HTML file, another part is
devoted to handling the links in a document. The links, when clicked, send a
request to the server to retrieve another document (hence the hypertext in
HTTP).

The ability to retrieve documents is certainly useful, but shortly after the
paradigm was introduced, people wanted HTTP to do more. A file is a unit of

information, usually a structured set of data; however, it is also a stream of
bytes sent by the server—and if the server can send that set of bytes, why not
send bytes that are the result of a query or equation? In this way, the notion of
Computer Gateway Interface (CGI) was born. This program reads the URLs
that are sent to it and checks whether the requested URL corresponds to an
executable program. If the file can run as a program, CGI then passes any
additional data within the URL as name-value pairs of parameters to the
equation, which in turn sends a string back to the client machine for it to
interpret.

Because the first Internet servers were Unix-based machines, the initial CGI
programmers wrote using either C or Unix shell commands. However, C is not
and never has been a terribly good language for manipulating text; most C
string functions exist as libraries distinct from the kernel of the language, and
C in its usual form does not have a native string class or data type. A number
of new languages arose, principally based upon modules of Unix-based word
processors. The names of these languages hint at the acronym mania that
seems endemic in the computer industry: SED (String Editor), AWK, GREP,
and so forth.

In the early 1990s, Larry Walls and Randal Schwartz wrote a highly flexible
new language, called Perl, with a distinctive mantra: “With Perl, there’s
always more than one way to do anything.” Combining string processing with
operating system access, Perl rapidly became the lingua franca of the Internet,
and even today, a healthy portion of all CGI scripting is performed in Perl,
especially on Unix servers.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Rise Of ASP

Microsoft’s entry into the Web server market came extremely late in the game.
On the client side, Netscape’s Navigator browser quickly captured the hearts
and minds of Internet users throughout the mid-1990s. Internal evidence seems
to indicate that Microsoft had become fixated on the sudden rise of America
Online in the commercial information services market, a field pioneered by
CompuServe in the early 1980s. In comparison to the surge of AOL, the
Internet seemed small potatoes.

Microsoft rolled out its Microsoft Network (MSN) in early 1995 with great
fanfare. (I was actually present at the preliminary developer’s conference for
MSN when it rolled out, after writing a baseball simulation piece for the
network.) The response to MSN was underwhelming at best; technical
problems, insufficient servers, and a poorly designed user interface plagued the
service just as the Internet was entering the radar of the general public. Three
years later, MSN was quietly shut down and its developers and support staff
reassigned to new ventures.

However, a curious artifact of MSN still survives. Developers working with
MSN made use of a tool, code-named BlackBird, created by Microsoft. This
tool was intended to be released to the general developer audience, but MSN’s
poor reception and problems with BlackBird kept it off the shelves. When
Microsoft decided to capture the minds and hearts (and wallets) of the
Internet-using public in December 1995, Blackbird became an essential
weapon in that effort.

In early 1996, Microsoft released two new products: Internet Information
Server (IIS) and Visual InterDev. These programs, of course, were essentially
the server and development environment from Blackbird, retooled to take
advantage of the protocols of the now red-hot Internet. IIS became a major
selling point for Windows NT systems, which had actually been languishing

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

somewhat in sales.

IIS introduced Active Server Pages (ASP), a concept that, although hardly
new, dramatically simplified the process of creating CGI programs. An ASP
document is a template that mirrors what the final Web page will look like.
Unlike templates in Perl, however, the template document contains scripting
code. When an ASP is requested from a client, IIS runs the scripts within the
template document. The results are sent as a stream to the client,
indistinguishable from any other HTML document.

The power of ASP comes from its ability to communicate with databases
before the data is sent down the pipe. Perl had rudimentary data access
capabilities at the time (although it has improved dramatically in that area), but
it’s worth remembering that Microsoft established ODBC as an industry-wide
database exchange format years before Perl was even conceived. By serving
up the data along with the Web page structure, Microsoft made
database-driven Internet sites far easier to create and more appealing to use.
This appeal, combined with NT’s aggressive pricing, has made a significant
dent in what had once been non-Microsoft turf—the server market.

Until recently, Visual Basic has had a fairly peripheral role in server-side
programming. The primary scripting language in ASP is a stripped-down
version of VB called VBScript, which borrows most of the syntax but none of
the typechecking of its older brethren. Although powerful in its effect,
VBScript does have a number of significant limitations (discussed in more
detail in the next section) that have frustrated developers for some time. With
Visual Basic 5, Microsoft did introduce ActiveX DLLs, components written in
VB or other COM generators that had no visual interface but otherwise
exposed a set of properties and methods that could be used to modify ASP
output. These controls typically added adjunct capabilities to
ASP—performing calculations, searching databases, retrieving local or remote
data files, or checking the state of software or hardware devices. Much more
rarely did the DLL actually serve up the whole page, primarily because Visual
Basic 5 doesn’t really have an environment for creating Web pages of any
sophistication.

Visual Basic 6 changes that limitation in such a way as to possibly establish a
new paradigm of Web development. Visual Basic 6 introduces two new
document types: Internet Information Server applications (IIS apps) and
Dynamic HTML applications (DHTML apps) for the server and client,
respectively. Central to both of these is the notion that “Web pages” within the
browser can offer the same functionality as traditional forms, plus many
additional benefits that forms can’t supply:

• Because of their comparatively large size, traditional windowed
applications don’t translate well across the Web.

• Web pages can be designed to be cross-browser and cross-machine
compatible, whereas a Visual Basic 6 windowed app will only run in
32-bit Windows.

• Forms are fixed. Once a form is compiled, it’s much more difficult to
modify its interface. A Web page, on the other hand, is considerably
more malleable, incorporates such features as resizing, and can

incorporate new ActiveX and Java components without needing to be
recompiled.

• Incorporating sophisticated graphics in a form is difficult at best; such
features as irregularly shaped buttons and rich formatted text (things that
multimedia products such as Macromedia Director have supported for
years) can make even the best VB programmer tear out his hair in
frustration. The multimedia engines within the latest crop of browsers
support these two features, and Internet Explorer 4 and 5 provide an
embarrassing wealth of riches for multimedia programmers, including
3D manipulation, transparency, layered graphics support, animation
paths, and sequence controllers.

Why haven’t Web applications become the primary means of developing
client/server systems? Part of the answer comes from the wild roller-coaster
ride of technology releases. Web browsers are released with radically new
features every 9 to 12 months, and two major interests (the Microsoft/Intel
COM-based consortium versus the IBM/Sun/Netscape Java contingency)
strive to create the most marketable products, so it’s difficult to determine
which standard to follow. From the standpoint of the actual developer, another
problem creeps in—the difficulty of creating and maintaining scripted code.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Problem With Scripting

Scripting an ASP or a Web page in theory should be simple: The language is a
type-insensitive version of Visual Basic or Java, and the syntax is
straightforward. However, what is simple in theory can often get remarkably
ugly in practice. For example, an ASP that reads from a database to populate a
table might look something like Listing 13.1. Don’t worry if the code doesn’t
make sense yet; ASP is covered in much greater detail throughout this chapter.

Listing 13.1 A typical example of an ASP script for building a table.

<%
dim conn ' This declares the connection
dim rs ' This declares the record set
dim fIndex ' This defines an index for iterating
 ' through fields

set conn=Server.Create("ADODB.Connection")
conn.Open="WeatherReports"
set rs=conn.Execute("SELECT * FROM ReportData _
 WHERE State='Washington';")
%>
<HTML>
<HEAD>
</HEAD>
<BODY>
<TABLE>
<THEAD>
<%
for fIndex=0 to rs.fields.length-1
%>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<TH><%=rs.fields(fIndex).name%></TH>
<% next %>
</THEAD><TBODY>
<%
rs.MoveFirst
while not rs.EOF
%>
<TR>
<%for fIndex=0 to rs.fields.length-1%>
<TD><%=rs(fIndex)%></TD>
<%
next
%>
</TR>
rs.MoveNext
wend
%>
</TBODY></TABLE>
rs.Close
%>
</BODY></HTML>

If you had trouble following exactly what was happening, don’t feel bad. ASP
introduces what is in essence a macro language into the body of an HTML
document; but with even fairly simple examples, such as Listing 13.1, the
HTML can get overwhelmed by all of the script. This problem gets worse
when JavaScript for the client is added to the mix, especially when the
JavaScript relies upon information output from the ASP script. Add the
mangling from most HTML editors (including, unfortunately, Microsoft’s
Visual InterDev and FrontPage), and you begin to appreciate the problems
inherent in using script to automate your page output.

Another related problem to this creeps into adding script to Web pages. Once
the page is marked up, a WYSIWYG-based HTML editor may no longer even
understand the code, let alone be able to reconstruct enough of the page to edit
it. In essence, once the Web designer hands off the page to the programmer,
making changes to the HTML is nearly impossible for the designer, often
forcing the programmer to work as a Web designer as well. Some
programmers are adept at graphic design, but the whole left-brain/right-brain
duality seems even more apt in page design than in most fields: The best
programmers usually make lousy graphic designers and vice versa.

Performance is an issue with scripting. The binding of objects takes a certain
amount of time, and an object defined in a script is implicitly late bound. This
means that it can take a thousand times as long to initialize an object in a script
as it does to implement the same thing in a compiled language. Because this
initialization is occurring in the latency-filled environment of the Web, an
additional three to five seconds per binding adds up fast.

A final limitation of any sort of scripting languages, whether client or server, is
that such code is essentially completely exposed. This is of less concern on the
server side (although even there such code isn’t completely safe), but on the

client side scripting is fully visible to anyone. Even if a Web page includes a
script as an external file, an astute person can download a copy of the same
script simply by typing the URL of that script into the browser’s window.
From the standpoint of a developer, this means that hours or even days of work
on scripting code can be stolen in seconds. More seriously, for a database
administrator, open JavaScript code essentially provides complete access to a
database, especially with such technologies as Remote Data Services (RDS)
making it possible to query a database from the client side. Script is
fundamentally unsecured.

My point is not that scripting doesn’t have its place. Script is lightweight in
more than functionality. It has minimal need for a programming environment,
it occupies far less bandwidth than an ActiveX control or Java component, it’s
easily modified, and it can be self-generating—all of which ensure that for
many smaller tasks, scripting will not disappear anytime soon.

It would be nice for both designer and programmer if the same table from the
earlier example could be expressed like Listing 13.2 instead.

Listing 13.2 An idealized template for ASP output.

<HTML>
<HEAD></HEAD>
<BODY>
<WS:MYTABLE>
<TABLE>
<THEAD>
<TH>Placeholder Heading 1</TH>
<TH>Placeholder Heading 2</TH>
</THEAD>
<TBODY>
<TR>
<TD>Placeholder Data 1</TD>
<TD>Placeholder Data 2</TD>
</TR>
</TBODY>
</TABLE>
</WS:MYTABLE>
</BODY>
</HTML>

In this case, the table displayed is strictly a placeholder for design purposes
and will be replaced later by the real table. The code is completely human and
machine readable, which means that the designer can create this code and even
let a programmer work with the implementation while she continues to
redefine the appearance of the interface. Furthermore, there’s nothing in the
HTML that gives away details about how the table gets generated or exposes
sensitive password or database information.

NOTE
Although there are some similarities between server-based IIS apps and
client-based DHTML apps, their differences are enough to treat them as

distinct subjects. In Chapter 14, I cover DHTML applications in much
greater detail.

What you see in Listing 13.2 is a simple template file for an IIS application.
The template is contained within a specialized ActiveX DLL, located on the
server, which can be requested as if it were a standard ASP. From the client’s
point of view, there’s no difference between this application and any other
HTML page. This point is important: Just as with an ASP, an IIS application
can generate output for any browser, as long as Internet Information Server 4.0
is used on the server side.

The IIS application, on the other hand, is written in Visual Basic—not
VBScript, but the full-blown Visual Basic 6.0 for Windows, Professional or
Enterprise Edition. This means that components and variables can be early
bound for improved performance, that you can use classes with all the benefits
they bring to VB, and that you have the full weight and power of the Visual
Basic developing and debugging environment to rely on. This is one of the
reasons why programmers are getting so excited about the latest release of
Visual Basic.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

MIISSIISSAPPI? Spelling Out IIS Applications

For many VB programmers who have been painfully slugging out code in
Visual InterDev 1.0, one of the secretly whispered hopes was that Microsoft
would write an add-in to Visual Basic that would let developers write ASP
code from within VB.

Visual Basic and VBScript are syntactically quite close, but one is a language
with data-typing (even if the typing is weaker than for C++), whereas the other
is essentially type-agnostic. This means that even if you wrote your ASP code
in Visual Basic, you still need to strip out the type declarations at the
beginning, change all New calls to CreateObject calls, and eschew classes
unless you want to include them as ActiveX servers. Using Visual Basic, you
also lose the benefit of embedding HTML code in your scripts, although you
can always use the Response.Write syntax and grit your teeth.

Microsoft could very well have offered this option of writing ASP code in VB.
Admirably, it did not. Instead, the product developers thought through the
reasons for using ASP in the first place and worked toward a solution that
solved the underlying problems with ASP scripting. What they came up with
was the notion of a Web Class. It should be pointed out that this is not a class
in the traditional sense that Visual Basic uses it. A Web Class has several
unique attributes:

• Instead of forms, Web Classes use HTML-based templates that are
output to a browser (which doesn’t have to be Internet Explorer 4 or 5).

• The Web Classes can modify the templates before serving them by
replacing custom tags in the template with content. A class can even
replace the content of a tag with other custom tags, which can in turn be
replaced with additional data or tags, making it possible to create
complex recursive structures.

• Web Classes act as servers, and form and query information can be

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

sent to them in exactly the same way that such information is sent to an
ASP. This makes possible exceedingly complex Web applications that
handle data validating, formatting, and error processing.

• You can set up Web Class events in the final HTML document that
query back into the server. This feature can provide a certain level of
dynamic functionality, even for documents that don’t support DHTML.

• Web Classes can also maintain state across a session through a
number of different mechanisms, from session-persistent variables to
cookies on the client side.

• Web Classes automatically expose the Active Server Pages 2.0 Object
Model, making it far easier to integrate database and other ActiveX data
providers, as well as data structures such as the File System Object and
Dictionaries.

IIS applications simply provide an alternative to scripted Active Server Pages
with all the benefits and drawbacks that ASP has. If ASP is working with a
non-DHTML browser, the pages still need to be refreshed through server calls.
On the other hand, an IIS app designed jointly with a DHTML application on
the client side completely rewrites all the rules for client/server development.
The IIS app customizes the data in response to the DHTML app, which in turn
customizes the presentation in response to the data it receives. Integrated VB
6-based client/server applications are covered in Chapter 15.

Creating The Canonical “Hello World”

You knew it was coming. The Computer Book Writer’s Handbook, page 127,
paragraph 3, outlines a requirement to include at least one “Hello, World”
example in any book. The Hello World Foundation receives 10 cents for every
appearance of a Hello World program in any computer book in the world
(including derivative rights for “Guten Tag, Welt,” “Hola, Mundo,” and
“G’day, Mates”). They use the money to underwrite the pizza and highly
caffeinated soda industries, staples of programmers everywhere.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Creating a “Hello World” program with templates is straightforward and I cover it shortly,
but it’s entirely possible to do it without templates.

1. Open Visual Basic 6 and start a new project by selecting File|New Project. Select
the IIS Application project type (see Figure 13.1).

Figure 13.1 To create a new IIS application, double-click the IIS Application
project type icon in the New Project dialog box.

2. Open the Project Explorer window, and expand the view to show the Web Class
icon (see Figure 13.2).

Figure 13.2 From the Project window, you can add new Web Classes.

3. Double-clicking the Web Class icon will launch the Web Class designer, a
specialized window that lets you edit templates, add events, and write event handlers
(see Figure 13.3).

Figure 13.3 The Web Classes are examples of Microsoft’s Designers, specialized

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/13-01.jpg',443,290)
javascript:displayWindow('images/13-01.jpg',443,290)
javascript:displayWindow('images/13-02.jpg',280,262)
javascript:displayWindow('images/13-02.jpg',280,262)
javascript:displayWindow('images/13-03.jpg',496,390)
javascript:displayWindow('images/13-03.jpg',496,390)

code templates that encapsulate complex code into usable design-time packages.

4. For now, ignore the HTML Template WebItems and the Custom WebItems
categories. Double-click the WebClass icon to launch a standard procedure window
for WebClass_Start. This procedure should already have data in it, as shown in
Listing 13.3.

Listing 13.3 The default output for a Web Class.

Private Sub WebClass_Start()
 ' Write a reply to the user
 With Response
 .Write "<html>"
 .Write "<body>"
 .Write "<h1>WebClass1's _
 Starting Page</h1>"
 .Write "<p>This response was created in the Start _
 event of WebClass1.</p>"
 .Write "</body>"
 .Write "</html>"
 End With
End Sub

The code in Listing 13.3 provides the standard output for a Web Class if you leave it in its
default condition. You can modify this document yourself to create the canonical “Hello,
World” Web page, as shown in Listing 13.4.

Listing 13.4 Modified code output for the “Hello, World!” page.

Private Sub WebClass_Start()
 ' Write a reply to the user
 With Response
 .Write "<html>"
 .Write "<body>"
 .Write "<h3>Well, here goes nothing:</h3>"
 .Write "<h1>Hello, World!</h1>"
 .Write "<p>There, feel better?</p>"
 .Write "</body>"
 .Write "</html>"
 End With
End Sub

Once you’ve finished, you can run the Web page just as you would any standard VB
program (press the Play button or F5). One of two possible things will happen. If you are
currently running Windows 95 or 98, Peer Web Services will start if it is not currently
active. Formerly known as the Personal Web Server, Peer Web Services provides a local
server for testing Internet applications on a LAN. If you are running Windows NT (which
will almost certainly have IIS active), you won’t see any notification of Web services
being initiated.

Eventually, the server will display the Web page shown in Figure 13.4. It is worth noting
that somewhere along the line, a new ASP file called WebClass1.ASP was apparently
created; this was actually generated by the Web Class itself. However, there’s more

happening than just the creation of a Web page file. With a bit of searching (primarily in
the Temporary Internet Files folder in your Windows directory), you can find the contents
of this particular page. The results (shown in Listing 13.5) may surprise you.

Figure 13.4 The “Hello, World!” output produced by your modified page.

Listing 13.5 The rather unexpected content of WebClass1.asp.

<%
Server.ScriptTimeout=600
Response.Buffer=True
Response.Expires=0

If (VarType(Application("<WC<WebClassManager")) = 0) Then
 Application.Lock
 If (VarType(Application("<WC<WebClassManager")) = 0) _
 Then
 Set Application("<WC<WebClassManager") = _
 Server.CreateObject("WebClassRuntime.WebClassManager")
 End If
 Application.UnLock
End If

Application("<WC<WebClassManager").ProcessNoStateWebClass _
 "Project1.WebClass1", _
 Server, _
 Application, _
 Session, _
 Request, _
 Response
%>

Rather than contain HTML code, the ASP code actually creates a distinct process in
memory to run Project1.WebClass1, which is the project you just created. All the data is
actually contained within the Web Class, and the purpose of the ASP file is to create the
project’s DLL in memory and retain state information across pages. Clearly, there’s more
going on than meets the eye.

Beyond The Canon

You can set the name of the ASP document (and the server where it is hosted by default)
from within Visual Basic. Open the Properties window and select the WebClass1 object.
This is an instance of the Web Class. Within this window, you can set both the name of the
object and NameInURL for the class. This latter value is important because it is
effectively the URL of the Web Class. For example, if the NameInURL was changed
from WebClass1 to WeatherReport, the URL becomes

javascript:displayWindow('images/13-04.jpg',403,303)
javascript:displayWindow('images/13-04.jpg',403,303)

http://www.myServer.com/Project1/WeatherReport.ASP. You can also assign the folder
project location by changing the project name of the IIS app: Select Project Properties
from the Project menu, and then change the Project Name to the name of the folder where
you want to host the application.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.myserver.com/project1/weatherreport.asp
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

A Pavlovian Response

If you have ever worked with ASP code, you might have noticed the line With Response and
wondered whether the “Response” object called here has anything to do with the ASP
Response. As a matter of fact, it is the ASP Response, with the primary purpose of outputting
text (usually HTML text, but this isn’t a requirement) to the browser. This gives you a hint
about what’s happening under the hood, something worth stating explicitly:

A Web Class accesses the same objects that a traditional ASP does, including the Response,
Request, Application, and Session objects. If you can program ASP, you can program Web
Classes.

The WebClass_Start method is invoked whenever the Web Class is first loaded, and as a
consequence, it serves as the starting point for your “Web site.” In the simple example
featured previously, the output was generated completely through the use of Write
statements, and as written, it isn’t any different from serving an HTML page with the same
script. However, because this is a Visual Basic procedure, you can do a great deal more with
the same script. For example, the same code that was displayed earlier in this chapter could be
integrated into a VB procedure with few modifications. Listing 13.6 reads the content of a
table from a database DSN and outputs the result into a table.

Listing 13.6 Subroutine that outputs the contents of Washington’s weather data.

Private Sub WebClass_Start()

 dim conn as Connection ' This declares the
 ' connection
 dim rs as RecordSet ' This declares the record
 ' set
 dim fIndex as integer ' This defines an index for
 ' iterating through fields

 set conn=Server.Create("ADODB.Connection")
 conn.Open="WeatherReports"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 set rs=conn.Execute("SELECT * FROM ReportData _
 WHERE State='Washington';")
 Response.Write "<HTML><HEAD></HEAD><BODY>"
 Response.Write "<TABLE>"
 Response.Write "<THEAD>"
 for fIndex=0 to rs.fields.length-1
 ResponseWrite "<TH>"+rs.fields(fIndex).name+"</TH>"
 next
 Response.Write "</THEAD><TBODY>"
 rs.MoveFirst
 while not rs.EOF
 Response.Write "<TR>"
 for fIndex=0 to rs.fields.length-1
 ResponseWrite "<TD>"+rs.fields(fIndex).name _
 +"</TD>"
 next
 Response.Write "</TR>"
 rs.MoveNext
 wend
 Response.Write "</TBODY></TABLE>"
 Response.Write "</BODY></HTML>"
 rs.Close
End Sub

Assuming it is connected to an ODBC-compliant database named Weather, Listing 13.6 will
iterate through all the fields of the weather database to produce headers in a table and then
output each record as a row in the table. This is almost an exact duplication of what the ASP
script did in Listing 13.1, but it has the advantage of providing an early-bound (and hence
faster and more optimized) set of connections to both ASP and database objects. This
subroutine also works within the IDE to enable such useful features as Intellisense and
parameter hinting and provides a much higher level of security than naked ASP files could
provide.

If you are unfamiliar with ASP, the action of the Response object may be a bit of a mystery.
Response writes information to the client and can operate in one of two modes. In the default
mode, when Response.Write is called, that information is automatically sent down to the
Web browser. This is the preferred mode for working with browsers that display pages as they
receive them, but in certain circumstances (such as with tables), it can cause significant delays
while the table itself is built. (Internet Explorer 5 supports incremental table build-ing,
although IE4 does not.) In such situations, it’s preferable to buffer the output. You can
accomplish this buffering by setting the Response.Buffer property to true and then calling
either Response.Flush to immediately write the current contents of the Response buffer (but
keep it active) or Response.End to flush the contents and terminate the Response object.

TIP
Why Should You Use Buffering?
In addition to handling table output, the buffering capabilities of the Response object are
meant to accelerate the perceived download speed of a Web page. For example, a call to a
loaded database takes time, especially if that database is located on a different server. By
buffering the initial setup of the page (loading background and support graphics, any
preliminary explanatory text, or specialized formatting), the browser appears to load the page
quickly. This both gives the user something to engage his attention and gives the asynchronous
call to the database time to load. Buffering can also be useful in dealing with errors, as
illustrated later in this section.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Response is the primary (although not the only) output device in ASP,
and it has a full collection of properties and methods to support its mission
(see Table 13.1). Visual Basic 6 supports Internet Information Server 4.0,
which implements the expanded ASP 2.0 library.

Table 13.1 Properties and methods for the Response ASP object.

Property or
Method Description

AddHeader Adds an HTTP header to the document before it is
transmitted to the client.

AppendToLog Writes a message to the server log.

BinaryWrite Writes data directly to the client without converting it
into Unicode. This is especially useful for writing out
image and sound data directly to the client.

Buffer A Boolean property that indicates whether the
Response object outputs text to an intermediate buffer
(Buffer=true) or not (Buffer=false) before writing it
out to the client.

CacheControl A Boolean property that indicates whether the output
can be cached to a firewall for retrieval.

CharSet Returns the character set of the document as indicated
by the HTTP header.

Clear Empties the ASP buffer. This is especially useful for
handling error conditions.

ContentType The content type is a string variable that indicates what
format the document is in. It defaults to text/html but
can be anything from a program reference
(application/msword) to an image (image/jpeg).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Cookies A collection of cookies that are sent to the client.

End Flushes the output buffer and closes the Response
object.

Expires Sends a message to the client’s cache indicating how
long the document will remain current in minutes. For
example, Response.Expires=240 will keep the
document current in the cache for 240 minutes, or 4
hours.

ExpiresAbsolute Gives an absolute date indicating to the cache when a
page is no longer current. For example,
Response.ExpiresAbsolute = #7/21/2002 00:00:00#
will expire on July 21, 2002, at midnight.

Flush Transmits the contents of the buffer to the Web page
and clears the buffer. The Response object remains in
memory after a flush.

IsClientConnected A Boolean flag that checks to see whether the client is
still connected to the server. This property is especially
useful for error-handling situations, where the client
may have disconnected from the server.

Pics PICS, an acronym for Platform of Internet Content
Selection, is used by browsers to determine what
content a given page has. It is typically used as a way
of filtering out material that is inappropriate for
minors. You can set this specialized HTTP header as a
string. More information about PICS is available at
www.rsac.org.

Redirect Used for diverting a browser to a new URL. The
Redirect method must be called before the <HTML>
tag is sent to the browser.

Status Sends a status code to the browser. Perhaps the most
well known of these is the status code ‘404’
(Document not found). In general, it is usually sent
automatically by the server, but you might need to
send specialized information that the server doesn’t
handle. Check out
www.w3.org/pub/WWW/protocols/rfc2068/rfc2068.txt
for more information about server-side status codes.

Write Outputs text information to the client, automatically
converting it to the specified client set (ISO-LATIN-7,
if not otherwise specified).

Many of the Response object properties and methods deal in some way with
header information, which is information sent to the browser prior to the
document itself that instructs the browser about specialized information about
the document. Frequently, header information is contained within <META>
tags, such as the PICS specification for setting ratings information. Headers
can get quite complex and, for the most part, fall outside the scope of this

http://www.itknowledge.com/reference/standard/1576102823/ch13/www.rsac.org
http://www.itknowledge.com/reference/standard/1576102823/ch13/www.w3.org/pub/www/protocols/rfc2068/rfc2068.txt

book.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Adding Templates To Web Classes

Although the Response capabilities are powerful, the code given previously doesn’t offer all
that much of an advantage compared to ASP script. The Response.Write commands, which
write information to an internal buffer that is sent when the subroutine ends, are at best
clunky and awkward; at worst, they are interwoven into the code, thus making the HTML
generation and maintenance a real nightmare. Ideally, VB should be able to specify some
form of template file into which the table can be added at runtime. This is precisely what
Visual Basic 6 can do through the use of templates.

A template is a modified HTML file that is created ahead of time and imported into Visual
Basic. Templates can be either standard code that is included within the DLL for
convenience or, more likely, HTML code with special tags that will be replaced by new
content. By working with custom tags, the Web Class offers several advantages over
traditional ASP: The designer can create the Web page with his own HTML editing tools,
adding the specialized tags through the agency of “escape hatches” that most such programs
have for working with nonstandard code. Both standard browsers ignore undefined tags,
which means that you can use the tags to encompass placeholder text that in turn will get
overwritten in the final output with the live data.

The weather browser discussed in the preceding chapter offers a good example for creating
templates. For instance, suppose that you need a simple page that displays the weather
information for a whole state. Because the weather database has several different states’ data
within it, the template should be generic enough to handle all possible states and to produce
a tabular output as needed. (Getting the requisite state for display will be discussed later in
this chapter.) Listing 13.7 shows an example of the template structure.

Listing 13.7 Structure of an HTML template for displaying a weather table.

<HTML>
<HEAD></HEAD>
<BODY bgcolor="#C0FFC0" text="black">
<h2>Weather for</h2>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<h1><WS:STATE>WhichState</WS:STATE></h1>
<WS:WEATHERTABLE>
This will be a table.
</WS:WEATHERTABLE>
</BODY>
</HTML>

TIP
Weather Report On CD-ROM
The examples in this chapter assume that you have installed a weather database onto your
server and given it a DSN of “Weather”. A sample weather database called Weather.mdb is
located on the CD-ROM for your use.

To use this template (or any template for that matter) within your Web Class, you take the
following steps:

1. Create the template file in any HTML editor and save it to a working directory.

2. Open your IIS application if it is not already open, open the Web Class Editor, and
right-click the HTML Template WebItems folder (see Figure 13.5). Select Add
HTML Template from the pop-up menu that appears.

Figure 13.5 Open the Web Class Editor and right-click the HTML Template
WebItems folder to add a new template.

3. Browse to the location of the HTML file you created and then open the document.
The Web Class automatically creates an internal copy of this document, so you don’t
need to worry about destroying your original.

4. A new template called Template1 is created within the HTML Template WebItems
folder. You can rename the template by pressing F4 to display properties and then
changing the Name property. In the example given here, the name was changed to
Weather-Summaries.

5. While you have the properties page open, change the TagPrefix property to “WS:”
from the default value “WC@”. The tag prefix, which is used by the Web Class to
determine what tags it can change, is an example of a namespace. Namespaces play
an important part in XML documents as well.

6. Within the General_Declarations handler, define a variable to hold which state
the weather applies to:

Public State as String

7. Replace the code in the WebClass1_Start method with the following:

Private Sub WebClass_Start ()
 ' For purposes of illustration, predefine a state.
 ' This will change.
 State="Washington"
 WeatherSummary.WriteTemplate
End Sub

javascript:displayWindow('images/13-05.jpg',496,390)
javascript:displayWindow('images/13-05.jpg',496,390)

8. Select the WeatherSummary object and ProcessTag method and insert the code
in Listing 13.8.

Listing 13.8 ProcessTag event handler for the WeatherReport template.

Sub WeatherSummary_ProcessTag(ByVal TagName As String, _
 TagContents As String, SendTags As Boolean)
 dim conn as Connection ' This declares the connection
 dim rs as RecordSet ' This declares the record set
 dim fIndex as integer ' Declaration for a field
 ' index
 dim buffer as string
Select Case TagName
 Case "WS:STATE"
 TagContents=State
 Case "WS:WEATHERTABLE"
 set conn=Server.Create("ADODB.Connection")
 conn.Open="Weather"
 set rs=conn.Execute("SELECT * FROM Weather
 WHERE State='"+State+"';")
 buffer=""
 buffer=buffer+ "<TABLE>"
 buffer=buffer+ "<THEAD>"
 for fIndex=0 to rs.fields.length-1
 buffer=buffer+"<TH>"+rs.fields(fIndex).name+ _
 "</TH>"
 next
 buffer=buffer+ "</THEAD><TBODY>"
 rs.MoveFirst
 while not rs.EOF
 buffer=buffer+ "<TR>"
 for fIndex=0 to rs.fields.length-1
 buffer=buffer+ "<TD>"+
 rs.fields(fIndex).name+"</TD>"
 next
 buffer=buffer+ "</TR>"
 rs.MoveNext
 wend
 buffer=buffer+ "</TBODY></TABLE>"
 rs.Close
 TagContents=buffer
End Select

9. Run the Web Class just as you would a regular Visual Basic program, and a
weather report for Washington should appear within your browser (see Figure 13.6).

Figure 13.6 The WeatherSummary Web Class produces a table showing the weather
for each city in the state.

javascript:displayWindow('images/13-06.jpg',924,635)
javascript:displayWindow('images/13-06.jpg',924,635)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

If everything goes according to plan, you should see the salient weather
information for each city in Washington state (where the dominant weather
condition is usually rainy).

Within the Start event handler, you set the state variable to a specific value. You
set it here because the Start handler is called only once, when a request is made to
the server. Once Start defines the variable, it forces the template to start processing
with the WeatherTem-plate.WriteTemplate method, priming it to generate the
requested output. Note that in a real application, you would probably set the state
variable using form data from an HTML form. (I cover this in greater detail when I
detail the Request object.)

What’s My Tagline

The bulk of the work in the Weather Report Web Class is handled within the
ProcessTag event handler. Each template has its own ProcessTag handler, making
it possible to customize the HTML output to fit the situation. This routine relies
heavily upon the tag prefix. This string of characters, starting a tag, signals to the
Web Class that the contents of the tag should be processed. The default tag prefix is
“WC@” (WC presumably for Web Class); the @ symbol simply serves as a
distinctive visual separator. You can replace this tag with any of your own (such as
the “WS:” tag covered in Step 5 earlier), either by setting this property at design
time (using the TagPrefix property for the template in the property list) or by
setting it at runtime using WeatherReport.TagPrefix=“WS:”.

Why would you want to set it at runtime? One possible use is setting up two sets of
tags, one for Microsoft output (“MS:”) and the other for Netscape output (“NS:”).
With the tag prefix set to “MS:”, only Microsoft code gets output to the page; the
Netscape tags are untouched. Setting the tag prefix to “NS:” will output only
Netscape Navigator code.

The ProcessTag handler is called by the Web Class every time its parser finds a tag

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

that starts with the prefix. In the weather example, for instance, the Web Class will
file the template’s Process tag twice, when it encounters <WS:STATE> and
<WS:WEATHERTABLE> (see Listing 13.9). When it does so, the handler gets
passed the tag’s name (WS:STATE), its contents (“WhichState”), and a Boolean
value called SendTags, discussed shortly.

Listing 13.9 Weather Report template with substitution tags highlighted.

<HTML>
<HEAD></HEAD>
<BODY bgcolor="#C0FFC0" text="black">
<h2>Weather for</h2>
<h1>
<WS:STATE>WhichState</WS:STATE>
</h1>
<WS:WEATHERTABLE>
This will be a table.
</WS:WEATHERTABLE>
</BODY>
</HTML>

The declaration for the ProcessTag handler definitely bears examination:

Sub WeatherSummary_ProcessTag(ByVal TagName As String, _
 TagContents As String, SendTags As Boolean)

Notice that only the TagName is passed by value. TagContents and SendTags are
implicitly passed by reference. TagContents holds the text of everything within the
specified tag. If its value is changed, then when the routine ends, the new value is
used to substitute the old value when the page is sent to the browser. In the example
in the preceding section, the TagContents value (which was initially “This will be
a table.”) gets replaced with the actual table generated from the Weather Report
database.

The SendTags parameter indicates whether the enclosing custom tags should be
included in the output. It usually defaults to false; for a custom tag, you probably
don’t want the actual tags appearing in the final Web page. However, in certain
circumstances, it can prove useful to include the tags. Consider that the prefix
doesn’t necessarily have to be a specialized set of characters but could actually
correspond to legitimate HTML tags (such as XMP, which formats output with line
spaces and specialized code intact—usually used to illustrate sample code
fragments, hence the name). If you set the tag prefix to “XMP”, the parser will
process every <XMP> tag it finds; if you set SendTags to true within the handler,
the <XMP> tags get preserved as well, which means that you wouldn’t need to
explicitly wrap them around the outputted text.

The text that replaces the placeholder data can be anything—straight unformatted
text, HTML code, or even additional custom tags. This last point offers some
interesting possibilities. For example, suppose a weather report accessed reports for
each city in the state. However, some states may also have customized information
peculiar to the area. (Tidal charts make sense for Seattle but make no sense for
Spokane, a city located more or less in desert.) Rather than create a generic handler

for all these possible additional pieces, you might use a
<WS:SPECIALCONDITIONS> tag to pull information from the database that
includes the tags <WS:TIDEHI> and <WS:TIDELO>.

Normally, the Web Classes handle only one level of parsing. Even if the
<WS:TIDEHI> and <WS:TIDELO> tags were included, they wouldn’t be
processed because the tag containing them would have already been handled and
the parser head would move to the next text it found in the original document. You
can, however, tell the Web Class to rescan the document once it has been parsed
originally by using a Boolean property of the template called
ReScanReplacements. When this property is set to true, the ProcessTag function
calls itself recursively, replaces any new valid tags with their appropriate values,
and then repeats the process until no new tags can be found. You need to set this
property prior to processing the templates.

TIP
A Word Of Warning
Unless you specifically plan to embed custom tags in your replacement tag, leave
ReScan-Replacements set to false. Setting it to true unnecessarily can have a
significant adverse effect upon performance. The default value is false.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

A Humble Request

So far, the Weather Report Web application produces generalized weather output for
one state—Washington. For those people who live in the other 49 states, such an
application is pretty useless and likely to doom marketing efforts if you need a separate
browser app for each state. Obviously, the key to making this more than a strange
curiosity is to provide some way for the user to select which state he or she wants to
view. In other words, for Web applications to be useful, you need some way of getting
information to them as well as from them.

Fortunately, conveying such information has not been a problem for Web applications
for some time. The HTTP protocol defines two different mechanisms for sending
information from the client to the server: the GET protocol and the POST protocol.
GET, the older of the two, works essentially by sending a string of name-value pairs to
the server attached to the URL of the processing CGI program. For example, to send a
request to display the statewide weather information for California, you could place the
following GET request into an anchor link tag:

<A HREF="http://www.WeBWeather.com/WeatherReport.asp?state=
 California">California Weather

The expression after the question mark constitutes the query and is known as a query
string. Each tag pair within the query is separated by an ampersand (&), and spaces are
replaced with plus signs (+). Thus, to retrieve the weather for Walla Walla, Washington,
you’d use the following:

<A HREF="http://www.WeBWeather.com/WeatherReport.asp?state=
Washington&city=Walla+Walla">Walla Walla Washington Weather

Although GET requests are relatively useful for passing small amounts of data, they
have some notable problems:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Query strings have a limit of 1,024 characters, making them problematic for
passing large amounts of text.

• Query strings need to be encoded so that the information they pass doesn’t
contain problematic characters (such as spaces, tabs, quotes, pluses, ampersands,
or similar characters).

• Query strings appear as part of the URL when sent, making them less than
desirable for sending potentially sensitive information (such as passwords or
credit card numbers).

In response to this, the W3C established a new protocol, POST, with HTTP 1.0 in
1994. POST works by defining within the Web page a Form object that contains
recognized <INPUT> elements. Each <INPUT> element, including listboxes,
textboxes and textarea boxes, buttons, and checkboxes, has a unique identifier (a name
or ID property) and a value property, which can be used to transmit information.

The POST protocol solves many of the problems inherent in the GET protocol. You
can use it to pass large blocks of text, it performs encoding in the background, and it
doesn’t appear on the command line when sent. For most serious applications, POST is
more widely used than GET, although older servers don’t always uniformly support it.
IIS applications support both POST and GET, although Microsoft’s documentation
stresses that POST is the preferred method for sending information.

Of course, sending the information to the server is relatively easy. It’s getting the
information on the server side that’s the tricky part. Fortunately, both ASP and IIS
support a number of objects that are useful on the receiving end of things; the most
important of these is the Request object. Request is to server-side input what Response
is to server-side output. It accesses the data sent to it from the client and puts it into a
number of different formats, depending upon the means of transmission and the
information involved. The properties and methods of the Request object are
summarized in Table 13.2.

Table 13.2 Properties and methods of the Request object.

Property or Method Description

BinaryRead Accesses binary information sent from the client, such as a
picture.

ClientCertificate A collection of client certificate fields, as specified in the
X.509 standard.

Cookies A collection of cookies sent as part of the request.

Form A collection of form variables sent via POST.

Item The default procedure for the Request object, Item returns
a keyed or indexed item that was sent to it.

QueryString A collection of query string objects sent as part of a GET
protocol link.

ServerVariables A collection of server variables, accessible by name or
index.

TotalBytes The number of bytes sent to the server, usually referenced
in order to retrieve data with the BinaryRead method.

In most cases, the objects returned by the Request object are not traditional Visual
Basic collections; rather, they implement IRequestDictionary, a specialized form of
one of the most useful structures in ASP programming—the Dictionary.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

I Request A Dictionary

Dictionaries are a staple of the ASP developer, and their recent inclusion within Visual Basic
6 attests to their popularity. Dictionaries act much like lightweight collections; passing a key
to a Dictionary object returns a value. However, that value can be anything: a number, a
string, an object, or even another dictionary. This makes them ideal for creating quick,
complex data structures as varied as linked lists, binary trees, or arrays. Moreover, they are
considerably less sensitive to invalid keys than collections are, which is essential to using
them in languages such as JavaScript, which have no error-handling capabilities (see Table
13.3).

Table 13.3 Dictionary properties and methods.

Property or Method Description

Add Adds a new item to the Dictionary and associates it with a key.

CompareMode Sets or retrieves the comparison mode for key references. Can
be either BinaryCompare (the default), TextCompare, or
DatabaseCompare.

Count Returns the number of items in a Dictionary. Property is
read-only.

Exists Used to determine whether a given key exists in the Dictionary.

Item Default property of the Dictionary, Item takes a key and returns
the associated item.

Items Used for iterating through a Dictionary, Items takes an integer
and returns the item corresponding with that integer.

Key Actually a method of the Item property, Key returns the key for
a given item.

Keys The Keys collection is used for iterating through the keys of a
Dictionary. It takes an index (1 based) and returns the key
corresponding to that index.

Remove Removes the item for the key passed to it.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

RemoveAll Removes all the items in a Dictionary.

The base Dictionary class built into ASP (and hence available to IIS applications in Visual
Basic 6) works by creating an internal hash table. Hashing is a fairly common technique in
programming. In essence, when a key is hashed, a subroutine converts the key into a numeric
value; a simple example of this might be a routine that adds all the ASCII values of each
character in the key to create an identifier. Good hash routines usually are able to make the
identifier unique, although the Dictionary object has ways of resolving hash collisions (where
two different keys hash to the same value). The advantage of hashing is that it is fast. For
small arrays, for example, the time for finding an item in an array is comparable to that for
finding it in a hash table, but for anything beyond a couple of dozen items, a hash table can
often be hundreds of times faster.

Accessing a Dictionary is quite straightforward. The Add method (obviously) is used to add
an item to the Dictionary. You can also add a key to the Dictionary for accessing that item,
although it’s not strictly necessary. The key, like the item, can be any data type, although
typically, both are strings. For example, the following code illustrates creating a
SeattleReport Dictionary:

Dim SeattleReport as Dictionary
Dim WashingtonReport as Dictionary
Set SeattleReport = new Dictionary
SeattleReport.Add "skies","cloudy"
SeattleReport.Add "hiF",65
SeattleReport.Add "loF",41
SeattleReport.Add "forecast","Cloudy with rain changing _
 to showers."
WashingtonReport.Add "Seattle",SeattleReport

Accessing this information is just as straightforward. To get the forecast for Seattle from the
Washington Report, you’d write the following:

Dim Forecast as string
Dim SeattleReport as Dictionary
Set SeattleReport=WashingtonReport.item("Seattle")
Forecast=SeattleReport.item("Seattle")
' **** Or
Set SeattleReport=WashingtonReport("Seattle")
Forecast=SeattleReport("forecast")
' **** Or even
Set SeattleReport=WashingtonReport("Seattle")
Forecast=SeattleReport.Items(4)
' **** Because the forecast was the fourth item to be added
' to the report.

You can iterate through the elements of a Dictionary by using the Count, Items, and Keys
collections. One useful technique where Dictionaries really shine is as a way to store fairly
complex data, such as records in a database where the initial structure of the records is
unknown. They also come in handy in output, as the code GetStringFromDictionary
illustrates. The code in Listing 13.10 will convert a dictionary into a user-delimited string,
contained by a second delimiting set of characters.

Listing 13.10 GetStringFromDictionary, a function that takes a Dictionary object and

returns it as a formatted string.

Function GetStringFromDictionary(Dict as Dictionary,itemDelim _
 as String=",",keyDelim as String=":",startDelim as _
 string="[",endDelim as String="]") as String
 Dim Key as String
 Dim Value as String
 Dim Buffer as String
 Buffer="["
 For index=0 to dict.Count-1
 Value=Dict.Items[index]
 Key=Dict.Keys[index]
 Buffer=Buffer+Key+KeyDelim
 If IsObject(Value) Then
 If TypeName(Value)="Dictionary" Then
 Buffer=Buffer+
 GetStringFromDictionary(Value)
 Else
 Buffer=Buffer+TypeName(Value)
 End If
 Else
 Buffer=buffer+cstr(Value)
 End If
 If index<Dict.Count-1 then
 Buffer=Buffer+itemDelim
 End If
 Next
 GetStringFromDictionary=Buffer
End Function

NOTE
The first element of a Dictionary is item 0, not item 1 as it is with some VB collections.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

To illustrate the GetStringFromDictionary function, consider a routine that reads the contents
of a Dictionary and formats the result into a URL:

<A HREF=http://www.WeBWeather.com/WeatherReport.asp?city=
Olympia&hiF=64&loF=47&skies=Cloudy&precipitation=2.25>

The GetStringFromDictionary function could be called to format the query reference, prior to
the HTML page being output:

Dim QueryOutput as String
Dim WeatherData as Dictionary
Dim URL as String
Set WeatherData=new Dictionary
WeatherData.add "city","Olympia"
WeatherData.add "hiF",64
WeatherData.add "loF",47
WeatherData.add "skies","Cloudy"
WeatherData.add "precipitation",2.25
QueryOutput=GetStringFromDictionary(WeatherData,","&","=","","")
URL="http://www.WeBWeather.com/
WeatherReport.asp?"+QueryOutput

This is an admittedly simplistic example of how you can use dictionaries, but it does serve to
show that dictionaries can appear in nearly all aspects of ASP development. Other places where
dictionaries are used include creating quick, easily resizable arrays, linked lists, and binary
trees, storing information transparently and otherwise providing a semblance of structure to a
collection of items.

The ASP/IISAPI objects that Web Classes expose include a Request object in addition to
several others. The Request object in turn holds a number of specialized Dictionary objects
that implement the IRequestDictionary interface. IRequestDictionary implements most of
the same behavior as the default scripting Dictionary class but populates the dictionaries from
the client. For this reason, an IRequestDictionary doesn’t explicitly include either the Add or
Replace methods (or their variants).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Daily Post

As mentioned previously, one of the biggest problems with the GET protocol is that it doesn’t
work terribly well in those places where client-to-server communication is needed the most:

• Transmitting large blocks of text (as in a multiline text field)

• Sending state information (such as the state of a checkbox)

• Getting highly formatted code upline (a block of HTML text)

As a consequence, around 1994 the GET protocol was gradually replaced by the POST
protocol, a part of the HTTP 1.0 specification. This particular protocol made use of the
<FORM> tag, which acted as a generalized container for any type of generalized input, such as
a textbox, a selection of radio buttons, a combo box or listbox, and so forth. The POST
protocol, which offered protection from prying eyes, was actually the first step necessary in
creating secure channels across the Internet.

The VB6 Web Classes specifically handle all transactions through the POST protocol, even
when the GET protocol is explicitly set up in the final Web page output. Because this means
that data sent via the query string method appended to a URL actually must be converted into
HTTP 1.0 format, the Visual Basic documentation discourages the use of the query string and
GET protocol whenever possible.

The <FORM> tag can actually use either protocol, by the way, although the default behavior
for a form is to use POST. Although this discussion is a bit of a diversion, it’s worth looking
more closely at the attributes in a <FORM> tag because certain default parameters aren’t
always covered within books on standard HTML:

<FORM
ACTION="http://www.WeBWeather.com/WeatherReport.asp"
METHOD="POST"
TARGET="self"
ENCTYPE="multipart/form-data">
<!-- Input controls-->
</FORM>

The ACTION attribute contains the URL to send the data; typically, it is either a CGI script or
an ASP. This example uses an ASP that contains the WeatherReport Web Class. The
METHOD can be either POST or GET, although it defaults to POST. The TARGET is the
frame that receives the results from the CGI script (and usually defaults to “self”, the frame in
which the call was made). Finally, the ENCTYPE attribute determines how data is encoded for
transmission and can take on either the value “multipart/form-data” (the default) or the rather
unwieldy “application/x-www-form-urlencoded”. The latter is used to send binary data, such
as a picture, to the server from the client.

A form is simply a container, much like a <DIV> or even a <P> tag. You can (in theory) place
any HTML within a form that you can place outside of it, which means that you can format
form input controls within tables or <DIV> tags. The important elements from a form’s
standpoint, however, are the <INPUT> elements—textboxes, listboxes, control boxes, buttons,
and related “controls.” An <INPUT> tag has at least three required attributes (NAME, TYPE,
and VALUE), although if you are working with Internet Explorer 4 or later, you may also want
to include an ID attribute:

<INPUT TYPE="Text" NAME="City" ID="City" VALUE="Clear">

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The TYPE attribute indicates what type of <INPUT> container is being used. You would
use both a NAME and ID attribute because Internet Explorer and Netscape, as is typical,
use different standards for data input; IE refers to everything by its ID, whereas Netscape
uses the NAME attribute to describe its named elements. This is one of the biggest
stumbling blocks that most people have when encoding forms for multiple platforms. In
general, it is wise to use both and provide the same name for NAME and ID. The VALUE
attribute has more meaning with some types of <INPUT> than others, but in most cases,
VALUE contains the text string value that the control will provide when the form is
transmitted.

NOTE
Note that an <INPUT> tag does not have to be inside a <FORM> tag. Especially when
used in conjunction with DHTML, <INPUT> tags provide ways for client-side JavaScript
to retrieve or display values. However, an <INPUT> tag outside a form is never
transmitted to the server; in that respect, the <FORM> object acts as a container.

The HTML form in Listing 13.11 demonstrates how you can put these elements together to
transmit information about current local conditions, as you might find in a Web-based
weather site.

Listing 13.11 HTML code for retrieving current weather conditions into a form.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE></TITLE>
</HEAD>
<BODY>

<H1>WeBWeather</H1>
<H2>Current Weather Conditions For Washington</H2>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<FORM ID=weatherSubmitForm NAME=weatherSubmitForm
METHOD="POST"
 ACTION="WeatherReport.asp">

<INPUT TYPE=HIDDEN ID=state NAME=state VALUE="Washington">
Choose a city:
<SELECT ID=city NAME=city>
 <OPTION SELECTED VALUE=seattle>Seattle</OPTION>
 <OPTION VALUE=olympia>Olympia</OPTION>
 <OPTION VALUE=redmond>Redmond</OPTION>
 <OPTION VALUE=walla_walla>Walla Walla</OPTION>
 <OPTION VALUE=spokane>Spokane</OPTION>
</SELECT>

High Temperature
(°F):<INPUT ID=HiF NAME=HiF VALUE="" >

Low Temperature (°F):<INPUT id=LoF name=LoF value="" >

Current Conditions:<SELECT ID=skies NAME=skies>
 <OPTION SELECTED VALUE=clear>Clear</OPTION>
 <OPTION VALUE=partlySunny>Partly Sunny</OPTION>
 <OPTION VALUE=partlyCloudy>Partly Cloudy</OPTION>
 <OPTION VALUE=cloudy>Cloudy</OPTION>
 <OPTION VALUE=rainy>Rainy</OPTION>
 <OPTION VALUE=thunderstorm>Thunderstorm</OPTION>
 <OPTION VALUE=snow>Snow</OPTION>
 <OPTION VALUE=sleet>Sleet</OPTION>
</SELECT>

24-hour Forecast:

<TEXTAREA ID=Forecast NAME=Forecast STYLE="HEIGHT: 88px;
 WIDTH: 276px"></TEXTAREA>

<INPUT type=submit><INPUT TYPE=reset>
</FORM>
</BODY>
</HTML>

NOTE
Note the use of the HIDDEN element in the form to record the information about which
state the city belongs to. A hidden element is a convenient way to add information to the
page that’s necessary to trans-mit but that shouldn’t be seen by the person viewing your
Web page.

The HTML code here obviously only works for the state of Washington, although later in
this chapter, I introduce support tags to turn it into a more generic template. No real effort
has been made to “prettify” this input page; its primary purpose is to demonstrate how you
set up a form and how the Web Class accesses that form.

The Submit button at the bottom of the form sends a message to the browser to read all the
values in the button’s form, encode them into a safe format (which is where the
“multipart/form-data” value for the encode tag comes in), and then send them to the
URL specified in the ACTION element.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Enabling Events In Web Classes

Sandy, a meteorologist in Washington, selects a city, adds the requisite data, and
then presses the Submit button. What happens next? At the moment, nothing.
The application needs to process the information, and to do that, it must have
some event signal the Web Class that data has been submitted. This is the role of
Web Class events.

To work with the data submission page, you need to add the template in Listing
13.11 to your Web Class and create event hooks for handling the form, as
follows:

1. Open the Web Class Editor, and right-click HTML Template
WebItems. Choose Add HTML Template from the menu, and select the
template file created in Listing 13.11 (which is called
Weather1Template1.htm on the CD-ROM).

2. Change the name of the template to WeatherSubmit by clicking once
on the Template1 label until it becomes editable and then changing the
name (see Figure 13.7).

Figure 13.7 The Web Class Editor, disp-laying the new template and its
associated form object.

3. In the DHTML outline (the right pane of the Web Class Editor), you
can see not just the body object, but also a form object called
weatherSubmitForm. The Web Class Editor automatically assigns the
ID of the form as its name.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/13-07.jpg',496,389)
javascript:displayWindow('images/13-07.jpg',496,389)

4. Double-click the weatherSubmitForm object in the right pane. This
launches the Code Editor for the WeatherSubmit_ weatherSubmitForm
event. This event gets called whenever someone presses the Submit
button within the form. For now, you can get an echo of the data that was
sent to the Web Class by putting the code in Listing 13.12 into the event
handler.

Listing 13.12 The event-handling code invoked whenever the form is submitted.

Private Sub WeatherSubmit_weatherSubmitForm()
 Dim index As Integer
 For index = 1 To Request.Form.Count
 Response.Write Request.Form.Key(index) + ":" +
 Request.Form.Item(index) + "
"
 Next
End Sub

5. When you close the code window, you should note that several
changes have taken place, including the new weatherSubmitForm event
handler associated with the WeatherSubmit template and the replacement
of the “<none>” target for the weatherSubmit-Form with
“weatherSubmitForm”.

6. Open the WeatherReport_Start event handler, and replace the code
listed here:

 Private Sub WeatherReport_Start()
 WeatherSubmit.WriteTemplate
 End Sub

7. Run the Web Class. Set a high and low value to the temperatures,
choose a city and a current weather condition, and provide a forecast
(such as “Cloudy giving way to meteor impacts in the afternoon, resulting
in snow and nuclear winter conditions”). Then, press Submit. You should
get a listing of all the attributes that you set, looking something like
Figure 13.8.

Figure 13.8 Raw output of the Web Class, showing the attributes passed
from the client.

The process of creating a handler for the Submit button touches on one of the
more sublime yet powerful aspects of Web Classes: the Web event. In essence,
you can use the Web event for everything from refreshing the page to validating
input data and updating databases. It extends the notion of a Visual Basic event
to encompass the browser and server together as a single application. Web
events are covered in more detail later in this chapter in the section “Linking
Events.”

javascript:displayWindow('images/13-08.jpg',691,588)
javascript:displayWindow('images/13-08.jpg',691,588)

Form-Fitting Code

When Sandy presses the Submit button in the WeatherReport, Visual Basic fires
the event associated with the weatherSubmitForm. This event, shown earlier in
Listing 13.12, then iterates through the list of all items sent from the form and
outputs their keys and values back to the Web page.

The Form collection holds the contents of all the data that was sent via the
POST statement. In this simple example, nothing actually happens with the
data; it is basically output in a simple HTML page. (The <HTML>, <HEAD>,
and <BODY> tags are added by default.)

In most cases, you’ll want to do something more useful with the data. One of the
primary purposes of the event handler is to provide a business rule to validate
the data and a mechanism to handle invalid data. With the Weather form, the
data could be invalid in several ways:

• Sandy could have failed to put values into the two temperature boxes.

• Sandy could have inadvertently switched the high and low
temperatures.

• Non-numeric information could have been added to the temperature
boxes.

• The values might fall outside the range of valid data. (A slip might have
turned 87 degrees into 877 degrees, a sweltering day indeed.)

• The forecast could have been forgotten.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Even if the data is valid, Sandy should have the chance to do an eyeball check to verify that the
data is correct before committing the weather report to a database. Should the data be invalid, the
program shouldn’t give her the option to submit the data at all, only to correct it.

The code in Listing 13.13 shows some (although hardly all) of the possible validations, as well as
an example of how to use the Form collection. I’ve also used a simple (albeit devious) trick to
keep the amount of retyping to a minimum: If Sandy wants to correct her data, a small JavaScript
handler tells the browser to go to the previously viewed page. In both Netscape and Internet
Explorer, the browser retains form information in the history. This means that you don’t need to
actually maintain any state information on the server.

Listing 13.13 Validation event handler for the WeatherReport submission.

Private Sub WeatherSubmit_weatherSubmitForm()
 Dim HiF as integer
 Dim LoF as integer
 Dim Index As Integer
 Dim EnableCommit as boolean ' If true, lets the user
 ' commit the data to the
 ' database; if false, the
 ' user can't commit data.
 Dim HasWarnings as boolean

 EnableCommit=True;
 HasWarnings=False;
 With Response
 .Write "<HTML><HEAD>"
 .Write "<STYLE>"
 .Write ".ErrorStyle {color:red}"
 .Write "</STYLE>"
 .Write "<BODY>"
 .Write "<h2>Your weather report information:</h2>
 For index = 1 To Request.Form.Count
 .Write Request.Form.Key(index) + ":" +
 Request.Form.Item(index) + "

"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Next
 If isNumeric(Request.Form("HiF")) then
 HiF=CInt(Request.Form("HiF"))
 If HiF>130 or HiF<-40 then
 .Write "<div class=ErrorStyle>
 Warning: The high temperature (" +
 cstr(HiF)+" °F)may be in
 error.</div>"
 HasWarnings=True
 end if
 else
 if Request.Form("HiF")="" then
 .Write "<div class=ErrorStyle> Error:
 No high temperature was given.
 </div>"
 else
 .Write "<div class=ErrorStyle> Error:
 The high temperature is not a valid
 number.</div>"
 end if
 EnableCommit=False;
 End if
 If isNumeric(Request.Form("LoF")) then
 LoF=CInt(Request.Form("LoF"))
 If LoF>130 or LoF<-40 then
 .Write "<div class=ErrorStyle>
 Warning: The low temperature (" +
 cstr(LoF)+" °F) may be in
 error.</div>"
 HasWarnings=True
 end if
 else
 if Request.Form("LiF")="" then
 .Write "<div class=ErrorStyle> Error:
 No low temperature was given.
 </div>"
 else
 .Write "<div class=ErrorStyle> Error:
 The low temperature is not a valid
 number.</div>"
 end if
 EnableCommit=False;
 End if
 End if
 If enablecommit then
 If LoF>HiF then
 .Write "<div class=ErrorStyle>Error:
 The high temperature (" + cint(HiF)+"
 °F) is less than the low temperature
 (" + cint(LoF)+" °F).</div>"
 EnableCommit=False;
 End if
 End if

 If Request.Form("Forecast")="" then
 .Write "<div class=ErrorStyle>Warning: No
 forecast was given.</div>"
 HasWarnings=True
 end if
 if EnableCommit then
 if HasWarnings then
 .Write "
 <br"
 .Write "<div class=ErrorStyle>The form
 contains one or more warnings, indicating
 that data may possibly be erroneous. You
 can commit this report, although you should
 check the information carefully before
 doing so.</div>"
 end if
 .Write "<div>"
 .Write "<a href='javascript:history.back()'
 >Edit Data "
 Set Session("ReportData")=Request.Form
 .Write "<a href=WeatherReport.ASP?WCI=
 ReportCommit&WCU>Commit Record"
 .Write "</div>
 .Write "</body></html>"
 else
 .Write "<div>"
 .Write "
 Edit Data "
 .Write "</div>
 end if
 end with
End Sub

Most of the code in Listing 13.13 is straightforward. You can use the Request.Form object
much like the ADO RecordSet object; passing the name of the property (such as “HiF”) to the
form object will give you the value defined in the form. The handler outputs the data from the
form and then filters it through a series of validation tests. If a questionable value comes up that
may still be legitimate (such as -43 in Barrow, Alaska), the handler issues a warning but doesn’t
block the ability to commit the data. On the other hand, if the data is obviously bad (such as 32F)
or missing, then only the edit option is available; Sandy cannot commit the report to the server.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

If the data is acceptable, then a quandary pops up. The logical next step is to load a
template and submit the data to the database. However, form data retains its value only
from the form page to the subsequent page. There has to be a way to save that
information to the actual data-storing page. Fortunately, such a mechanism exists: the
Session object.

Session information causes data to persist from one page to the next and more or less
corresponds to a public type declaration in Visual Basic. The information contained
within session variables remains available as long as the user is dealing with the same
Web Class. If the user browses to a page on a different Web site and then returns to
the first page, session information will be lost.

In the preceding example, the report form’s data was saved to a session variable called
ReportData:

Set Session("ReportData")=Request.Form

Because Request.Form is an object, you should use the Set keyword to assign it.
(Because the Session object is itself a Dictionary, this is not strictly necessary, but it is
good form.) You can then retrieve the object in the data commit page by requesting
the ReportData object:

Dim formData as Dictionary
Set formData=Session("ReportData")

To actually commit the data, you need to define a Web item that acts as a confirmation
page—in this case, a template called ReportCommit. The code that calls the
ReportCommit Web item

.Write "<a href=WeatherReport.ASP?WCI=
ReportCommit&WCU>Commit Record"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

shows the actual Web event connection format; if this page had been a template, you
could have assigned the connection by right-clicking the appropriate link tag and
selecting the ReportCommit template.

Commiting The Data

The real power of ASP, and hence Web Classes, lies in the ability to communicate
with databases through the use of ADO. Programming script-based ASP through a
program such as Visual InterDev can give beginning programmers the impression that
the Active Server Pages technology actually includes ADO as part of its core set and
that ADO and ASP are inextricably intertwined. With Visual Basic, the distinction
becomes obvious…and meaningful. You can create libraries of data access routines to
hide the intricacies of the actual database connections, making your code easier to read
and maintain.

NOTE
The database model chosen here, by the way, is extremely simple—one table with no
foreign keys and no normalization—primarily because it makes it easier to focus on
the Web technologies. A real-world application would of course normalize most of
the data and would be considerably more extensive in terms of what specifically is
saved.

The ReportCommit part of the Web Class illustrates how you can simplify your code.
Here, the Web Class updates the city’s record with the newest weather and then
returns a confirmation page that lets users modify different city records or change to a
different state.

The ReportCommit template is likewise very simple and uses the
ReportCommitTemplate.htm file as its source. Note the use of placeholders in the file,
which is shown in Listing 13.14.

Listing 13.14 ReportCommitTemplate.htm source file.

<HTML><HEAD><TITLE>Weather Report Updated</TITLE></HEAD>
<BODY>
<H2>Weather Report Data has been updated.</H2>
Do you wish to:
<DIV>Update Another
 City</DIV>
<DIV>Select a different
 State</DIV>
<DIV>Return to the Main
 Page</DIV>
</BODY></HTML>

Creating the new template item is nearly as simple as creating the original
WeatherSubmit template item:

1. Open the Web Class Editor, and right-click HTML Template Web Items.
Choose Add HTML Template WebItem from the menu.

2. Change the name of the Web item to ReportCommit and then double-click
the node to open the ReportCommit_Respond event handler. This gets called
whenever the ReportCommit item is requested from the client.

3. Type the code from Listing 13.15 into the Respond handler. By
encapsulating data calls, the code can be made much cleaner and easier to
maintain.

Listing 13.15 Response code for the ReportCommit Web item.

Private Sub ReportCommit_Respond()
 Dim ReportData as Dictionary
 Set ReportData=Session("ReportData")
 WeatherUpdate ReportData
 ReportCommit.WriteTemplate
End Sub

4. The WeatherUpdate subroutine is used to actually update the weather
database. To define it, open up the General Declarations code section, and add
the code from Listing 13.16. Because of the nature of the application, you
should close the connection and recordsets when they are not needed.

Listing 13.16 The WeatherUpdate subroutine updates the weather database.

Private Sub WeatherUpdate(WeatherRecord As Dictionary)
 Dim conn As Connection ' This declares the connection
 Dim rs As Recordset ' This declares the record set
 Set conn = Server.Create("ADODB.Connection")
 conn.Open = "WeatherReports"
 Set rs = conn.Execute("SELECT * FROM ReportData WHERE
 State='" + WeatherRecord("State") + "' and City='" +
 WeatherRecord("City") + "';")
 rs!HiF = WeatherRecord("HiF")
 rs!LOF = WeatherRecord("LoF")
 rs!Skies = WeatherRecord("Skies")
 rs!Forecast = WeatherRecord("Forecast")
 rs.Update
 rs.Close
 conn.Close
End Sub

5. Open the Web Class Editor and click the ReportCommit template. In the
right pane, hyperlink references appear for each <A> tag within the template.
Because none of the links within the template actually have an ID, Visual Basic
assigns them the names Hyperlink1, Hyperlink2, and so forth, in the order that
they appear in the Web page. Right-click Hyperlink1 and select Connect To
Web Item from the pop-up menu.

6. In the dialog box that appears, choose the WeatherSubmit template and click
OK. This sends a message to the server to execute the template’s Respond
event (as well as the ProcessTag, even if you’ve included custom tags in your
HTML template).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Respond handler of any Web item gets called automatically when the Web
item is requested from the client. This is probably the best place to process most of
the code in your Web application, using such events as the Start method of the
Web Class object only for initialization and beginning traffic control (that is, where
the user will start; see the next section for more details on this):

Private Sub ReportCommit_Respond()
 Dim ReportData as Dictionary
 Set ReportData=Session("ReportData")
 WeatherUpdate ReportData
 ReportCommit.WriteTemplate
End Sub

NOTE
Note that both the record set and connection would be closed anyway because the
Connection object is declared within the scope of the handler; however, it’s good
practice to make these default actions explicit, for ease of code maintenance if
nothing else.

Notice that it’s the ReportCommit_Respond handler is pretty threadbare. The first
step that the handler needs to do is pass the form’s data on to the processing routine
(WeatherUpdate). It does this by retrieving the session variable “ReportData” and
coercing it into a Dictionary form. There’s a trick here worth noting:
IRequestDictionary implements most of the same interface (and all of the same
data interface) as a standard Dictionary. Because it’s not possible to explicitly
declare an object as IRequestDictionary, you need to coerce it into the other form
to do anything with it.

The WeatherUpdate routine is an extremely simple ADO script: An ADODB
connection object gets created and connected to the WeatherReport’s DSN. Once a
handle exists, the connection executes an SQL script to retrieve the record
associated with the current state and city. The individual fields that need to change

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

in the record are modified and then the full record is updated to commit these
changes to the database. Because there isn’t a significant need to keep the
connection open, the recordset is destroyed and the connection released prior to
leaving the handler.

Once the data is updated, the ReportCommit template is sent back to the client,
reporting that the database received and processed the information. The
WriteTemplate method in turn calls the template’s Respond event, as well as
ProcessTags events if the template contains custom tags.

Implementing Push With WriteTemplate

Although push technology as a marketing tool has lost a certain amount of its
initial hype, there is something to be said about periodically updating content in a
browser. This is especially important when supporting older browsers because the
mechanism that they have in place for refreshing pages frequently consists of
unreliable meta tags.

The method WriteTemplate forces a refresh of the HTML template’s contents to
the browser. You can use this method in conjunction with a timer on the server to
regularly update information on a Web page. For example, a server that tracks
such weather variables as barometric pressure (or stock quotes or machine system
states) would be able to send this data to older browsers that don’t have the
support that IE4+ offers for data access.

Linking Events

Although the ReportCommit template is almost embarrassingly simple, the final
step in connecting the links to other Web items in the Web Class highlights another
useful object in the programmer’s toolkit: the custom event.

When you right-click a link within the template document (such as a hyperlink or a
form), you’re given the option of connecting to a Web item or a custom event. A
Web item is a template with its associated code (such as the Respond or
ProcessTags event handlers). A custom event, on the other hand, is simply an
event handler that gets called when the client makes a request to the server through
that link. In essence, you take over the task of writing the HTML code that gets
output, rather than rely upon a pre-existing template. You use the Response object
to output information, just as you did in the Start event for the Web Class earlier in
this chapter; indeed, unless your Web Class output is extremely simple (one or two
template pages), you are much more likely to use either Web items or custom
events to handle your output for most pages.

When you connect either an event or a Web item to a link in the template, Visual
Basic automatically replaces the contents of the link with its own specific notation.
For example, in the simple weather server being developed here, you will
obviously need to change which state or region is under consideration (unless, of
course, you happen to live in Washington). Because the application itself needs to
be as dynamic as possible, the states should be pulled from the database rather than
hard-coded into the page; this guarantees that adding a new state into the database
won’t require reworking the ASP code.

The ReportCommit template included three lines for navigating from the
confirmation page to other places within the Web site:

<DIV>Update Another
 City</DIV>
<DIV>Select a different
 State</DIV>
<DIV>Return to the Main
 Page</DIV>

NOTE
Sometimes, the interests of pedagogy can put a writer into an awkward situation.
The database referenced throughout this chapter is essentially a one-table flat file.
In a real working database, the states would likely be referenced in one table, the
sky conditions would be in a second, and the remainder of the data would end up
in a third, with appropriate cross keys. It would have made retrieving the states list
almost trivially easy. However, this more complex situation actually provides a
good example to illustrate the use of custom events as well as serves as a warning
to think about your database design before you start building the code to reference
it.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

In the last section, the first of these hyperlinks was connected to the WeatherSubmit template.
The second link won’t actually go to a template object. Instead, the link will invoke a new
custom event, onRequestStates, which will in turn query the database and return a sorted list
of all the states that have weather information:

1. Open the WebClass Editor and click the ReportCommit template.

2. In the right pane of the editor, select Hyperlink2 and right-click on it to invoke its
menu. Choose Connect To Custom Event to do just that.

3. Note that a new node called Hyperlink2 has appeared as a child to the
ReportCommit Web template. This is a custom event associated with the link. You can
either choose to retain the name or modify it into something more descriptive. For this
example, change the name to onRequestStates.

4. Double-click the onRequestStates event handler to open its code window, and type
the code in Listing 13.17. This will force a list of states to be output to the client.

Listing 13.17 The OnRequestStates event handler.

Private Sub ReportCommit_OnRequestStates()
 Dim conn As Connection ' This declares the connection.
 Dim rs As Recordset ' This declares the recordset.
 Dim States as Dictionary
 Dim State as string

 ' Create the initial header HTML and output it
 ' to the client
 Response.Write "<HTML><HEAD><TITLE>Get New State
 </TITLE></HEAD>"
 Response.Write "<BODY>"
 Response.Write "<H1>States</H1><P>Click on a state to _
 display all of its cities for _
 editing.</P>"
 ' Flush the output to ensure that something's seen
 ' on the client

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Response.Flush
 ' Open the connection
 Set conn = Server.Create("ADODB.Connection")
 conn.Open = "WeatherReports"
 ' Create a new dictionary to hold the list of states
 set States=new Dictionary
 ' Retrieve a list of all states ordered alphabetically
 Set rs = conn.Execute("SELECT State FROM ReportData
 ORDER BY State ASC;")
 Iterate through the list and remove duplicates.
 rs.MoveFirst
 while not rs.EOF
 ' Get the state from the current record
 state=rs!State
 ' If the state is not within the dictionary,
 ' then add it; otherwise, ignore it
 if not States.Exist(State) then
 States.Add State,State
 End if
 ' Move to the next record
 rs.MoveNext
 wend
 ' Connection to database no longer needed.
 rs.Close
 conn.Close
 ' Output a form with a combo box showing all the states
 ' as well as a submit button.
 Response.Write "<FORM id=stateForm name=stateForm _
 action='" + URLFor(WeatherSubmit)+"' _
 method='POST'>"
 Response.Write "Please select a State:"
 Response.Write "<select name=""State"" id=""State"">"
 For each State in States
 ' Retrieve the session level State variable and
 ' see if it belongs to the listed state. Make
 ' that option the selected one if it does.
 If Session("State")=State then
 Response.Write "<OPTION value='"+State+"' _
 selected>"+State
 Else
 Response.Write "<OPTION value='"+ _
 State+"'>+State
 End if
 Next
 Response.Write "</SELECT>
 Response.Write "<INPUT TYPE='SUBMIT'>"
 Response.Write "</FORM>
 Response.Write "</BODY></HTML>"
End Sub

Almost all the contents of Listing 13.17 should be familiar to you if you’ve worked with
ADO, although the operation itself is complex. A request is made to the database to retrieve

the list of all states, ordered by state. If the state is not contained within a storage Dictionary
(called, not surprisingly, States), then the state is added. Note that the state is added as both a
value in the Dictionary and as a key to reference the element. Dictionaries require key-value
pairs even if the key and value are the same thing. By adding the state only once into the
Dictionary, you end up with a list of all the states in the database, sorted alphabetically.

If it can be helped, most developers probably don’t want to have to figure out what the precise
URL is for each call to the IIS applications. This is where the URLFor function comes in:

Response.Write "<FORM id=stateForm name=stateForm _
 action='" + URLFor(WeatherSubmit)+"' _
 method='POST'>"

The URLFor function translates the Web items or templates into a URL on the client side,
making it much easier to add these events to the template code. The function can take one of
two forms: URLFor(TemplateVariable), which provides the URL address for the referenced
template (such as WeatherSubmit in the example here), or URLFor(WebItem,
CustomEvent), which will call the requested custom event belonging to that Web item or
template.

URLFor is especially handy because it provides a way to incorporate calls to Web items from
JavaScript or VBScript events. For example, you can set up an image to act as a link to a Web
Class template without using anchors by tapping into the onClick event for the picture:

Response.Write "<IMG SRC='http://www.myimage.com/image.jpg'
onclick='document.location="+URLFor
(WeatherSubmit,onRequestStates)+"'>"

The onClick event gets invoked whenever the image is clicked and in turn requests the
onRequestStates HTML code. You could similarly incorporate URLFor routines within
JavaScript or VBScript code, with the caveat that directly modifying client-side code with
server-side routines can make the process of debugging something of a nightmare.

The only other programming of note within the onRequestStates command comes with the
State session variable:

If Session("State")=State then

This particular session variable is not defined within the page; its primary purpose is to save
and retrieve the last state so selected, which means that the ASP code to actually set the
session variable is included in a revised WeatherSummary page. As little is gained by
reprinting it here, the primary WeatherSummary page is provided on the CD-ROM.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Getting Browser Capabilities

As a Web developer, I voice the plaint that is spoken almost ritualistically by those who make a
living on the Web:

“Oh, why can’t Microsoft and Netscape agree on standards?”

The ugly truth about Web development is that only the simplest Web pages can safely make the
transition from Microsoft’s Internet Explorer 4.0 to Netscape Navigator 4.0. The likelihood that even
a straight HTML Web page will work on every browser has become almost vanishingly small.

One of the things that makes VB6 so compelling is that you can use it to customize the output of a
Web page so that it will work effectively regardless of which browser the page is delivered to.
Templates written specifically for Netscape 4 or Internet Explorer 5 or even Opera 2.0 or Lynx can
be created in the appropriate tool and then attached to the Web Class. Web Classes can likewise
replace customized tags with browser-specific variants, making it easier to build a cohesive design
without necessarily compromising your programming resources.

However, this customization capability is fairly meaningless if the Web Class can’t detect what type
of browser it is sending these pages to. Fortunately, when the client establishes a collection to the
server, the client sends a fairly broad set of information about itself to the server, where it is in turn
stored in a special Dictionary for server objects. This object, ServerVariables, has access to
information about both the server and the client, although only a few properties have any real utility
in most applications. The routine in Listing 13.18, DisplayServerVariables, will send a table of the
current variables in play to your browser (note that this code isn’t a part of the weather project).

Listing 13.18 DisplayServerVariables subroutine and one way to call it.

Public Sub DisplayServerVariables(optional whichVariable _
 as Variant)
 Dim index As Integer
 Response.Write "<TABLE>"
 With Request
 If IsMissing(whichVariable) then
 For index = 1 To .ServerVariables.Count
 Response.Write "<TR><TD>"
 Response.Write Request.ServerVariables.Key(index)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Response.Write "</TD><TD>"
 Response.Write Request.ServerVariables.Item(index)
 Response.Write "</TD></TR>"
 Next
 Else
 Response.Write "<TR><TD>"
 Response.Write whichVariable
 Response.Write "</TD><TD>"
 Response.Write Request.ServerVariables(which _ Variable)
 Response.Write "</TD></TR>"
 Response.Write "</TABLE>"
 End if
 Response.Write "</TABLE>"
 End With
End Sub

Public Sub WebClass1_Start()
 DisplayServerVariables
End Sub

Of all the server variables, the one that is most immediately useful is HTTP_USER_AGENT. You
can use this variable, which contains identification information about the browser, to determine what
type of HTML code is sent to the client. The results, however, can be a little cryptic, as Figure 13.9
illustrates quite clearly. Internet Explorer 5 is described as Mozilla/4.0 (compatible; MSIE 5.0b1;
Windows 95), whereas Netscape Navigator 4 has the similar designation Mozilla/4.05 [en] (Win95;
I).

Figure 13.9 The contents of HTTP_ USER_AGENT for Internet Explorer 5 and Netscape
Navigator 4 show that things are not as clear-cut as one could hope.

Although it is possible to parse this information into something meaningful, the real power of
USER_AGENT comes in conjunction with the Server object that’s part of ASP. The Browser
Client Capabilities object is a DLL belonging to IIS4 that reads a file, BrowsCap.ini, and extracts
the data associated with the USER_AGENT. For example, the latest BrowsCap.ini file (June 1998)
had the references corresponding to the Internet Explorer 5.0 beta shown in Listing 13.19.

Listing 13.19 A fragment of the BrowsCap.ini file.

;; MSIE 5.0
[IE 5.0]
browser=IE
Version=5.0
majorver=#5
minorver=#0
frames=TRUE
tables=TRUE
cookies=TRUE
backgroundsounds=TRUE
vbscript=TRUE
javascript=TRUE
javaapplets=TRUE

javascript:displayWindow('images/13-09.jpg',577,447)
javascript:displayWindow('images/13-09.jpg',577,447)

ActiveXControls=TRUE
Win16=False
beta=False
AK=False
SK=False
AOL=False
crawler=False
CDF=True

; MSIE 5.0 beta 1 browsers
[Mozilla/4.0 (compatible; MSIE 5.0b1; Windows 95)*]
parent=IE 5.0
platform=Win95
beta=True

[Mozilla/4.0 (compatible; MSIE 5.0b1; MSIECrawler; Windows 95)*]
parent=IE 5.0
platform=Win95
beta=True
crawler=True

[Mozilla/4.0 (compatible; MSIE 5.0b1; Windows 98)*]
parent=IE 5.0
platform=Win98
beta=True

[Mozilla/4.0 (compatible; MSIE 5.0b1; Windows NT 5.0)*]
parent=IE 5.0
platform=WinNT
beta=True

The USER_AGENT key will index a major entry (such as [IE5]) or will indicate what browser the
key belongs to via the parent and platform properties. The beta property in turn indicates whether
the release is a beta release or final (at the time of this writing, Internet Explorer 5 was still in beta).
All the other attributes, such as the version number or whether it supports tables, are listed in the
parent—here, [IE5].

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

From Visual Basic, getting the capabilities information is not quite as intuitive as it should be.
First, you need to use the Server object (one of the objects supported by Active Server Pages)
to create an ActiveX control, MSWC.BrowserType. You can then read the various properties
of the appropriate browser by setting them as properties to the newly created object. For
example, the functions GetBrowserID and GetBrowserVersion in Listing 13.20 simply
encapsulate these calls:

Listing 13.20 GetBrowserID and GetBrowserVersion functions both rely on the Server
object and the MSWC.BrowserType.

Public Function GetBrowserID() as string
 ' This will return the abbreviated form of the browser name
 ' such as IE for Internet Explorer or NS for
 ' Netscape Navigator
 Dim objBrowser as Object
 Set objBrowser=Server.CreateObject(MSWC.BrowserType)
 GetBrowserID=cstr(objBrowser.Browser)
End Function

Public Function GetBrowserVersion() as Single
 ' This will return the version number of the browser as type
 ' Single.
 Dim objBrowser as Object
 Set objBrowser=Server.CreateObject(MSWC.BrowserType)
 GetBrowserVersion=CSng(objBrowser.Version)
End Function

If the requested property doesn’t exist for the given browser, then MSWC.BrowserType will
return FALSE for that particular property. This capability is invaluable for determining which
scripting language is available (if any); whether the browser supports frames, ActiveX, or Java
applets; what platform the browser is running on; and a host of other attributes. If the specific
USER_AGENT is not found in the list, the BrowseCap.dll will attempt to parse the reference
to the closest version that does match. Failing that, the DLL will return a reference to the
default browser, which has few capabilities.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

You should use the BrowseCap object to target your code to fit as many of your browser
objectives as possible. By modifying the file before it gets to the client, you cut down on the
amount of unsafe and redundant code that is executed on the client side. This makes for cleaner
Web documents with tighter security and better focus.

NOTE
IIS 4.0 comes with a version of BrowsCap.ini, but because browser capabilities change swiftly,
you should maintain the latest version of this file so that you have the most accurate version.
CyScape Inc. maintains the BrowsCap.ini list and will usually have the latest version (even
Microsoft’s file at www.backoffice.microsoft.com/downtrial/moreinfo/bcf.asp was several
months older than CyScape’s, which can be found at www.cyscape.com/asp/browscap).

Where To Go From Here

It is well nigh impossible to provide all the information about Web Classes and server-side
development in one chapter. (It’s tough even in a whole book.) Web Classes marry the
versatility, data-type richness, and ease of use of Visual Basic with the powerful mechanisms
that make up Active Server Pages, which in turn combine server-side programming with the
robust database capabilities of ADO.

In Chapter 14, the focus shifts to the other innovation of Visual Basic 6: the Dynamic HTML
application. Although IIS applications are built around ASP and are intended as a way of
dynamically generating HTML code (and other code) to a wide range of browsers, DHTML
applications work only with Internet Explorer 4.0 and later but take advantage of the incredible
robustness of the DHTML Document Object Model as the canvas. Chapter 15 looks at
integrating client- and server-side code into a single cohesive whole, while also looking at
some of the practicalities of creating and deploying Web-based applications.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1576102823/ch13/www.backoffice.microsoft.com/downtrial/moreinfo/bcf.asp
http://www.itknowledge.com/reference/standard/1576102823/ch13/www.cyscape.com/asp/browscap
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 14
The Dynamic Client
Key Topics:

• The role of the client

• DHTML applications

• Internet Explorer Object Model

• Tables

• User input

All too often in the past, client/server programming actually meant server
programming, with a side of client to go. The client in database programs
usually received short shrift, being primarily considered a window into the
more complex world of server manipulation, rules validation, and
network-to-network communication. With DHTML applications in Visual
Basic, this is about to change.

The Role Of The Client

The irony of most client/server programming is that the visual interface—the
client part of the equation—is usually the part of the equation that is given the
least amount of thought. At the same time, the client is the part of the program
that people deal with the most. A well thought-out client application should be
mostly transparent, interfering as little as possible with data interaction.

That is not to say that the program should be dull and uninteresting, made up
of nothing but text boxes, combo boxes, and the occasional button. Actually,
this is exactly what transparency in the client does not mean. All too often, an

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

interface looks like the cockpit dashboard in a commercial jet, with dozens of
combo boxes, scroll bars, buttons, and switches to accomplish specialized
purposes. While this can provide a highly detailed view of the data, such
interfaces, for the most part, suffer from providing too much information.

At this point, you might be questioning such a statement—you can never
provide too much information to the person using your application, right?
Wrong. Most client/server programs provide too much information. The user
has to sort out what is relevant, place the relevant information into context, and
then figure out how to discard what is not needed. The more information that
has to be reviewed and discarded as unimportant, the longer it takes the user to
get the important information, and the more unpleasant it is to work with the
program.

Thus, in a way, the process of building a good interface is to create a screening
mechanism to present the important information in an obvious manner while
keeping secondary data in the background. Primary information should require
the least amount of work to get, while secondary information should be
accessible in a logical and consistent fashion.

Unfortunately, most programming tools actually used to discourage this way
of thinking. Before the advent of visual programming, putting together an
interface often required getting out graph paper and plotting each corner of
each control object’s window. Visual Basic changed much of that, because
with VB you can drag the rectangle of an object’s boundary on a form, move
the object around, resize it, and delete it with a key press.

Although VB made it easier to create good interfaces, it also made it easier to
create bad interfaces. The pain involved in making interfaces in C++ served as
a serious incentive to plan the work ahead of time. On the other hand, with
Visual Basic, you can create an interface in very little time that has dozens of
controls. This has the dual effect of cluttering up the useful information with
secondary or even irrelevant data and making it more difficult for the
application to modify itself if the focus of the data changes. Think about the
code necessary to resize a form with 45 controls, and you begin to get an idea
of why such interfaces break down.

Related to this is the amount of work necessary to provide different views of
the data. Contemporary database design has long known the importance of
normalization. Normalization means to pull redundant database elements into
their own tables, thereby storing data in the most efficient manner possible. In
client interface design, there is a certain amount of normalization that occurs
as well. The presentation of the data should change depending on what
information needs to be gleaned. (For example, a weather map will use
different symbols in the display of temperature gradients than it will when
showing rainfall.) In Visual Basic, each of these views frequently requires its
own separate form, which in turn requires separate programming layers and
introduces coding problems. Although a certain amount of generalized
programming can cut this down somewhat (the rainfall and temperature
distribution could actually use the same map with some work), this added
complexity makes it more difficult to maintain the programs and doesn’t work
in all situations. A five-day forecast, for example, would not fit well in the

same format as a rainfall map. A Web page, on the other hand, offers an
interesting alternative to the standard form.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Web Page As Client

An HTML page can be a remarkably flexible vehicle for presenting
information. Indeed, the advantages that it offers as a client interface can
appear compelling at first glance:

• Most browsers automatically cause the page to flow so that it fits
within the window, regardless of the window’s size.

• Text can have a rich format. Different text styles, underlying and
emphasis elements, and even colored text can be used at a fairly low
cost. You can sort of do this with an RTF control, but the format of RTF
is considerably more complex and doesn’t support the ability to layer
over background graphics.

• Images can be embedded in a document with very little effort, in such
a way that text flows around them to accommodate their presence.

• Tables can be set up in a wide number of formats and can handle
columns or rows that span across the table. In both Netscape and
Microsoft version 4 browsers, the background elements can be modified
as well.

• Linking between Web pages is trivial, and several pages can operate
in sync with the use of frames.

• HTML pages are computationally inexpensive, intrinsically network
aware, and remarkably extensible with ActiveX components, Java
applets, and scripting support.

The downside is that the level of support for specific features varies widely
from browser to browser and from platform to platform. For the most part,
Internet Explorer 4 and Netscape Navigator 4 both support the HTML 3.2
specifications, but the support for HTML 4.0, the most recently adopted
HTML standard, is noticeably weak with Navigator. Even with Internet
Explorer 5 and Netscape Navigator 5 looming on the horizon, many people are

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

still using Internet Explorer 3.x and Netscape Navigator 3.x, which don’t even
uniformly support HTML 3.2.

In the meantime, more corporations are investing in the creation of intranets,
internal networks that can more precisely define which browser (and version)
will access the network data. By standardizing network data for use on a
particular browser, companies can take full advantage of the browser’s
features and keep redundant code to a minimum. Moreover, if the browser
could be embedded within an external application, then the application could
take advantage of the rich formatting inherent in HTML while still providing
the powerhouse of a compiled programming language and IDE.

The notion of a browser working in conjunction with Visual Basic is not new.
As early as 1995, the idea that the browser would disappear as a separate
application was practically a mantra to both Microsoft and Netscape. This is
only logical. When you get right down to it, the browser isn’t really an
application in the true sense of the word, because you can’t actually do much
with a displayed Web page. When Internet Explorer 3 was released, Microsoft
took the wise step of actually making the “browser” a bundle of components,
consisting primarily of the rendering engine for the page (served by
SHDOCVW.DLL) and a shell that could call into the browser. This browser
component was also just as easily controlled from any other ActiveX
container, including Visual Basic.

Internet Explorer 4 raised the stakes by making everything within a Web page
an element that could be controlled through a Document Object Model. While
IE3 had an object model, it was fairly limited in what it could do. On the other
hand, IE4’s rich and feature-filled object model has become a very attractive
way to display even non-Internet information. Visual Basic 5 could control the
Internet Explorer 4 Web browser component in a fairly comprehensive
manner, although, for the most part, this information was documented in a
haphazard fashion.

Moreover, this solution worked reasonably well when the browser was hosted
within Visual Basic (a technique that is discussed in greater detail in this and
the next chapter). However, if you wanted to use a Visual Basic as a control to
manipulate elements within the Internet Explorer application, you could do so
only with a great deal of difficulty. The Visual Basic application either had to
be a sizeable ActiveX component (expensive in terms of download time) or a
standalone executable running in its own memory space, with the inherent
performance drawbacks that such a solution imposes. VB5 offered ActiveX
documents, which essentially ran an instance of a Visual Basic application
within the shell of Internet Explorer. But, for the most part, the development
community has offered a tepid reception to such documents.

Visual Basic 6 offers another solution—DHTML classes—which presents
fewer drawbacks than either trying to control an out-of-process server or
running a Visual Basic program in the shell’s process. DHTML classes are the
client-side analog to IIS classes—they reside within a Web page and have
complete access to the Internet Explorer document object model for that page.
In other words, DHTML classes can control any aspect of a Web page all the
way from reacting to onclick events to rewriting major portions of the Web

page in response to them. They provide an interesting solution to the dilemma
of working with static forms, because a Web page can be resized with no
reprogramming, can alter itself to fit data at very little server-side expense, and
can load or purge controls as needed.

Although this won’t make the standalone Visual Basic application disappear
any time soon, client-side Web classes may eventually outnumber their
EXE-based brethren, especially in networked environments that deal
extensively with databases.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Dynamic HTML Application

Dynamic HTML applications use Dynamic HTML, cascading style sheets, and a
thin ActiveX component to build and control Web pages on the client side.
DHTML applications are strictly client-based programs—they can be deployed
from any Web server, but they can only be run within Internet Explorer 4 (or
greater). As such, they are not very effective within the context of the Internet (in
which IE4 makes up only about 30 percent of the browsers) but make perfect
sense within the more restricted environment of corporate intranets.

If the core of Internet Information Server applications lies with the Active Server
Pages object model, then the basis for Dynamic HTML applications resides in
the Internet Explorer object model. Another way of thinking about this is that a
client-side Web class can intercept any event that IE4 (or IE5) fires, access or
modify any property of the browser, and call any method. In essence, the HTML
Web page replaces the traditional Visual Basic form.

Setting Up A DHTML Application

Creating a DHTML Web application is as easy as creating an IIS application
(and for that matter, as hard). It’s instructive to re-create the archetypal “Hello
World” application that we created in Chapter 13 with the DHTML Application
Template.

Creating A Client Side “Hello, World!”

This sample will create a very basic Web page with the words Hello, World! on
the page. When you click on the words, a secret message pops up.

1. Open Visual Basic, and select New from the File menu. Choose the
DHTML Application icon to create a new DHTML application (see Figure
14.1).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Figure 14.1 Select DHTML Application from the file template types to
create a Web program.

2. If it’s not already visible, open Project Explorer by choosing
View|Project Explorer from the menu or typing Ctrl+R. Open the
Designers folder to display DHTMLPage1. This is roughly analogous to a
form in a traditional Visual Basic Program (see Figure 14.2).

Figure 14.2 DHTML pages can be found in the Designers folder.

3. Double-click on the DHTMLPage1 icon to bring up the DHTML
Editor (see Figure 14.3). This small application lets you create simple
Web pages from within Visual Basic, although you will probably want to
use a more sophisticated editor for most of your real-world projects.

Figure 14.3 The DHTML Editor is a basic Dynamic HTML editor, and
it’s useful for navigating through the structural elements of a Web page.

4. Figure 14.4 shows labels for the various buttons and features of the
editor. Type the word “Hello”, press the Enter key, and type “World!”.
Select Hello, and choose Heading 2. Select World, and select Heading 1.
Observe what happens in the outline view pane.

Figure 14.4 Labels showing the major features of the DHTML Editor.

5. Click on the node H2 (Hello) to select it, and press F4 to open the
standard Properties box (see Figure 14.5). Set the ID property to
Hello—this creates a corresponding ID tag in the H2 node (if you were to
look at the HTML code at this point, the H2 code fragment would be more
or less <H2 ID=Hello>Hello</H2>). The ID is important, because any
element that has an ID in an HTML document will have a corresponding
event handler in Visual Basic.

javascript:displayWindow('images/14-01.jpg',443,290)
javascript:displayWindow('images/14-01.jpg',443,290)
javascript:displayWindow('images/14-02.jpg',282,260)
javascript:displayWindow('images/14-02.jpg',282,260)
javascript:displayWindow('images/14-03.jpg',490,302)
javascript:displayWindow('images/14-03.jpg',490,302)
javascript:displayWindow('images/14-04.jpg',650,444)
javascript:displayWindow('images/14-04.jpg',650,444)

Figure 14.5 The standard Properties dialog box for the H2 element, with
ID set to Hello.

TIP
Accessing The Properties List
If you’re a veteran VB user, you may have tried right-clicking to bring
up the context menu and select the Properties option there.
Unfortunately, this will bring up the property page for the element,
which will usually be blank unless the object is an image or similar
item. Pressing the F4 key will always bring up the Properties list.

6. Open the toolbox (View|Toolbox), and click on the HTML button. The
normal toolbox controls will be replaced with HTML equivalents (see
Figure 14.6). Click on the Button icon (the first control after the pointer
arrow), and drag a rectangle in the editor window below the World! text.
Press F4 to bring up the button’s standard Properties dialog box, and set
the name, ID, and value of the control to Greetings. The ID identifies the
button to Visual Basic, the name identifies it for internal consistency with
the ID, and the value changes the button’s label.

Figure 14.6 Adding a button to your Web page with the DHTML Editor.

7. You are actually creating a Web page in the background. To save this
Web page, click on the DHTML Page Designer Properties icon on the
editor’s toolbar. This will bring up the Properties dialog box (see Figure
14.7) if you haven’t saved the page previously. For now, choose Save
HTML As Part Of The VB Project. This will keep the HTML internal to
the project, rather than saving it to an external file.

Figure 14.7 The DHTML Page Designer Properties dialog box will let
you save your document internally to the project or in a separate file.

8. Close the editor, and open the Project Explorer if it’s not already open.
Right-click on the DHTMLPage1 entry to bring up the Context menu, and
choose View Code to show the familiar Visual Basic code window. If you

javascript:displayWindow('images/14-05.jpg',257,330)
javascript:displayWindow('images/14-05.jpg',257,330)
javascript:displayWindow('images/14-06.jpg',800,574)
javascript:displayWindow('images/14-06.jpg',800,574)
javascript:displayWindow('images/14-07.jpg',445,344)
javascript:displayWindow('images/14-07.jpg',445,344)

click on the Object view (the left combo box), you should see that both
Greetings (the button) and Hello (the text) are treated as objects (see
Figure 14.8).

Figure 14.8 The code editor in Visual Basic 6 is the same for working
with DHTML applications as it is for traditional forms.

9. Select Greetings, and choose the onclick event in the right combo box.
Then, enter the following code into the event handler:

 Private Function Greetings_onclick() As Boolean
 Dim Msg(5) As String
 Dim R As Integer

 Msg(0) = "Hello!"
 Msg(1) = "Hi,there!"
 Msg(2) = "How ya doin'?"
 Msg(3) = "Greetings"
 Msg(4) = "G'day!"
 R = Int(Rnd() * 5)
 ' The document object will be covered later
 Document.parentWindow.alert Msg(R)
 End Function

The final line in the routine involves the Document object, a central part
of DHTML programming. The Document object is covered extensively
later in this chapter. For now, the purpose of the second to last line is to
raise an alert box displaying a message that varies each time you click on
the Greetings button.

10. Click on the Run button (or press F5) to start the debugger. Visual
Basic will display the Project Properties dialog box and you’ll see the
Debugging tab, which determines how objects are instantiated and
displayed (see Chapter 15 for more information about this dialog box).
Throughout this chapter, you will probably want to leave the Start
Component property set to its default value: DHTMLPage1 (see Figure
14.9).

Figure 14.9 The Debugging tab determines when and how the
HTMLPage object is instantiated.

11. Click on OK to accept the debugging option and start the program.
Clicking on the Greetings button will bring up a random greeting (see

javascript:displayWindow('images/14-08.jpg',559,315)
javascript:displayWindow('images/14-08.jpg',559,315)
javascript:displayWindow('images/14-09.jpg',418,377)
javascript:displayWindow('images/14-09.jpg',418,377)

Figure 14.10). Notice that the document’s URL, displayed in the Title bar,
is C:\WINDOWS\TEMP\DHTMLProject_DHTMLPage1.html (your drive
and Windows folder name may vary, of course). This page is generated
internally by the DHTML application designer.

Figure 14.10 The Hello, World! application in action, after clicking on
the Greetings button.

So, what have we actually created here? Examining the temporary file created by
the application will give you a major clue. Listing 14.1 shows the HTML code
generated by the DHTML application (the file has been edited slightly to
improve legibility).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/14-10.jpg',394,334)
javascript:displayWindow('images/14-10.jpg',394,334)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.1 HTML code generated by the DHTML application.

<HTML>
<HEAD>
<META NAME="GENERATOR" CONTENT="Microsoft Visual Studio 6.0">
<META CONTENT="text/html" HTTP-EQUIV=Content-Type>
<TITLE></TITLE>
</HEAD>
<BODY>
<!--METADATA TYPE="MsHtmlPageDesigner" STARTSPAN-->
<OBJECT ID="DHTMLPage1"
CLASSID="clsid:CA8B9767-4184-11D2-8BF0-20E650C10000"
WIDTH=0
HEIGHT=0>
</OBJECT>
<!--METADATA TYPE="MsHtmlPageDesigner" ENDSPAN-->
<H2 ID=Hello>Hello</H2>
<H1 ID="">World</H1>
<DIV>
<INPUT ID=Greetings
 NAME=Greetings
 STYLE="LEFT: 33px;
 POSITION: absolute;
 TOP: 130px;
 Z-INDEX: 100"
 TYPE=button
 VALUE=Greetings
 >
</DIV>
</BODY>
</HTML>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The highlighted code in Listing 14.1 shows how Visual Basic performs its magic. The
DHTML application is an ActiveX control. Specifically, it’s an ActiveX DLL embedded
within a framework Web page. The CLASSID should be familiar to developers as a
GUID, which is automatically created and registered when the temporary DLL is created.
Although the control can be manipulated from the Web page via scripts (as demonstrated
in Chapter 15), for the most part, the control handles the real action on the page.
Theoretically, you could build a completely separate page around the control. As long as
the items with IDs stay in the page, the control will work.

Obviously, your interest in this book transcends building lame “Hello, World!” pages.
However, to make DHTML applications work for you, it’s necessary to have a basic
understanding of the Document Object Model around which Internet Explorer is built. It’s
likely that you’ll want to create capable code, so you may also want to read the section
“Don’t Throw Away FrontPage Yet.”

Exploring The Internet Explorer Object Model

In 1993, when the Web was just beginning to impinge upon public consciousness, working
with HTML was a fairly simple undertaking. Not surprisingly, a great number of people
who had only a basic inkling of programming principles took to this page-description
language, setting out their shingles as HTML designers. Perhaps because of that, working
with HTML and scripting languages has gained an undeserved reputation as being simple,
slight, and beneath the attentions of serious application developers.

Five years later, anyone who works with building Web sites in today’s supercharged world
of e-commerce, DHTML, and Chrome can tell you that the browser object models are
some of the most complex pieces of software currently available in the public market.
There are dozens of distinct objects, each with their own unique properties and methods,
just in the core Internet Explorer application alone. Start adding in the DirectAnimation
API, NetShow, NetMeeting, Chat, and so forth, and, pretty soon, you’re starting to talk
about an application with hundreds of objects and thousands of properties, methods, and
events. Yeah, Web programming is easy!

Don’t Throw Away FrontPage Yet

Visual Basic 6 has a really cool DHTML Editor that you can use for all your application
needs. So, who needs FrontPage, or Visual Studio, or any of those other HTML editors,
right? Well, hold off on freeing up that disk space. The VB Editor falls into the same
basic category as Notepad or Paint. It’s handy if you need something really fast and don’t
want to open a full-blown editor, but it’s not something you’d want to use for real
production work. Microsoft recognizes this and has wisely included a Launch Editor
button in the VB DHTML Editor. To set this to your favorite editor, select Preferences
from the Tools menu, and click on the Editor tab. At the bottom of the Editor tab, you
can change the external editor to your tool of choice. This is highly recommended, by the
way, because the default choice is that Web editor of champions—Notepad!

The DHTMLPage Object

Although a DHTML application can (and usually will) be made up of many different
classes and designers, the actual Web page itself is controlled by a DHTMLPage class. As
with the IIS WebClass object, the DHTMLPage class contains a handful of subordinate
classes, as shown in Table 14.1.

Table 14.1 Classes belonging to the DHTMLPage class.

Class Description

BaseWindow Theoretically, this returns a reference to the current window object
in the Web page, with all of its associated properties and methods
(including alert, open, status, and so forth). If you have trouble
with this class, try using Document.parentWindow instead. The
BaseWindow is of type HTMLWindow2.

DHTMLEvent This contains detailed information about the last event to occur,
and its properties are summarized in Table 14.2. Use the
DHTMLEvent to find where the mouse clicked, which key was
depressed, which element was last selected, and so forth. The
DHTMLEvent is of type IHTMLEventObj.

Document The document embodies the structure of an HTML document, so
its properties and methods essentially span nearly all of DHTML.

The DHTMLPage object also has two associated events—the Load event, called when all
the components within the ActiveX control have finished loading, and the Unload event,
called when all the components have completed unloading. In general, as long as the page
doesn’t include other ActiveX components, the Load event corresponds to the Load event
of a form—variables, properties, and objects can be initialized, but the page itself won’t
display until the Load event finishes processing.

Note that for any given DHTMLPage object (that is, DHTMLPage1, DHTMLPage2,
and so forth), DHTMLPage (with no number) is a static class for that page. In other
words, the following syntax is correct within a DHTMLPage object

DHTMLPage.Document

but this is not:

DHTMLPage1.Document

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The DHTMLEvent Object

If you peruse the event handlers for the Greetings button in the Hello World
client program, one thing might strike you after a bit. There are no parameters
for any event, even ones like onmousemove, which correspond to the Visual
Basic mouseMove event. This reflects the different language origins of Visual
Basic and JavaScript (see “To Write With Coffee” for more information).
JavaScript’s implementation of the event model is to work with an event object
that contains not only the relevant ID of the event but also related information,
such as mouse locations, key press events, and the like. Visual Basic 6 adopts
this procedure by creating the DHTMLEvent object.

To Write With Coffee

The first Web browser to include a scripting language was Netscape
Navigator 2. It combined some (very) limited control over elements on the
page—mainly form information—with a language derived from Java, called
first LiveScript, then JavaScript. Although it is syntactically similar to Java,
JavaScript is a purely interpreted language and has little to no typecasting,
whereas Java is tightly typecast.

When Internet Explorer 3 was released, a version of Visual Basic (VBScript)
was included with the program, and, because of the need to maintain cross
platform support at even a minimal level, so was JavaScript (though to
muddy the waters even further, Microsoft called their version Jscript). In the
following years, even Microsoft’s browser-development staff realized that
JavaScript was becoming the accepted standard scripting language on the
Web. Recently, this unofficial status was changed to an official one by a
European standards review committee (with the Swiss acronym of ECMA),
which ironed out the subtle differences between Netscape’s and Microsoft’s
implementation of the language to produce a new version of JavaScript,
giving it the dubious name of ECMAScript.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

However, in the competitive world of Internet software, even such a standard
as this was only destined to last until such time as the engineers could get
home to their respective companies. Although it is likely the Internet
Explorer 5 and Netscape Navigator 5 versions of JavaScript (few use
ECMAScript unless they absolutely have to) will be closer than the 4
versions of the same language, there is little doubt that they will not be
completely compatible.

The DHTMLEvent object should be placed within an event handler (or a
function called from an event handler) because it contains a record of only the
last event in the event queue. A simple example of how this can be used would
be to determine where the mouse was clicked on a page. Add the following
code to the Document_onclick() event in the Hello World client program
created earlier:

Private Function Document_onclick() As Boolean
 Document.parentWindow.alert "Mouse click at " + _
 CStr(DHTMLEvent.x) + "," + CStr(DHTMLEvent.y)
End Function

The DHTMLEvent.x and DHTMLEvent.y properties give the horizontal and
vertical components, respectively, of the position of the mouse within the Web
page (that is to say, the upper-left corner of the Web page window is the
origin). When run, this program produces an alert box indicating where the
mouse was clicked.

The events that can be picked up with the DHTMLEvent object are covered in
more detail in Table 14.2. This object is also functionally identical to
Document.parentWindow.Event.

Table 14.2 Properties of the DHTMLEvent class.

Property Type Description

AltKey Boolean
True if the Alt key is depressed; false
otherwise.

Button Boolean Retrieves which mouse button was
pressed (0—no button pressed,
1—left button, 2—right button,
3—middle button).

CancelBubble Boolean Set to true to cancel events bubbling
up to next layer; set to false to let
them continue (default).

ClientX Long Location of the horizontal position (in
pixels) of the mouse click event
relative to the upper-left corner of the
Web page.

ClientY Long Location of the vertical position (in
pixels) of the mouse click event
relative to the upper-left corner of the
Web page.

CtrlKey Boolean
True if the Ctrl key is depressed; false
otherwise.

FromElement IHTMLElement Retrieves the object the mouse is
exiting during onmouseover and
onmouseout events.

KeyCode Long Numeric code sent by keyboard
indicating which key was pressed.
Does not correspond exactly
one-to-one with ASCII, but it is close
for numbers and letters.

OffsetX Long Location of the horizontal position (in
pixels) of the mouse click event
relative to the upper-left corner of the
object in which the event occurred.

OffsetY Integer Location of the vertical position (in
pixels) of the mouse click event
relative to the upper-left corner of the
object in which the event occurred.

Reason Long In a database transaction, returns a
number indicating the success or
failure of the operation (0—data
transferred successfully, 1—operation
aborted, 2—data sent erroneously).

ReturnValue Variant The return value provided by a dialog
when it closes. See Chapter 15 for
more information about dialogs.

ScreenX Long Location of the horizontal position (in
pixels) of the mouse click relative to
the upper-left corner of the computer
screen.

ScreenY Long Location of the vertical position (in
pixels) of the mouse click relative to
the upper-left corner of the computer
screen.

ShiftKey Boolean
True if the Shift key is depressed;
false otherwise.

SrcElement IHTMLElement
A reference to the object that fired the
event.

SrcFilter Object A reference to the filter that fired an
onfilterchanged event.

ToElement IHTMLElement A reference to the element being
entered on an onmouseover or
onmouseout event.

Type String The type of event that occurred. This
corresponds to the appropriate event
handler (type=click for onclick
events, type=mousedown for
onmousedown events, and so forth).

X Long Same as the ClientX.

Y Long Same as the ClientY.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The distinctions between the various positional properties (ClientX, ScreenX, and so
forth) may not be all that straightforward. A quick example can illustrate the difference as
well as show how to use the DHTMLEvent object in a more varied circumstance:

1. In the (General) code section of the DHTMLPage Designer, create the
GetMousePosition subroutine:

 Public Sub GetMousePosition()
 Dim Buffer As String
 Buffer = ""
 Buffer = Buffer + "ClientX=" + _
 CStr(DHTMLEvent.clientX) + ";" + "ClientY=" + _
 CStr(DHTMLEvent.clientY) + vbCrLf
 Buffer = Buffer + "OffsetX=" + _
 CStr(DHTMLEvent.offsetX) + ";" + "OffsetY=" + _
 CStr(DHTMLEvent.offsetY) + vbCrLf
 Buffer = Buffer + "ScreenX=" + _
 CStr(DHTMLEvent.screenX) + ";" + "ScreenY=" + _
 CStr(DHTMLEvent.screenY) + vbCrLf
 Buffer = Buffer + "X=" + _
 CStr(DHTMLEvent.x) + ";" + "Y=" + _
 CStr(DHTMLEvent.y)
 Document.parentWindow.alert Buffer
 End Sub

2. In the onmousedown event handler for the Greeting button, the Hello text, and
the document, call the GetMousePosition routine:

 Private Sub Document_onmousedown()
 GetMousePosition
 End Sub

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Private Sub Greeting_onmousedown()
 GetMousePosition
 End Sub

 Private Sub Hello_onmousedown()
 GetMousePosition
 End Sub

When you run the program and click, you’ll get a dialog box showing you where you
clicked. Clicking on the button is most informative (see Figure 14.11). In Figure 14.11,
the mouse was clicked in the upper-left corner of the button. The ClientX position shows
the distance from the edge of the client (the browser). The OffsetX position, on the other
hand, shows the distance from the edge of the element (the button), and the ScreenX
position shows the distance from the left side of the screen. The final position, X, is just a
synonym for ClientX and was included for cross-compatibility purposes.

Figure 14.11 Clicking on the button in this application demonstrates the differences
between coordinate systems.

The Document Object

Fortunately, when dealing with the core DHTML set at least, almost everything in a Web
page derives in some fashion from one of two objects: the Document object and the
document’s corresponding Window object. Just as the Server object is automatically
exposed in an IIS application, the Document object is freely available in the DHTML
application—you don’t need to explicitly declare it to use it.

In a book on client/server programming, it is simply not possible to go into depth about
the IE Object Model. But, to get an idea of the scope of the model, open the Object
Browser, and set the type library (the top-left combo box) to MSHTML, which is the
Internet designation of the scripting library. In the latest version of IE (the beta build for
Internet Explorer 5), there are 220 distinct classes, many with 40 or more properties,
methods, and events. The classes can readily be identified as they all start with either
HTML or IHTML.

The Document class itself is of type HTMLDocument. From the document, you can get
a reference to the body of the document with Document.Body, and a reference to the
background color of the body with Document.Body.BgColor. In short, the structure
echoes the tag and attribute structure of HTML itself.

In addition to direct tag references, the Document class also owns a number of

javascript:displayWindow('images/14-11.jpg',253,576)
javascript:displayWindow('images/14-11.jpg',253,576)

collections, many of which are covered in greater detail later in this chapter as well as in
the next chapter. From the standpoint of Visual Basic, these collections work similarly to
enumerated dictionaries in the previous chapter—you can reference an element out of the
collection by either its ordinal position on the page (that is, in which order it occurs in the
HTML) or by the element’s ID, if it’s assigned one. Thus, you can retrieve the third
image displayed on the page (not counting background graphics) by saying
document.images(2)—2 because all arrays in HTML are zero-based. Similarly, if that
particular graphic had an ID of “myImage”, then you could also reference it as
document.images(“myImage”).

In order to give a proper treatment to the Document object, you almost need to review all
of Dynamic HTML, which is unfortunately beyond the scope of this book. This chapter
and Chapter 15 both explore specific elements within the document, but to get a better
handle on the subject, I recommend any of the books mentioned at the end of Chapter 15.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The Window Object

The Window belonging to the Document object is especially important because it handles most
of the non-Web page related items, such as events, status messages, and alert and dialog boxes.
You can get a handle to the document’s window through the document.windowParent property,
which has a type of HTMLWindow2. The original HTMLWindow occurred only in the Internet
Explorer 3 object model and was superceded by HTMLWindow2 in subsequent versions.

As with the Document object, the Window object is reasonably complex, and its full coverage is
beyond the scope of this book. However, certain window methods can be of use to client/server
developers in particular, so these are summarized in Table 14.3. Examples of most of the elements
in Table 14.3 are shown throughout the book, so they aren’t covered here.

TIP
Workaround For A BaseWindow Problem
In theory, the document’s window should be the BaseWindow object that the DHTMLPage class
exposes. However, at least in the beta, using the BaseWindow property for anything other than
determining when the Web page was completely loaded generates all kinds of errors. Although this
may change with the final version of Visual Basic, if you run into problems with BaseWindow,
stick with using the windowParent property of the document to get the active window instead.

Table 14.3 Selected Window properties and methods.

Property Or Method Example Description

Alert(msg as String) Alert(“This is a test”) Pops up a
standard dialog
box with the
text message
and a single
OK button.

Blur() Blur()
Causes the
window to lose
its focus.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

ClearInterval(timerID
as Long)

ClearInterval(id) When passed
the ID
generated by a
SetInterval
call,
ClearInterval
turns off the
timer and
clears it from
memory (see
SetInterval).

ClearTimeout(timerID
as Long)

ClearTimeout(id) When passed
the ID
generated by a
SetTimeout
call,
ClearTimeout
turns off the
timer and
clears it from
memory (see
SetTimeout).

Close() Close() Closes a Web
page or dialog
box. If a Web
page, this will
also prompt
users to let
them know that
code is
attempting to
close the page.

Confirm(msg as String) Confirm(“Are you sure you want to leave?”) Pops up a
standard dialog
box with the
text message
and two
buttons: Yes
and No.
Pressing Yes
returns the
value true, and
pressing No
returns the
value false.

DefaultStatus DefaultStatus=“Roll over any button to highlight
an option.”

The default
status is the
message
displayed at the
bottom of the
browser
window when
it is not over a
“live” element.
Compare
Status.

Document Document Returns a
handle to the
document
object.

Event Event Returns a
handle to the
event object.
Same as the
DHTMLEvent
object in a
DHTMLPage
class.

ExecScript(commandStr
as String,lang as String)

ExecScript(“Terminate()”, “JavaScript”) Attempts to
perform the
command
given by the
commandStr
parameter in
the language
specified.
Useful, but
potentially
dangerous.

Focus() Focus()
Restores focus
to the current
window.

Frames() Frames(3) Returns a
reference to
subordinate
frames
collection. Not
recommended
for use in
DHTML
applications.

Open(URL as
String,name as
String,features as
String, replace as
Boolean)

Open(http://www.microsoft.com,
“MSWindow”, “width:100;height:100”)

Opens a new
window, and
loads a URL
into it.

http://www.microsoft.com/

Prompt(msg as String,
defaultStr as String)

Prompt(“What is your favorite color?”,“Blue ”) Pops up the
equivalent of a
VB Input box,
with the msg
as the prompt
and the
defaultStr as
the default
value.

Scroll(X as Long,Y as
Long)

Scroll(20,30) Moves the
browser
window’s
client area by
the amount
indicated.

SetInterval(cmdStr as
String, msec as Long,
language as String)

ID=SetInterval(“Check-Clock()”,1000,
“JavaScript”)

Causes a
command to be
evaluated
repeatedly at
intervals of
milliseconds.
Returns a
handle ID,
which can be
passed to
ClearInterval
to stop the
process.

SetTimeout(cmdStr as
String, msec as Long,
language as String)

ID=SetTimeout(“Times-Up()”,3000,“JavaScript”) Causes a
command to be
evaluated once
after
milliseconds
have passed.
Returns a
handle ID,
which can be
passed to
ClearTimeout
to abort the
process.

ShowModalDialog(dlg
as String,inArg as
Variant, varOption as
Variant) ShowModalDialog(“getData.htm”,“Big and

yellow”,“dialogWidth=400 dialogHeight=300”)

Creates a
dialog form
rather than a
standard
window. This
is covered in
detail in
Chapter 15.

Status Status=“Now Loading…” Sets the status
text at the
bottom of the
browser.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Text Techniques

When you get right down to it, HTML is text. This might sound trite and
obvious, but keeping that fact in mind becomes essential when you want to do
anything with Dynamic HTML. One direct consequence of HTML being text is
that you can change any facet of your Web page simply by modifying the text for
that section. In the simplest case, that means changing the contents of a <DIV>
or similar element when a button is clicked, whereas more complex examples
would include modifying the background graphic and all system colors, changing
a list of items to a tree hierarchy, or perhaps even animating selections of text in
multiple colors as their content changes.

NOTE
I do not recommend animating text in multiple colors as their content changes.
DHTML in excess can make the <BLINK> tag of years past seem positively
the height of Web design in comparison.

With the exception of form elements, nearly every visible element in a Web page
is derived from HTMLBlockElement. A block is simply a container of other
elements, whether text or other block elements. You can modify the contents of
these blocks with a number of text-related methods and properties, which are
summarized in Table 14.4. These are not the only ways that you can manipulate
text in DHTML. By using such objects as the Selection object and the Text
Range object, you can actually create a functional, albeit somewhat minimalistic,
Dynamic HTML editor.

Table 14.4 Text and HTML editing properties and methods.

Property Or Method Example Description

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

ClassName=rule ClassName=“H1” Sets the style to the new
style rule (covered in
Chapter 15), or
retrieves the name of
the current rule.

InnerHTML=htmlString InnerHTML=“I’m a
bold statement”

InnerHTML retrieves
or sets the contents of
the block element to the
HTML expression, with
HTML notation getting
converted into elements
in the DHTML
structure.

InnerText=textString InnerText=“This
example will show the
brackets in the ”

InnerText converts the
string into an HTML
expression, replacing
characters with their
character equivalents
(that is, <becomes
<). Useful for getting
the text from a highly
formatted HTML block.

InsertAdjacentHTML
(htmlText,position)

InsertAdjacentHTML
“Another List
Element”,
“BeforeEnd”

Inserts HTML text or
elements into a block.
Position can be
“BeforeBegin”,
“AfterBegin”,
“BeforeEnd”, or
“AfterEnd”, indicating
whether the text appears
before or after the
enclosing tags at the
beginning or end of the
block.

InsertAdjacentText
(text,position)

InsertAdjacentText
“Some More Text”,
“AfterBegin”

Similar to
InsertAdjacentHTML,
except that text is
converted implicitly
into a safe HTML
expression first.

OuterHTML=htmlString OuterHTML=“<h1>This
will completely replace
the old element</h1>”

OuterHTML replaces
the entire block, not just
its contents, with the
replacement string (or
retrieves the whole
block). Otherwise, it is
the same as
InnerHTML.

OuterText=textString OuterText=“This will
completely replace the
old element.”

OuterText either
retrieves the content of
the selected block or
replaces the whole
block (including
surrounding tags) with
the text. It’s a good way
to eliminate a reference
from a page.

Style.attribute=value Style.position=“absolute” Sets or retrieves
individual elements of
the style attribute
(covered in Chapter
15).

ToString() MyElement.toString Converts an HTML
element into a string
representation of itself.
Only supported in
Internet Explorer 5.

Of all the methods used for text manipulation, you will probably end up using the
pair innerHTML and innerText most often. The Hello, World client program
can easily be modified to demonstrate their use.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Integrating Dynamic Text

The best way to see Dynamic HTML in action is to try manipulating the text. In this simple
Hello, World exercise, you’ll create a button that will generate a random greeting.

1. It is easier to add a <DIV> from an external editor, but you can only do that if the
HTML file is itself kept in a distinct document rather than part of the project. Open the
DHTML Editor, and click on the DHTML Page Designer Properties. Select the Save
HTML In An External File option, and enter “HelloWorld-Client.htm” in the text field
(see Figure 14.12). Click on the New button to save this to your working folder, and click
on OK.

Figure 14.12 Save your HTML in an external file to edit outside of the DHTML Editor.

2. Click on the Launch Editor button to bring up your editor of choice (see the sidebar
“Don’t Throw Away FrontPage Yet” for more information), and create a new <DIV>
called MouseData by modifying the code as shown here (the code was reformatted
slightly for legibility):

 <HTML>
 <HEAD>
 <META NAME="GENERATOR" CONTENT="Microsoft Visual Studio
 6.0">
 <META CONTENT="text/html" HTTP-EQUIV=Content-Type>
 <TITLE></TITLE>
 </HEAD>
 <BODY>
 <H2 ID=Hello STYLE="relative">Hello</H2>
 <H1 ID="">World</H1>
 <DIV>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
javascript:displayWindow('images/14-12.jpg',444,344)
javascript:displayWindow('images/14-12.jpg',444,344)

 <INPUT ID=Greetings
 NAME=Greetings
 STYLE="LEFT: 33px;
 TOP: 130px;
 Z-INDEX: 100"
 TYPE=button
 VALUE=Greetings
 >
 </DIV>
 <DIV ID="MouseData" STYLE="position:relative">
 Mouse Data</DIV>
 </BODY>
 </HTML>

The STYLE=“position:relative” attribute that was added converts the position attribute
from static to dynamic, making it updatable. If you don’t do this, there is a chance that
your program won’t work correctly.

3. Press Alt+Tab to get back to Visual Basic and bring the editor into focus, if it is not
already. When prompted whether you want to overwrite the current file, click on Yes.

4. Open the project window, and right-click on the DHTMLPage1 icon to select the
View Code option. From the (General) section, open GetMousePosition, and modify it
so that it generates HTML into the newly created <DIV>, as shown here:

 Public Sub GetMousePosition()
 Dim Buffer As String
 Buffer = ""
 Buffer = Buffer + "ClientX=" + _
 CStr(DHTMLEvent.clientX) + ";" + "ClientY=" + _
 CStr(DHTMLEvent.clientY) + "
"
 Buffer = Buffer + "OffsetX=" + _
 CStr(DHTMLEvent.offsetX) + ";" + "OffsetY=" + _
 CStr(DHTMLEvent.offsetY) + "
"
 Buffer = Buffer + "ScreenX=" + _
 CStr(DHTMLEvent.screenX) + ";" + "ScreenY=" + _
 CStr(DHTMLEvent.screenY) + "
"
 Buffer = Buffer + "X=" + CStr(DHTMLEvent.x) + ";" + _
 "Y=" + CStr(DHTMLEvent.y)
 MouseData.innerHTML = Buffer
 End Sub

5. In a similar manner, change the event handler for the Greetings button so that it
outputs the randomly generated message to the Hello handler. Here, you want to use
innerText, because you only want to change the text of the message, not its style as a
heading:

 Private Function Greetings_onclick() As Boolean
 Dim Msg(5) As String
 Dim R As Integer

 Msg(0) = "Hello!"
 Msg(1) = "Hi,there!"
 Msg(2) = "How ya doin'?"

 Msg(3) = "Greetings"
 Msg(4) = "G'day!"
 R = Int(Rnd() * 5)
 ' The document object will be covered later
 Hello.InnerText=Msg(R)
 End Function

6. Run the application, and play with it. Now when you click anywhere within the page,
the MouseData will change rather than an obvious alert box.

This is obviously just a glimmer of what is possible by modifying internal text. Dynamic
HTML eliminates the need for frames (one of the more frustrating elements for Web developers
and users both) and has considerably more flexibility than that technology. Now, it’s time to do
something a little more useful with it—connect it to data via tables.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Building Tables

There are a lot of ways of representing data—bar graphs, record listings, even
three-dimensional sheets representing seas of data (something I absolutely,
positively won’t get into here). But for all the graphical magic available, the
simple table is still one of the best ways to go. You can represent relational
data concisely, you can view data as records, and you can see with a glance
when data is questionable or aberrant. It’s perhaps no wonder that the
spreadsheet (which is really nothing more than a glorified table manager) was
one of the earliest software innovations and still makes up the biggest use of
computers outside of word processing.

Tables appeared fairly late in HTML, not showing up until well into the
development cycle of HTML 2, yet for many, they provide not only the ability
to show data but also a means of positioning elements prior to the advent of
DHTML. Given that a table cell can hold images, movies, ActiveX or Java
components, and more in addition to text, the ability to create and manipulate
tables is one of the major features that Internet Explorer offers, and Visual
Basic provides a certain level of support for these tabular functions.

This section will work through an example of how to implement tables using
DHTML Web classes. In the example, the HTML document will display a
listing of city weather records, including temperatures in degrees Fahrenheit.
When you roll over a temperature with your mouse, it will switch to degrees
Celsius, reverting when the mouse moves away. In addition to showing how to
work with tables (and with the IE object model), this gives an example of how
to conserve previous screen real estate by “hiding” functionality until it’s
needed. But first, you should look at how to get the table into the page in the
first place.

A Useful Buffer Class

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

As you may have discovered, one of the problems with trying to generate
HTML files from another source, such as Visual Basic or JavaScript, is that
the notation for doing so can be rather cumbersome. For example, the code
shown in Listing 14.2 will generate a table in HTML, assuming that the record
set contains a collection of weather records.

Listing 14.2 A sample of creating a table using a buffer.

Public Sub WriteTable(RS as RecordSet,ID as string)
 Dim buffer as string
 Buffer="<TABLE border='2'>"
 Buffer=Buffer+"<TR>"
 Buffer=Buffer+"<TH>State</TH>"
 Buffer=Buffer+"<TH>City</TH>"
 Buffer=Buffer+"<TH>Hi</TH>"
 Buffer=Buffer+"<TH>Lo</TH>"
 Buffer=Buffer+"<TH>Skies</TH>"
 Buffer=Buffer+"<TH>Forecast</TH>"
 Buffer=Buffer+"</TR>"
 RS.MoveFirst
 While not RS.EOF
 Buffer=Buffer+"<TR>"
 Buffer=Buffer+"<TD>"+RS("State")+"</TD>"
 Buffer=Buffer+"<TD>"+RS("City")+"</TD>"
 Buffer=Buffer+"<TD>"+RS("Hi")+"</TD>"
 Buffer=Buffer+"<TD>"+RS("Lo")+"</TD>"
 Buffer=Buffer+"<TD>"+RS("Skies")+"</TD>"
 Buffer=Buffer+"<TD>"+RS("Forecast")+"</TD>"
 Buffer=Buffer+"</TR>
 RS.MoveNext
 Wend
 Buffer=Buffer+"</TABLE>"
 Document.all(ID).innerHTML=Buffer
End Sub

Although such code works perfectly well, the Buffer=Buffer+ type notation
can sometimes prove tedious, especially if you are used to working with more
C++ capabilities, such as streams. After some time tracking down erroneous
string statements, I wrote such a stream class. It’s used somewhat extensively
later in this chapter, so it’s worth noting that this class is not a native class in
Visual Basic, although you can load it in from this book’s CD-ROM.

One of the other reasons for writing the stream class was to demonstrate that
you can still use traditional classes with DHTML applications as you would
with any other Visual Basic project type. Indeed, there are several benefits to
doing so. You can encapsulate most of the business logic and utility routines in
external classes while using the DHTML Web class strictly as a way of
communicating with the HTML document.

The COStream class creates an internal buffer that accumulates strings of
HTML or scripting code. You can actually assign to it any block element, such

as a <DIV> or paragraph element, accumulate strings into an internal buffer in
the class, and then make a call to the Output() method to cause the string to
replace the current contents of that block. You can also specify whether you
want to output the data as HTML (the default) or text. In the latter case,
HTML components, such as brackets (<>), get replaced by their character
equivalents, in this case < and >.

Creating a class for a DHTML application is the same as creating a class for a
standard executable or an ActiveX DLL, as demonstrated in the following
exercise.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Adding A COStream Class Module

The code for the COStream class module is both a demonstration of how you can add
additional class and general modules to your DHTML application, and a handy class
whenever you need to process and output a large amount of text.

1. Open a DHTML application (or create a new one). From the Project menu,
select Add Class Module. From the list of options, select Class Module. Set the
name of the new class to COStream (for Output Stream Class).

2. Double-click on the class icon in the Project window to bring up the code
window. Define an enumeration for handling the type of output, and add the
following local variables into the (General)_(Declarations) pane:

 Option Explicit

 Public Enum OStreamTargetConstants
 ostText = 0
 ostHTML = 1
 End Enum

 'local variable(s) to hold property value(s)
 Private mvarTarget As HTMLBlockElement 'local copy
 Private mvarOutputType As OStreamTargetConstants
 'local copy
 Private buffer As String

3. Define the methods within the class (their uses will be covered later), as
shown in Listing 14.3.

Listing 14.3 Method definitions in the COStream class.

Public Function WriteC(TextData As String) As String

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Dim expn As String
 expn = TextData
 buffer = buffer + expn
 WriteC = expn
End Function

Public Function Length() As Long
 Length = Len(buffer)
End Function

Public Function Output(Optional outString As Variant) _
 As String
 On Error GoTo OutputErr
 If Not IsMissing(outString) Then
 buffer = outString
 End If
 If mvarOutputType = ostHTML Then
 mvarTarget.innerHTML = buffer
 Else
 mvarTarget.innerText = buffer
 End If
 Output = buffer
 Clear
 Exit Function
OutputErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:Output Method")
End Function

Public Function Flush() As String
 On Error GoTo FlushErr
 Flush = buffer
 Clear
 Exit Function
FlushErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:Flush Method")
End Function

Public Sub Clear()
 buffer = ""
End Sub

Public Function WriteSafeQ(TextData As String) As String
 On Error GoTo WriteSafeQErr
 Dim expn As String
 expn = "\'" + TextData + "\' "
 buffer = buffer + expn
 WriteSafeQ = expn
 Exit Function

WriteSafeQErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:WriteSafeQ Method")
End Function

Public Function WriteTag(Tagname As String, _
 TextData As String) As String
 On Error GoTo WriteTag
 Dim expn As String
 Dim EndTag as string

 EndTag=Split(Tagname," ")(0)
 expn = "<" + Tagname + ">" + TextData + _
 "</" + EndTagname + ">"
 buffer = buffer + expn
 WriteTag = expn
 Exit Function
WriteTag:
 Call RaiseError(MyUnhandledError, _
 "COstream:Tag Method")
End Function

Public Function WriteQ(TextData As String) As String
 On Error GoTo WriteQErr
 Dim expn As String
 expn = """+textdata+"" "
 buffer = buffer + expn
 WriteQ = expn
 Exit Function
WriteQErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:WriteQ Method")
End Function

Public Function WriteS(TextData As String) As String
 On Error GoTo WriteSErr
 Dim expn As String
 expn = TextData + " "
 buffer = buffer + expn
 WriteS = buffer
 Exit Function
WriteSErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:WriteS Method")
End Function

Public Function WriteLn(TextData As String) As String
 On Error GoTo WriteLnErr
 Dim expn As String
 expn = TextData + vbCrLf

 buffer = buffer + expn
 WriteLn = expn
 Exit Function
WriteLnErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:WriteLn Method")
End Function

Public Function WriteBreak(TextData As String) As String
 Dim expn As String
 expn = TextData + "
"
 On Error GoTo WriteLnErr
 buffer = buffer + TextData + "
"
 WriteBreak = expn
 Exit Function
WriteBreakErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:WriteBreak Method")
End Function

4. Create two public properties: OutputType, which can take one of the two
values from the enumeration you defined earlier, and Target, which contains the
destination HTML block element that the stream can output to (see Listing 14.4).

Listing 14.4 Property definitions in the COStream class.

Public Property Let OutputType(ByVal vData _
 As OStreamTargetConstants)
 mvarOutputType = vData
End Property

Public Property Get OutputType() _
 As OStreamTargetConstants
 OutputType = mvarOutputType
Exit Property
OutputTypeGetErr:
 Call RaiseError(MyUnhandledError, _
 "COstream:OutputType Property Get")
End Property

Public Property Set Target(ByVal vData As HTMLBlockElement)
 Set mvarTarget = vData
End Property

Public Property Get Target() As HTMLBlockElement
 Set Target = mvarTarget
End Property

Public Property Let StreamBuffer(expr as String)
 Buffer = expr
End Property

Public Property Get StreamBuffer() as string
 StreamBuffer=buffer
End Property

5. Select the Procedure Attributes entry in the Tools menu, and click on the
Advanced button to open additional options. Set the Name combo box entry to
StreamBuffer, then, in the Procedure ID combo box, set the option to (Default).
This makes the StreamBuffer the default property, such that if an instance of
COStream is defined as Ost, then Ost=“a string” is the same as
Ost.StreamBuffer=“a string”.

6. Finally, in the Class_Initialize section, initialize the buffer (not strictly
necessary but good form) and set the default state for the OutputType property
to ostHTML, as shown:

 Private Sub Class_Initialize()
 buffer = ""
 mvarOutputType = ostHTML
 End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The COStream class has a simple interface, as outlined in Table 14.5.

Table 14.5 Properties and methods for the COStream class.

Property Or
Method

Example (Assumes Ost=new
COStream)

Description

Clear Ost.Clear Empties the buffer without
updating the target.

Flush Ost.Flush Returns the contents of the buffer
then clears it. Flush does not
update the target.

Length Ost.Length Returns the number of characters in
the string (note that this uses the
Len() rather than LenB() function).

Output Ost.Output Ost.Output
“This is a test.”

Sends the current contents of the
buffer into the HTML block
element defined by Target, if used
with no parameters, or outputs the
string passed to it to the element, if
used with a string parameter. In the
latter case, the string replaces the
previous contents of the buffer.

OutputType Ost.OutputType=ostHTML
Ost.OutputType=ostText

Determines whether buffered
output is displayed as HTML (the
default) or text.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

StreamBuffer Ost.StreamBuffer=“This is
buffered text” Ost=“This is
buffered text ?Ost”

References the internal buffer of
the object. You can set or retrieve
the contents of the buffer through
this object. It’s also the default
property, which means you can
assign text to it directly. Note that
using StreamBuffer keeps the
contents of the buffer intact.

Target Set Ost.Target=document.
all(“myDiv”)

Sets the destination of the stream to
a block element, such as a division,
span, paragraph, or the like.

WriteBreak Ost.WriteBreak “This is the
first line.” Ost.WriteBreak
“This is the next line.”

Places an HTML
 tag after
the line.

WriteC Ost.WriteC “This is a te”
Ost.WriteC “st”

Writes an expression to the end of
the string buffer, without inserting
any spaces or special characters.

WriteLn Ost.WriteLn “This is the
first line.” Ost.WriteLn
“This is the next line.”

Places a carriage return after the
expression. This is useful for
writing out lines of scripting code.

WriteQ Ost.WriteBreak “This is
quoted text.”

Places quote marks around the
expression. Note that you can also
use double quotes (“”) within any
expression with this class to embed
quotes into a string.

WriteS Ost.WriteS “This is a”
Ost.WriteS “test”

Writes an expression to the end of
the buffer then places a space after
it. This is useful for outputting
large blocks of continuous text in
HTML without having to worry
about spaces between strings.

WriteSafeQ Ost.WriteSafeQ “This is
safely quoted text”

Places character-equivalent quotes
around the expression (for
example, "This is safely quoted
text").

WriteTag Ost.WriteTag “H1”,“This is
a header”

Wraps opening and closing tags
specified in the first parameter
around the expression in the second
parameter.

You can create a new output stream with the new keyword, and you can have more than
one output stream defined at any given time. For example, the WriteTable handler
defined at the beginning of this section can be rewritten, as shown in Listing 14.5.

Listing 14.5 An example of how to use two COStream objects.

Public Sub WriteTable(RS as RecordSet,ID as string)
 Dim tableOS as COStream

 Dim rowOS as COStream
 'Set the destination of the output to the
 'indicated block element
 'Create a table stream and a row stream, and clear them
 Set tableOS=new COStream
 Set rowOS=new COStream
 Set tableOS.Target=Document.all(ID)
 tableOS.Clear
 rowOS.Clear
 'Add header cells to the row stream
 RowOS.WriteTag "TH","State"
 RowOS.WriteTag "TH","City"
 RowOS.WriteTag "TH","Hi"
 RowOS.WriteTag "TH","Lo"
 RowOS.WriteTag "TH","Skies"
 RowOS.WriteTag "TH","Forecast"
 'Wrap the row within a row tag and add to the table
 TableOS.WriteTag "TR",RowOS.Flush
 'Move to the first entry in the database
 RS.MoveFirst
 While not RS.EOF
 'Clear the row stream and write data into the row
 RowOS.Clear
 RowOS.WriteTag "TD",RS("State")
 RowOS.WriteTag "TD", RS("City")
 RowOS.WriteTag "TD", RS("Hi")
 RowOS.WriteTag "TD", RS("Lo")
 RowOS.WriteTag "TD", RS("Skies")
 RowOS.WriteTag "TD", RS("Forecast")
 ' Wrap the current row stream in a new row in the table
 TableOS.WriteTag "TR",RowOS.Flush
 RS.MoveNext
 Wend
 ' Convert the table to a stream,
 ' and wrap a table header around it.
 TableOS.WriteTag "TABLE border='2'",TableOS.Flush
 ' Update the HTML page to display the table
 TableOS.Output
End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Manipulating Tables

A great deal can be done by modifying DHTML through the various text methods.
However, you might be wondering whether this approach really takes advantage of
Visual Basic’s object language. After all, one of the central premises of the IE Document
Object Model is that everything in the page is an object. If that’s the case, shouldn’t it be
possible to work with a Table object, a Row object, or a Cell object instead of writing
text out via the innerHTML property?

Tables and grids are critical components for any database application—the existence of
so many different types of grid controls in the OCX vendor market is a testimony to that.
The inclusion of the Table object in HTML makes creating and manipulating tabular data
fairly easily, especially since a given table cell can itself display HTML code in a manner
similar to frames or DIVs.

The Document Object Model exposed to Visual Basic provides a robust set of objects,
methods, properties, and events for manipulating Dynamic HTML tables. Of these, the
objects in Figure 14.5 are perhaps the most useful. The root of all of these is the
HTMLTable class. An HTMLTable object represents a table in HTML, and you can
control all the elements in a table, from the number of rows or columns to the contents,
alignment, or size of any given cell.

It’s worth noting that HTML tables are not simple row-by-column grids. A column can
span more than one row, just as a row can span more than one column. Because of this,
it’s not possible to simply use a two-dimensional array to access elements, as much as
that would make programming tables vastly simpler. However, there are actually a
number of different ways that you can grab the contents of a given cell (that is to say, a
single pane in a table).

Most people will probably be working with collections of records, so the simplest way of
getting access to a cell is through the cell’s row. The rows collection gives you access to
the table one row at a time. Each row in turn is made up of a collection of cells. For

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

example, if you wish to retrieve the third cell in the fifth row from the table with ID
“myTable”, you’d use the expression myTable.rows(4).cells(2) (remember that
everything is zero-based here).

You can also query rows and cells in much the same way that you get information from
any other HTML or ASP collection. For example, to determine the number of rows in the
table, you’d use the expression myTable.rows.length, whereas the number of cells in the
fifth row would be found using myTable.rows(4).length. It’s worth noting here that the
length property is read-only.

Getting to the actual content of a cell is simple—a cell supports most of the same
interface properties that a block element like <DIV> does. To retrieve the text from row
5, cell 3, you’d use the expression myTable.rows(4).cells(2).innerText. If you wanted to
set the contents to an HTML expression (for example, to load an image named
Graphic.jpg into the cell), you’d write:

MyTable.rows(4).cells(2).innerHTML=""

You can similarly use other methods, including insertAdjacentHTML and
insertAdjacentText, to add to the contents of cells. You can also use the selection object
and its associated textRange object to perform more advanced functions (most of which
are beyond the scope of this book).

Note that although you can use the same rows-and-cells system, most data access is
strictly tabular—a table will always have the same number of cells in each row.
Furthermore, most tables use the first row to display headers for each column. You can
take advantage of this to write a general routine for accessing table elements by either
position or header name, as shown in Listing 14.6. GetCell should be placed in a module
along with your other general purpose routines.

Listing 14.6 The GetCell function should be placed in a general Visual Basic module.

Public Function GetCell(table As HTMLTable, _
 Row As Variant, Col As Variant) As HTMLTableCell
 Dim index As Integer
 If IsNumeric(Col) Then
 Set GetCell = tbl.rows(Row).cells(Col)
 Else
 For index = 0 To tbl.rows(0).cells.Length - 1
 If Col = tbl.rows(0).cells(index).innerText Then
 Set GetCell = tbl.rows(Row).cells(index)
 Exit Function
 End If
 Next
 End If
End Function

You can then use this function to retrieve items by heading as well as by position. For
example,

Dim index as integer
For index=1 to myTable.rows.length-1

 Debug.print GetCells(myTable,index,"City").innerText
Next

will print all the cities in the table to the debug window. It should be noted that the
GetCell function doesn’t return the actual contents of the cell, only a reference to the cell
object—you still need to use the innerText or innerHTML property to read or write the
specific values for the cell in question.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Tabular Events

Dynamic HTML is, well, dynamic, and being able to manipulate the contents of a table can
add considerably to how responsive your Web site appears. One advantage of working with
Visual Basic Web classes is that you can capture events that take place on the Web page in a
manner similar to the way that you can in a form. This is certainly obvious with graphical
buttons (as demonstrated in the section “Image Handling” in Chapter 15), but the same
concepts can be applied just as readily to cell elements.

A simple example may suffice to show what can be done with table events. The temperatures
that are given in the database have units of degrees Fahrenheit. What would be useful, rather
than providing a second column for the low and high temperatures in the table, would be a
way to change the units into Celsius whenever the mouse enters the appropriate cell. Then,
the cell contents could return to Fahrenheit when the mouse leaves the cell.

The actual implementation of this is not quite as straightforward as it could be, because the
table is essentially generated on the fly (as will typically be the case with data tables).
However, simply because a table doesn’t exist at the beginning of the session doesn’t mean
that it can’t be modified at some later point after it is created.

It’s worth playing with the WriteTable subroutine discussed in the section “A Useful Buffer
Class” earlier in this section. Originally, the routine was meant as a demonstration to show
how the output stream class is used, but you can integrate it into a Web page easily enough,
as shown in the following exercise.

Creating A Fahrenheit/Celsius Converter

Real estate on the screen is always at a premium, even with the scrolling capabilities intrinsic
to browsers. The Fahrenheit/Celsius Converter is a good example of how to use DHTML to
fold additional data into your output. It also provides several examples of how to access
individual table elements:

1. Open the same project that contains the output stream class, and, in an external
editor, create the HTML file shown here:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <HTML>
 <HEAD>
 <TITLE>Weather Display Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Weather Listed by City</H1>
 <P>The following lists weather information by city.
 To see a temperature in Celsius rather than Fahrenheit,
 roll over that entry.</P>
 <DIV ID=WeatherTableDiv> </DIV>
 </BODY>
 </HTML>

Save this file as WeatherDisplay.htm in your current work directory.

2. Click on the DHTML Page Designer Properties button on the editor toolbar, set the
radio button option to Save HTML In External File, and click on Open: Use Existing
HTML File (see Figure 14.6). Select the WeatherDisplay.htm file to use it as a
template, and then click on OK. This will load a copy of the WeatherDisplay file.

3. Open the Project window, select the DHTMLPage1 Web designer, and right-click
to display the pop-up menu. Choosing View Code will display the Visual Basic code
for the designer. In the general declarations section, add the lines:

 Dim WithEvents WeatherTable as HTMLTable
 Dim WithEvents OldCell as HTMLTableCell

This will create a reference to a table object that can be set later to the table made here,
as well as a reference that will be necessary later for updating the table on a rollover.

4. Create a Data Environment by right-clicking on DHTMLProject in the project
window and selecting Add Data Environment. If you have not yet added the Weather
database (found on the CD-ROM) to your ODBC databases, you can do so now. Click
on the Connection tab, and connect the Data Environment to the Weather database.
This new connection will be called Connection1.

5. Create the WriteStateTable function in DHTMLPage1, as shown in Listing 14.7.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.7 WriteStateTable will place a table containing weather for any or all states into the
document.

Public Function WriteStateTable(State As String, _
 TargetID As String, TableID As String) As HTMLTable
 Dim tableOS As COStream
 Dim rowOS As COStream
 Dim Conn As Connection
 Dim RS As Recordset

 ' Grab the defined connection from the
 ' data environment and open it
 Set Conn = DataEnvironment1.Connection1
 Conn.Open
 ' Set the record set to contain all of the
 ' listings from one state
 ' or, if the state entry is blank, from all states.
 If State = "" Then
 Set RS = Conn.Execute("SELECT * FROM Weather")
 Else
 Set RS = Conn.Execute("Select * FROM Weather " & _
 "where State='" + State + "';")
 End If
 'Create a table stream and a row stream, and clear them
 Set tableOS = New COStream
 Set rowOS = New COStream
 'Set the destination of the output to the
 'indicated block element
 Set tableOS.Target = Document.All(TargetID)
 tableOS.Clear
 rowOS.Clear
 'Add header cells to the row stream
 rowOS.WriteTag "TH", "State"
 rowOS.WriteTag "TH", "City"
 rowOS.WriteTag "TH", "Hi"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 rowOS.WriteTag "TH", "Lo"
 rowOS.WriteTag "TH", "Skies"
 rowOS.WriteTag "TH", "Forecast"
 'Wrap the row within a row tag and add to the table
 tableOS.WriteTag "TR", rowOS.Flush
 'Move to the first entry in the database
 RS.MoveFirst
 While Not RS.EOF
 'Clear the row stream and write data into the row
 rowOS.Clear
 rowOS.WriteTag "TD", RS("State")
 rowOS.WriteTag "TD", RS("City")
 rowOS.WriteTag "TD", CStr(RS("Hi")) + "° F"
 rowOS.WriteTag "TD", CStr(RS("Lo")) + "° F"
 rowOS.WriteTag "TD", RS("Skies")
 rowOS.WriteTag "TD", RS("Forecast")
 ' Wrap the current row stream in a new row in the table
 tableOS.WriteTag "TR", rowOS.Flush
 RS.MoveNext
 Wend
 ' Convert the table to a stream, and
 ' wrap a table header around it.
 tableOS.WriteTag "TABLE border='2' ID=" + _
 TableID, tableOS.Flush
 ' Update the HTML page to display the table
 tableOS.Output
 Set WriteStateTable = Document.All(TableID)
 Conn.Close
End Function

6. In the BaseWindow_onload event handler, place the following line:

 Set WeatherTable = WriteStateTable("", "WeatherTableDiv", _
 "WeatherTable")

This will call the WriteStateTable function to display all the states in the database, place
the table into the WeatherTableDiv division, and name the new table WeatherTable.

7. If you run the program at this point, it should display all the data from the weather
database in a table. Note that the WriteStateTable function sets the temperatures to degrees
Fahrenheit (using the character equivalent ° to produce the ° symbol). Stop the
program.

8. So far, the table is relatively static. The next several steps will cause temperatures
displayed in Fahrenheit to switch to Celsius whenever the mouse rolls over them. It also will
echo the contents of the cell to another <DIV>—WeatherStatus. Within the DHTMLPage1
code editor, switch to WeatherTable_onmousemove, and insert the code shown in Listing
14.8 (the details of this section are covered in much greater depth later in this chapter).

Listing 14.8 The onmousemove event handles the detection and switching of temperature units, as
well as a status indicator.

Private Sub WeatherTable_onmousemove()
 Static ct As Integer
 Dim obj As Variant
 Dim evt As IHTMLEventObj

 Dim cell As HTMLTableCell
 Dim row As HTMLTableRow

 Set evt = Document.parentWindow.event
 Set obj = Document.elementFromPoint(evt.x, evt.y)
 If TypeName(obj) = "HTMLTableCell" Then
 Set cell = obj
 Set row = cell.parentElement
 'WeatherTable.row
 WeatherStatus.innerHTML = CStr(cell.innerHTML)
 If Not (cell Is oldCell) Then
 If Not (oldCell Is Nothing) Then
 oldCell.innerHTML = _
 ConvertToFahrenheit(oldCell.innerHTML)
 Set oldCell = Nothing
 End If
 End If
 If row.rowIndex > 0 Then
 If cell.cellIndex = 2 Or cell.cellIndex = 3 Then
 If Right(cell.innerHTML, 1) = "F" Then
 cell.innerHTML = _
 ConvertToCelsius(cell.innerHTML)
 End If
 Set oldCell = cell
 End If
 End If
 End If
End Sub

9. The preceding code will cause a cell that displays Celsius temperatures to revert to
Fahrenheit when the mouse moves out of the cell, provided that the mouse stays within the
table. When the mouse moves outside of the table, you need to catch this event with an
onmouseout handler, as shown in the following code snippet:

 Private Sub WeatherTable_onmouseout()
 If Not (oldCell Is Nothing) Then
 oldCell.innerHTML = _
 ConvertToFahrenheit(oldCell.innerHTML)
 Set oldCell = Nothing
 End If
 Document.parentWindow.status = ""
 End Sub

10. Finally, you need to add the conversion routines ConvertToFahrenheit and
ConvertToCelsius. These take as arguments the temperature in the format “25° F” or
“-5°: C”, which is how the onmousemove function displays the temperature. These
functions should be placed in a basic module, with the default modDHTML module the one
most recommended. Listing 14.9 shows the code for the routines used to convert Celsius
from Fahrenheit and vice versa.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.9 Routines to convert to Celsius from Fahrenheit and vice versa.

Public Function ConvertToFahrenheit(Expression As String) _
 As String
 Dim pos As Integer
 Dim tempC As Single
 Dim tempF As Integer
 Dim tempStr As String

 pos = InStr(Expression, "° C")
 ConvertToFahrenheit = "N/A"
 If pos > 0 Then
 tempC = CSng(Left(Expression, pos - 1))
 tempF = (tempC * 9 / 5) + 32
 ConvertToFahrenheit = CStr(tempF) + "° F"
 End If
End Function

Public Function ConvertToCelsius(Expression As String) _
 As String
 Dim pos As Integer
 Dim tempF As Single
 Dim tempC As Integer
 Dim tempStr As String

 pos = InStr(Expression, "° F")
 ConvertToCelsius = "N/A"
 If pos > 0 Then
 tempF = CSng(Left(Expression, pos - 1))
 tempC = (tempF - 32) * 5 / 9
 ConvertToCelsius = CStr(tempC) + "° C"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 End If
End Function

11. Run the program again. This time, when you roll over a cell, the contents of
the cell will be displayed above the table itself. However, what’s even more
interesting is that when you roll over a temperature in Fahrenheit, it will convert
automatically to Celsius, and convert back when you move off the cell.

So, what exactly is going on here? This project provides a good example of event
handling in general as well as how to mix the event handling mechanisms of Visual
Basic and Internet Explorer, which at their root are not all that similar. The
WeatherTable_onmousemove event especially is worth reexamining.

The onmousemove event is called whenever the mouse moves over the table, but it
doesn’t provide any explanation about what is beneath the mouse at the time. In order to
do that, it’s necessary to dip into the IE document model and use the
elementFromPoint method of the document.

Unfortunately, you need a point. You can’t get this from Visual Basic, and, unlike in
Visual Basic, the onmousemove event doesn’t pass an X,Y pair. Instead, you need to
use an event object. If you’ve not done much JavaScript work (or haven’t worked with
Java), the idea of an event object might seem a little counterintuitive. However, the
principle is fairly simple. IE keeps track of various events and passes the information
about these events to the event object. For example, in a mousemove, the x and y
position are passed to the event object.

The event object is a property of the document’s window, but, for some reason, I had
trouble using the Visual Basic’s BaseWindow object to generate this particular class.
As a consequence, the evt object is set using the parentWindow of the document
object. This shouldn’t make a lot of difference in the final outcome; however, I’m
working on a beta, so it might behoove you to try experimenting with the
BaseWindow:

Private Sub WeatherTable_onmousemove()
 Dim obj As Variant
 Dim evt As IHTMLEventObj
..
 Set evt = Document.parentWindow.event
 Set obj = Document.elementFromPoint(evt.x, evt.y)
 If TypeName(obj) = "HTMLTableCell" Then
 Set cell = obj
 Set row = cell.parentElement
 Document.parentWindow.status =
 CStr(cell.innerText)

The problem with tables from a rollover standpoint is that not all the parts of a table are
cells. In particular, the frames around cells are actually not even considered table
elements by the elementFromPoint method. Because of this, the element from this
method gets placed into a variant object call obj, and it’s then tested to see if it is indeed
a cell (has a type name of HTMLTableCell). If it is a cell, then the object is assigned to
a variable called cell that has been cast to HTMLTableCell. Once you know the cell,
you can also get the row to which that cell belongs by using the parentElement
property (because a cell belongs to a row).

While on the subject of the parentWindow object, the status indicator at the bottom of
the browser also belongs to the parent window. You can set this by using
document.parentWindow.status and setting it to whatever text you want—in this case
the innerText (not the innerHTML) of the cell contents. This can provide you with a
secondary means of providing feedback, because its not always easy to tell at first
glance which cell the mouse pointer is in.

There is no clean way of determining from a cell itself whether the contents contain a
temperature or a forecast, so you need to place some bounds to make sure that you are
within columns 2 or 3 (the columns that contain the temperatures). You should also
check to ensure that you are not in the row containing the headings. A cell contains a
cellIndex, which indicates which cell it is in a row, whereas a row has a rowIndex to
determine its position in the collection of rows that makes up the table:

If row.rowIndex > 0 Then
 If cell.cellIndex = 2 Or cell.cellIndex = 3 Then
 If Right(cell.innerHTML, 1) = "F" Then
 cell.innerHTML = ConvertToCelcius(cell.innerHTML)
 End If
 Set oldCell = cell
 End If
End If

In addition to determining whether a cell is valid to convert to Celsius, the
onmousemove routine needs to make sure that the last cell converted is returned back
to Fahrenheit. This is done by means of the oldCell variable. Every time a cell is
changed, the program assigns it oldCell. Before the cell is changed, the old cell is
automatically reverted back to its former Fahrenheit condition, and then the variable is
cleared:

If Not (cell Is oldCell) Then
 If Not (oldCell Is Nothing) Then
 oldCell.innerHTML =
 ConvertToFahrenheit(oldCell.innerHTML)
 Set oldCell = Nothing
 End If
End If

The onmouseout event does much the same thing for the special case when the mouse
moves outside the table. It also clears the status indicator so that some other process can
use it (onmouseout is called only once, while onmousemove is called repeatedly as the
mouse moves within the table).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Tables In Internet Explorer 5

Internet Explorer 5 will offer some interesting additions to the already robust table
handling provided by its predecessor. For starters, it will be possible to add rows and cells
using method calls rather than writing the tables via strings. This makes it a little easier to
manipulate these objects from a language like Visual Basic. For example, the
MakeIE5WeatherTable works in a similar method to the WriteWeatherTable, but it
uses IE5 methods to manipulate the objects directly, as shown in Listing 14.10.

Listing 14.10 MakeIE5WeatherTable demonstrates how to use Internet Explorer 5
functions.

Public Function MakeIE5WeatherTable(State As String, _
 TargetID As String, TableID As String) As HTMLTable
 Dim WeatherTable As HTMLTable
 Dim Row As HTMLTableRow
 Dim Cell As HTMLTableCell
 Dim Conn As Connection
 Dim RS As Recordset
 Dim index As Integer

 ' Grab the defined connection from the data environment
 ' and open it
 Set Conn = DataEnvironment1.Connection1
 Conn.Open
 ' Set the record set to contain all of the listings
 ' from one state
 ' or, if the state entry is blank, from all states.
 If State = "" Then
 Set RS = Conn.Execute("SELECT State,City,Hi,Lo," & _
 "Skies,Forecast FROM Weather")

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Else
 Set RS = Conn.Execute("Select State,City,Hi,Lo," & _
 "Skies,Forecast FROM Weather WHERE State='" + _
 State + "';")
 End If
 Document.All(TargetID).innerHTML =
 "<table id=" + TableID + " border=2></table>"
 Set WeatherTable = Document.All(TableID)
 Set Row = WeatherTable.insertRow
 For index = 0 To RS.Fields.Count - 1
 Set Cell = Row.insertCell
 Cell.innerHTML = RS.Fields(index).Name
 Cell.Tagname = "TH"
 Next
 RS.MoveFirst
 While Not RS.EOF
 Set Row = WeatherTable.insertRow
 For index = 0 To RS.Fields.Count - 1
 Set Cell = Row.insertCell
 Cell.innerHTML = RS(index)
 If RS.Fields(index).Name = "Hi" Or _
 RS.Fields(index).Name = "Lo" Then
 Cell.insertAdjacentHTML "BeforeEnd", "° F"
 End If
 Next
 RS.MoveNext
 Wend
 Set MakeIE5WeatherTable = WeatherTable
End Function

The insertRow and insertCell methods add a new row or cell respectively to their parent
objects, and return a reference to the newly created items. This means that you can actually
work with the items as they are created rather than having to wait for the table to be
completed before you can touch cells or rows individually. You can also modify the name
of a cell’s tag, as is done with the statement cell.tagname=“TH” to change the cell’s style
to a heading cell.

NOTE
At this stage, you still need to insert the table framework itself (the <TABLE></TABLE>)
by hand, although this may change with the final release of the Internet Explorer 5 beta.

You can also make use of behaviors in Internet Explorer 5 to handle much of this
manipulation. To a certain extent, the interaction with Visual Basic makes behaviors
somewhat moot, although their performance is marginally better than DHTML
Applications.

Although tabular data provides the most obvious form of output in a DHTML application,
getting information from the user is just as obviously the domain of form elements.

Understanding Input

Text boxes and areas, buttons, checkboxes, and list boxes offer interface elements that
differ little from their form-based counterparts. In most cases, using HTML input devices
varies only a little from using VB form tools. Again, a working example can prove to be
instructive. The weather table code in the last section lets someone see weather
information, but it would be easy enough to change this into a weather editor. From here,
you could choose a new state (or view all the states), edit a given entry, or add a new city
or state to the database. The weather editor covered in this section illustrates how such an
editor can be written, and gives some insight about why DHTML forms offer advantages
over their forms-based counterparts. It also shows how effectively data access can be
integrated into Web programming in a fairly transparent manner.

NOTE
Demonstration exercises of any sort should be viewed from a “How’s this done?”
perspective. The example I’ve given here is meant to highlight specific techniques and
elements, and I would not recommend using these algorithms as is for your own complex
Web applications.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Making A Weather Editor

This is a book of client/server programming, rather than Web programming, so it’s
worthwhile to explore an application that can actually change data in addition to simply
viewing it. A note of caution here—in attempting to use the ADO Data Environment, I
repeatedly ran into problems getting the database to update, so the code here makes a
Project reference to ADO directly. You may also want to try working with SQL commands
explicitly and bypass the ADO functionality if it gives you problems (an example of this
can be seen in Chapter 15, where entries are added into a calendar database).

1. In an external HTML editor, create the file WeatherEditor.htm with the code
shown in Listing 14.11. Note that many WYSIWYG editors will set the name of
INPUT fields with the NAME attribute—if so, you should add or change the
attributes so that they use IDs instead.

Listing 14.11 WeatherEditor.htm template code.

<HTML>
<HEAD>
<TITLE>Weather Display Page</TITLE>
</HEAD>
<STYLE>
td {cursor:hand;}
</STYLE>
<BODY ID="">
<H1>Weather Editor</H1>
State <SELECT NAME="States" ID="States">
 <OPTION VALUE="" selected>All
 <OPTION VALUE="new">New
 State</OPTION>
</SELECT>

City <SELECT ID="Cities">

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <OPTION VALUE="" selected></OPTION>
</SELECT>

High
Temperature:<INPUT NAME="" SIZE="6" ID="Hi" >° F

Low Temperature:<INPUT NAME="" SIZE="6" ID="Lo" >° F

Skies:<SELECT ID="Skies">
 <OPTION VALUE="Clear" selected>Clear
 <OPTION VALUE="Hazy">Hazy
 <OPTION VALUE="Partly Cloudy">Partly Cloudy
 <OPTION VALUE="Cloudy">Cloudy
 <OPTION VALUE="Rain">Rain
 <OPTION VALUE="Fog">Fog
 <OPTION VALUE="Snow">Snow</OPTION>
</SELECT>

<TEXTAREA NAME="Forecast" ID="Forecast"></TEXTAREA>

<HR>
<P>The following lists weather information by city. To see
a temperature in Celsius rather than Fahrenheit, roll over
that entry.</P>
<DIV ID=WeatherStatus><INPUT ID=UpdateBtn NAME=UpdateBtn
STYLE="HEIGHT: 36px; LEFT: 200px; POSITION: absolute;
TOP: 188px; WIDTH: 108px" TYPE=button VALUE=Update></DIV>
<DIV ID=WeatherTableDiv></DIV>
</BODY>
</HTML>

2. Create a new DHTML Designer in your project file, and associate it with the
WeatherEdit.htm file.

3. The first step in creating the editor is to fill the combo list box with a list of all
the states in the database. FillStates does that by iterating through the database and
adding a state only if it hasn’t been added before. FillStates calls the function
FillCities before it terminates. The method should go in the (General) section of the
DHTMLPage designer, as shown in Listing 14.12.

Listing 14.12 FillStates populates the States combo box.

Public Sub FillStates()
 Dim conn As Connection
 Dim RS As Recordset
 Dim index As Integer
 Dim opt As HTMLOptionElement
 Dim statesCol As Dictionary
 Dim State As String
 Dim lbCtrl As HTMLSelectElement

 Set lbCtrl = Document.All("States")
 Set conn = DataEnvironment1.Connection1
 conn.open
 Set RS = conn.Execute("Select State FROM Weather")
 For index = 0 To lbCtrl.Length - 1
 lbCtrl.Remove 0

 Next
 Set opt = Document.createElement("OPTION")
 opt.Value = ""
 opt.Text = "(All)"
 opt.Selected = True
 lbCtrl.Add opt
 Set opt = Document.createElement("OPTION")
 RS.MoveFirst
 Set statesCol = New Dictionary
 While Not RS.EOF
 State = RS("State")
 If Not statesCol.Exists(State) Then
 statesCol.Add State, State
 Set opt = Document.createElement("OPTION")
 opt.Value = State
 opt.Text = State
 lbCtrl.Add opt
 End If
 RS.MoveNext
 Wend
 RS.Close
 conn.Close
 FillCities ""
End Sub

4. FillCities queries the database and populates the Cities combo box with all the
cities for a given state after a state is selected from the States combo box (or it
populates the Cities combo box with all the cities if no state is provided). Listing
14.13 shows the code for the FillCities routine.

Listing 14.13 The FillCities routine displays all the cities in a given state or all the cities in
the database if no state is provided.

Public Sub FillCities(whichState As String)
 Dim conn As Connection
 Dim RS As Recordset
 Dim index As Integer
 Dim opt As HTMLOptionElement
 Dim cityCol As Dictionary
 Dim City As String
 Dim lbCtrl As HTMLSelectElement

 Set lbCtrl = Document.All("Cities")
 Set conn = DataEnvironment1.Connection1
 conn.open
 If whichState = "" Then
 Set RS = conn.Execute("Select City FROM Weather")
 Else
 Set RS = conn.Execute("Select City From Weather " & _
 "Where State='" + whichState + "';")
 End If

 For index = 0 To lbCtrl.Length - 1
 lbCtrl.Remove 0
 Next
 RS.MoveFirst
 Set cityCol = New Dictionary
 While Not RS.EOF
 City = RS("City")
 If Not cityCol.Exists(City) Then
 cityCol.Add City, City
 Set opt = Document.createElement("OPTION")
 opt.Value = City
 opt.Text = City
 lbCtrl.Add opt
 End If
 RS.MoveNext
 Wend
 RS.Close
 conn.Close
 lbCtrl.value=lblCtrl(1).value
End Sub

5. After a city is selected from the Cities list box, you need some way to populate
the remainder of the INPUT controls with data. The DisplayData routine does this.
Note that if a blank string is passed as a parameter, then a routine looks in the
database until it finds the appropriate city, retrieves the state, and commences
processing. For this reason, if you have two or more cities that have the same name
(such as Springfield, which is one of the most common names in the United States),
then you should have some method of differentiating between them. Listing 14.14
shows the code for the DisplayData routine.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.14 The DisplayData routine puts the weather information for the given city into
the INPUT fields.

Public Sub DisplayData(State As String, City As String)
 Dim conn As Connection
 Dim RS As Recordset
 Dim index As Integer
 Dim opt As HTMLOptionElement
 Dim cityCol As Dictionary
 Dim strSkies As String
 Dim lbCtrl As HTMLSelectElement

 Set lbCtrl = Document.All("Cities")
 Set conn = DataEnvironment1.Connection1
 conn.open
 If State = "" Then
 Set RS = conn.Execute("Select * FROM Weather " & _
 "WHERE City='" + City + "';")
 State = RS("State")
 RS.Close
 End If
 Set RS = conn.Execute("Select * FROM Weather " & _
 "WHERE State='" + State + "' AND City='" + _
 City + "';")
 Hi.innerHTML = CStr(RS("Hi"))
 Lo.innerHTML = CStr(RS("Lo"))
 Forecast.Value = RS("Forecast")
 strSkies = RS("Skies")
 For index = 0 To Skies.Length - 1
 If Skies(index).Value = strSkies Then
 Skies.selectedIndex = index

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Exit For
 End If
 Next
 RS.Close
 conn.Close
End Sub

6. You can change the contents of the database by changing one or more values in
the INPUT controls, and then clicking on the update button. Note that while it is
certainly possible to change individual entries, presenting an update button gives
you a means to consolidate all your error checking and validation algorithms. The
button simply calls the UpdateCity routine, which should, like the preceding
routines, be put in the (General) section of the DHTMLPage. Listing 14.15 shows
the code for the UpdateCity routine.

Listing 14.15 UpdateCity updates the database to reflect changes made, then redraws the
table.

Public Sub UpdateCity()
 Dim State As String
 Dim City As String
 Dim conn As Connection
 Dim RS As Recordset

 'Get the current state and city from the popup boxes
 State = States.Value
 City = Cities.Value
 ' If no city is selected, nothing can be updated
 If City = "" Then
 ' Note Document.parentWindow.alert brings up an
 ' alert box in the Web page. Don't use MsgBox.
 Document.parentWindow.alert _
 "No city has been selected to update."
 Exit Sub
 End If
 ' Create a new connection to the Weather Database
 ' (Needs to be a system database).
 ' Note that DataEnvironments are read only with Access.
 Set conn = New Connection
 conn.open "Weather"
 ' If a city has been selected but not a state
 ' (such as when the (all) option is chosen for states,
 ' then get all cities from the list and
 ' retrieve the first.
 If State = "" Then
 Set RS = conn.Execute("Select * FROM Weather " & _
 "WHERE City='" + City + "';")
 ' Assign to variable State the state associated
 ' with the city
 State = RS("State")
 ' And close the connection

 ' (opened implicitly by Execute)
 RS.Close
 End If
 ' Create a new recordset
 Set RS = New Recordset
 ' Get city and state information
 RS.open "SELECT * FROM Weather WHERE State='" + State + _
 "' and City='" + City + "';", "Weather", _
 adOpenKeyset, adLockPessimistic
 ' Move to the first record
 RS.MoveFirst
 ' Update appropriate entries in the record
 RS("Hi") = Hi.Value
 RS("Lo") = Lo.Value
 RS("Skies") = Skies.Value
 RS("Forecast") = Forecast.Value
 ' Update the record
 RS.Update
 ' and close the recordset and connection
 RS.Close
 conn.Close
 ' Replace the displayed table with the one with new data
 ' Make sure you assign it to the WeatherTable object
 ' so that the onmouseover events continue to track.
 Set WeatherTable = WriteStateTable(State, _
 "WeatherTableDiv", "WeatherTable")
End Sub

Note that in the very last step, the Weather Table is redrawn (to reflect the changed
data) and is set to the WeatherTable variable. This last step is very important,
because you are in essence creating a new table in the HTML; even if it has the same
name, the internal references that Internet Explorer uses don’t recognize this as
being the same object. By setting the new table to the variable, you circumvent this
problem. This is crucial. If the reference is invalid, none of the rollovers or other
routines that involve the table will work properly.

7. The WriteStateTable routine is essentially the same as that in the
WeatherDisplay project, except that the table headers are generated from the SQL
statement rather than explicitly listed (see Listing 14.16). Because the database does
not store its temperatures with a °F appended, it makes more sense to explicitly list
the actual data so that the correct units can be added.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.16 The WriteStateTable routine is similar to that found in the WeatherDisplay
project.

Public Function WriteStateTable(State As String, _
 TargetID As String, TableID As String) As HTMLTable
 Dim tableOS As COStream
 Dim rowOS As COStream
 Dim conn As Connection
 Dim RS As Recordset
 Dim Index as Integer

 ' Grab the defined connection from the data environment
 ' and open it
 Set conn = DataEnvironment1.Connection1
 conn.open
 ' Set the record set to contain all of the listings
 ' from one state
 ' or, if the state entry is blank, from all states.
 If State = "" Then
 Set RS = conn.Execute("SELECT State,City,Hi,Lo," & _
 "Skies,Forecast FROM Weather")
 Else
 Set RS = conn.Execute("Select State,City,Hi,Lo," & _
 "Skies,Forecast FROM Weather where State='" + _
 State + "';")
 End If
 'Create a table stream and a row stream, and clear them
 Set tableOS = New COStream
 Set rowOS = New COStream
 'Set the destination of the output to the
 'indicated block element

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Set tableOS.Target = Document.All(TargetID)
 tableOS.Clear
 rowOS.Clear
 'Add header cells to the row stream
 For Index=0 to RS.Fields.Count-1
 rowOS.WriteTag "TH",RS.Fields(index).Name
 Next
 'Wrap the row within a row tag and add to the table
 tableOS.WriteTag "TR", rowOS.Flush
 'Move to the first entry in the database
 RS.MoveFirst
 While Not RS.EOF
 'Clear the row stream and write data into the row
 rowOS.Clear
 rowOS.WriteTag "TD", RS("State")
 rowOS.WriteTag "TD", RS("City")
 rowOS.WriteTag "TD", CStr(RS("Hi")) + "° F"
 rowOS.WriteTag "TD", CStr(RS("Lo")) + "° F"
 rowOS.WriteTag "TD", RS("Skies")
 rowOS.WriteTag "TD", RS("Forecast")
 ' Wrap the current row stream in a new row in the table
 tableOS.WriteTag "TR", rowOS.Flush
 RS.MoveNext
 Wend
 ' Convert the table to a stream,
 ' and wrap a table header around it.
 tableOS.WriteTag "TABLE border='2' ID=" + _
 TableID, tableOS.Flush
 ' Update the HTML page to display the table
 tableOS.Output
 Set WriteStateTable = Document.All(TableID)
 conn.Close
End Function

8. In the BaseWindow_onload code window, you should call FillStates after the
table is loaded to populate the combo boxes.

 Private Sub BaseWindow_onload()
 Set WeatherTable = WriteStateTable("", _
 "WeatherTableDiv", "WeatherTable")
 FillStates
 End Sub

9. When the user of your application selects a new state, this will automatically
invoke the States combo box onchange event. This in turn rewrites the Weather
Table and fills the Cities combo box with the cities for that state:

 Private Sub States_onchange()
 Dim row As HTMLTableRow
 Dim cell As HTMLTableCell
 Dim State As String
 Dim City As String

 State = States.Value
 Set WeatherTable = WriteStateTable(States.Value, _
 "WeatherTableDiv", "WeatherTable")
 FillCities (States.Value)
 End Sub

10. The Cities_onchange event in turn simply calls DisplayData to load the
INPUT fields in the editor with the appropriate weather information. Note the use of
States.Value and Cities.Value to retrieve the selected values of these combo boxes.
This is similar to the way a combo box works in a standard Visual Basic form:

 Private Sub Cities_onchange()
 DisplayData States.Value, Cities.Value
 End Sub

11. The UpdateBtn_onclick handler simply invokes the UpdateCity routine to
update the database and redisplay the weather table:

 Private Function UpdateBtn_onclick() As Boolean
 UpdateCity
 End Function

12. Finally, the WeatherTable_onmousemove and WeatherTable_ onmouseout
handlers perform the Fahrenheit/Celsius conversion for rollovers. This routine is
identical to that found in the Weather-Display DHTMLPage (see Listing 14.17).

Listing 14.17 The remaining event handlers are the same as for the WeatherDisplay
section.

Private Sub WeatherTable_onmousemove()
 Static ct As Integer
 Dim obj As Variant
 Dim evt As IHTMLEventObj
 Dim cell As HTMLTableCell
 Dim row As HTMLTableRow

 Set evt = Document.parentWindow.event
 Set obj = Document.elementFromPoint(evt.x, evt.y)
 If TypeName(obj) = "HTMLTableCell" Then
 Set cell = obj
 Set row = cell.parentElement
 Document.parentWindow.Status = CStr(cell.innerText)
 If Not (cell Is oldCell) Then
 If Not (oldCell Is Nothing) Then
 oldCell.innerHTML =
 ConvertToFahrenheit(oldCell.innerHTML)
 Set oldCell = Nothing
 End If
 End If
 If row.rowIndex > 0 Then
 If cell.cellIndex = 2 Or cell.cellIndex = 3 Then
 If Right(cell.innerHTML, 1) = "F" Then
 cell.innerHTML =

 ConvertToCelsius(cell.innerHTML)
 End If
 Set oldCell = cell
 End If
 End If
 End If
End Sub

Private Sub WeatherTable_onmouseout()
 If Not (oldCell Is Nothing) Then
 oldCell.innerHTML =
 ConvertToFahrenheit(oldCell.innerHTML)
 Set oldCell = Nothing
 End If
 Document.parentWindow.Status = ""
End Sub

13. Run the project. Visual Basic will display a dialog box querying which
DHTMLPage to run. In this case, you should run the second.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Playing With Controls The HTML Way

Working within the HTML environment is a little different than dealing with
forms. The elements that HTML supports are in some respects more primitive
than their counterparts in VB forms. For example, to get the functionality of a
typical VB text box, you actually need to use both a text box and a text area
box, although at the same time the selection box in HTML can serve double
duty as a list box or a combo box in Visual Basic.

Understanding the distinction between HTML controls and VB controls ahead
of time will help you when it comes time to implement these controls in your
DHTML page. The differences are fairly general:

• Forms make use of the property name to identify elements, while
Internet Explorer uses the property ID to do the same thing (see the
sidebar “Of Names And Values”).

• The events for forms usually pass some form of parameter to the
handler (for example, a mousemove handler will pass the cursor
position and buttons states). With an HTML control, no parameters get
passed, and, instead, it needs to be retrieved through the event object.

• With both standard forms and HTML pages, the value of a control can
be retrieved through the Value property.

• Properties in forms can be set in design time through the use of the
property sheet (set with F4). In a DHTML Web page, the same
properties are set via attribute pairs (for example, SRC=“myPage.htm”
in an tag). However, with the element selected in the editor,
pressing F4 will bring up a property sheet for the item as well. Notice
that because HTML objects only technically exist at runtime, there is
little-to-no error checking that goes on when you edit an HTML
property.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

NOTE
To see the property page for a given DHTML element, select the
object in the DHTML template view (the right pane of the DHTML
Editor), and press F4. Setting the ID to something besides an empty
string (the default) will make that object “live” in VB, while setting it
back to the empty string will remove it from the event queue.

• Variables from IE4 are implicitly variants, unless explicitly cast to
another data type in Visual Basic. This means that you need to be
careful with parameter types in Visual Basic routines that handle
DHTML.

• In DHTML, you can only place a control to a predefined location if
the style property of that control is set for “position:absolute” or
“position:relative”. Because of the wrapping capability that HTML
provides, you should avoid absolutely positioning elements whenever
possible so that the browser can resize the page automatically during a
resize (or at worst, the control should be defined with a relative offset
from a containing element so that when the site itself moves, the control
also moves relative to the container.

• Finally, HTML input elements can work independently of an HTML
<FORM> object. The primary purpose of a <FORM> object is to wrap
the NAME:VALUE pairs of elements together into a set of header data
for transmission to the server. Because of this, Visual Basic doesn’t
really have anything analogous to an HTML form object, and the
Submit and Clear buttons don’t have VB counterparts. However, it you
want to submit HTML form data to a server and still manipulate form
elements in Visual Basic, you should make sure that these elements
include both a NAME and an ID attribute.

A list of HTML form objects and their Visual Basic form counterparts is given
in Table 14.6. The more advanced controls found in VB, such as a TreeView
control, can be emulated in Internet Explorer with DHTML or, in some
circumstances, can be added directly as ActiveX components. Both for
ease-of-use and downloading, DHTML-based controls or scriptlets are
preferable to rolling your own ActiveX controls, especially because Internet
Explorer contains a number of built-in controls that can be modified to do
nearly anything that can be done with many ActiveX components (see Chapter
15 for details).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Table 14.6 Visual Basic 6 standard objects and their Internet Explorer
equivalents.

Visual Basic
Form Control

Internet Explorer Control Comments

Checkbox <INPUT
TYPE=CHECKBOX>

The methods and properties of
checkboxes don’t vary
dramatically from VB to IE. To
set a checkbox initially in
Internet Explorer, use the
SELECTED attribute, but you
can set the Value of a checkbox
to true or false to set or reset the
checkbox.

Command
Button

<INPUT
TYPE=BUTTON>

The button object is supported
by IE4/5 only. You should use
this rather than a <SUBMIT>
or <RESET> button unless you
also plan to submit an HTML
form containing the button to
the server.

Frame <FIELDSET><LEGEND> <FIELDSET> is exclusive to
Internet Explorer, and it’s
meant to duplicate the
functionality of the Frame box
used to group buttons or
checkboxes. The <LEGEND>
container provides the label for
the fieldset.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Grid <TABLE> This is covered in detail in the
section “Building Tables” in
this chapter.

Image The image control corresponds
loosely to the
control—both can display
images but are not containers.
(See the “Image Handling”
section in Chapter 15, for more
information).

Label <DIV> Of course, the <DIV> is a
considerably more versatile
element, because it can
essentially hold any HTML
construction, anywhere. In
general, whenever you have
complex functionality within a
region, look first to the <DIV>
as your primary display
element.

List Box,
Combo Box

<SELECT><OPTION> To duplicate a list box in IE, set
the SIZE attribute of a
<SELECT> item to a value
greater than 1. Setting SIZE to
1 will make the box act like a
drop-down combo box instead.
See the “Reviewing Your
Options” section to get more
information about working with
<SELECT> controls.

Option Button <INPUT
TYPE=OPTION>

Option buttons work in Internet
Explorer, but their syntax
differs dramatically from
Option Buttons in Visual Basic.
(See the “Reviewing Your
Options” section for more
information about working with
them.)

Picture <DIV> This association may not make
much sense at first, until you
realize that the PICTURE
element is actually a Container
class in Visual Basic.

Scrollbars Built into containers There are no separate scrollbar
controls in Internet Explorer,
although you can use a <DIV>
that’s just wide enough to
display a scrollbar, with
style=“overflow:scroll”.

Text Box
(Multiline)

<TEXTAREA> IE differentiates between a
single line and a multiline text
field. The <TEXTAREA>
control has some significant
limitations, although in IE4/5 it
can be used to display
HTML-formatted text.

Text Box
(Single Line)

<INPUT TYPE=TEXT> A single line text box in VB has
most of the same properties as
the text field in IE.

Timer JavaScript timer functions
(setTimeout,
clearTimeout, setInterval,
clearInterval)

One of the advantages that
JavaScript has over Visual
Basic is the support of a
timer— in VB, you need to
create a timer control, which
makes it difficult to create
standalone classes that have a
periodic component.

TreeView No equivalent TreeView controls are
enormously useful, but they’re
also extremely complex. While
there are no native TreeView
controls, you can make a
collapsible hierarchical list with
a <DIV> (shown in the next
chapter).

Visual Basic 6 lets you reference HTML objects in a way that is consistent
with any other object in VB. If you set the ID of the element to a specific value
when you load a template (or set the ID property in the element’s property
page), then that object will appear within the list of event-receiving objects in
the code window for the DHTML page.

Of Names And Values

One of the great joys of dealing with HTML (and I’m speaking sarcastically
here) has to do with the issue of names. The matter, put simply, is that when
Netscape introduced JavaScript, it followed the convention of using NAME
as a way of identifying components. While this ran counter to the SGML
concept on which HTML is based (SGML uses ID to identify its elements),
HTML was evolving so fast at the time that no one really thought that it
would be an issue.

Microsoft, for unknown reasons, chose to designate its elements in HTML
with the term ID, possibly to make their version of HTML more compliant
with SGML. Ironically, this runs counter to the usage in Visual Basic, where
Name is used as a handle for components. With the advent of XML, which
like SGML uses IDs to designate its elements, this strategy looks like it
might prove to be a sound one, but it means that you have to be careful when
using third-party HTML generation tools. They all too frequently will
generate HTML form data that uses NAMEs rather than IDs, which can
prove a problem.

To state it clearly, you can add any form element to a Web page and have it
treated as an element in your DHTML application if you give that element an
ID. This has a lot of useful implications, because, by making the element
“live” in Visual Basic, you can script it without having to load it and assign
it. You can see this in more detail in the exercise “Making A Weather
Editor.”

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Reviewing Your Options

Although most controls in the hybrid VB6/DHTML environment are
straightforward—their values can be retrieved or set with the Value
property—certain controls are more complicated. Two controls that can cause
real headaches to DHTML application developers are without a doubt the
Select control and the Option Button controls.

The Select control does double duty as a list box control and a combo box. In
its simplest form, the <SELECT> object in DHTML acts as a list box
displaying all of the elements entered into it in the form of OPTIONs. For
example, the following bit of HTML would show four states in a list:

<SELECT ID="States">
<OPTION SELECTED VALUE="washington">Washington
<OPTION VALUE="california">California
<OPTION VALUE="oregon">Oregon
<OPTION VALUE="newMexico">New Mexico
</SELECT>

The SELECTED property in the first <OPTION> tag indicates that this is the
element that is selected in the list, and it is highlighted within the list box. It’s
worth noting that what gets displayed in the option box is the text that follows
the <OPTION> tag, rather than the contents of the VALUE attribute.

To turn this into a combo box, all you would need to do is set the SIZE
attribute of the <SELECT> tag to 1:

<SELECT ID="States" SIZE=1>
<OPTION SELECTED VALUE="washington">Washington
<OPTION VALUE="california">California
<OPTION VALUE="oregon">Oregon

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<OPTION VALUE="newMexico">New Mexico
</SELECT>

Programmatically, you can access each element in the selection box through
the HTMLSelectElement collection, which is the interface property
associated with selection boxes. If the selection box had an ID of States, then
the code in Listing 14.18 would display each entry in the list with its
corresponding value.

Listing 14.18 Using the HTMLSelectElement you can get the number of items
(through the length property) and index each option element.

Dim index as Integer
Dim lblStates as HTMLSelectElement
Set lblStates=document.all("States")
' You could also just use the variable States itself,
' since including the ID makes
' the States control visible to Visual Basic.
For Index=0 to lblStates.length-1
 Debug.Print lblStates(Index).Text+":"+ _
 lblStates(Index).Value
Next Index

Each indexed element of an HTMLSelectElement collection has a data type
HTMLOptionElement. You can modify the preceding code fragment to work
with individual option elements rather than a full index, as shown in Listing
14.19.

Listing 14.19 The same routine, except the option elements are explicitly
referenced as HTMLOptionElements.

Dim index as Integer
Dim lblStates as HTMLSelectElement
Dim Opt as HTMLOptionElement
Set lblStates=document.all("States")
' You could also just use the variable States itself,
' since including the ID makes
' the States control visible to Visual Basic.
For Index=0 to lblStates.length-1
 Set Opt=lblStates(Index)
 Debug.Print Opt.Text+":"+Opt.Value
Next Index

For the most part, this doesn’t differ dramatically from list boxes or combo
boxes in Visual Basic. However, things get a little more complicated when you
want to add an element to an already defined list box. The
HTMLSelectElement supports a default collection called options, which
contains the elements in question (that is, lblStates(Index) is equivalent to
lblStates.Options(Index)). In order to add an option to the options collection,
you use the add method. However, there is a bit of a problem here. For
HTMLSelecteElement options, the add command can only add pre-existing
Options objects, it doesn’t create them from scratch.

A little searching reveals that, in the IE object model, you can create a new
option by using the document.createElement() method (this same method is
also used to create AREAs for image maps). For example, to add a new state
to the list, you’d use the following code:

Set Opt=document.createElement("OPTION")
Opt.Text="Alaska"
Opt.Value="alaska"
LblStates.Add Opt

This method was essentially used to populate the Cities and States combo
boxes in the Weather Editor demonstration, as shown in Listing 14.20.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Listing 14.20 The FillStates routine from the Weather Editor makes extensive
use of <SELECT> and <OPTION> elements.

Public Sub FillStates()
 Dim conn As Connection
 Dim RS As Recordset
 Dim index As Integer
 Dim opt As HTMLOptionElement
 Dim statesCol As Dictionary
 Dim State As String
 Dim lbCtrl As HTMLSelectElement

 Set lbCtrl = Document.All("States")
 Set conn = DataEnvironment1.Connection1
 conn.open
 Set RS = conn.Execute("Select State FROM Weather")
 For index = 0 To lbCtrl.Length - 1
 lbCtrl.Remove 0
 Next
 Set opt = Document.createElement("OPTION")
 opt.Value = ""
 opt.Text = "(All)"
 opt.Selected = True
 lbCtrl.Add opt
 Set opt = Document.createElement("OPTION")
 RS.MoveFirst
 Set statesCol = New Dictionary
 While Not RS.EOF
 State = RS("State")
 If Not statesCol.Exists(State) Then
 statesCol.Add State, State

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 Set opt = Document.createElement("OPTION")
 opt.Value = State
 opt.Text = State
 lbCtrl.Add opt
 End If
 RS.MoveNext
 Wend
 RS.Close
 conn.Close
 FillCities ""
End Sub

In the FillStates subroutine, the SELECT box was first emptied using the
Remove method by counting the number of items in the list, and then removing
the first element that many times. This ensured that the combo box would not
contain any spurious information from previous sessions. Then, the routine
iterated through all the records and extracted the name of the state from each
record, comparing it against a dictionary collection. If the state wasn’t yet in the
dictionary, it was added both to the collection and the list, otherwise it was
skipped. Much the same thing happens in the FillCities subroutine, save that all
cities for a given state are added.

The Other Options

Options occur in two places in HTML—the <OPTION> tags associated with
the <SELECT> object and as an input type <INPUT TYPE=OPTION>. The
latter elements are actually radio buttons, not list elements. Their
implementation in Visual Basic 6 presents some frustration for anyone who
has used them in JavaScript. With JavaScript or Jscript, the best way of
working with a collection of radio buttons is to set all of the IDs to the same
name. JavaScript implicitly converts collections that have more than one
element but are named the same into arrays. Thus, if you had the following
HTML code

<INPUT TYPE="OPTION" ID="Grp" NAME="Grp"
 VALUE="Eastern">Eastern States
<INPUT TYPE="OPTION" ID="Grp" NAME="Grp"
 VALUE="Midwest">MidWest States
<INPUT TYPE="OPTION" ID="Grp" NAME="Grp"
 VALUE="Western">Western States

then the expression document.Grp[2].Value would have the value Western.
For some reason, though, the developers of the DHTML class template
decided that no element could have a common ID, so when you import an
HTML template, such as the preceding HTML code, VB6 will convert the IDs
into “Grp”, “Grp1”, “Grp2”, and so forth. This makes coding them
considerably more complicated and, as a consequence, makes radio buttons
less attractive in building DHTML applications.

Where To Go From Here

As mentioned earlier, the Internet Explorer client is a remarkably complex beast
to program. Like any good multimedia engine (which is what the browser
essentially is), what appears simple on the surface often hides all types of
considerations beneath it—certainly, however, the client aspects are made more
powerful and richer as a consequence.

Text manipulation, tables, and forms make up three legs of the Web application.
However, without the last leg—graphics—Web pages are not terribly appealing.
A good grasp of image methods and properties can turn an otherwise bland
client/server Web page into visual dynamite. In Chapter 15, we continue to
explore aspects of Internet client-side development, including working with
images and complex data types, style sheets, and integrating ActiveX
components.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Chapter 15
Power Tools
Key Topics:

• Image handling

• Style sheets programming

• Dialog development

• ActiveX components

• A look at the future

Last chapter! This is always the fun one for an author—the one in which he or she
gets to deal with things to come, advanced concepts, and cool tips and techniques. In
this chapter, I expand on DHTML programming to cover more advanced topics, such
as working with images, manipulating style sheets, creating dialog boxes, and dealing
with third-party components. Although none of these are strictly necessary for
building client/server applications, they dramatically enhance the interactivity of the
client and extend the functionality of your applications beyond the basic text-entry
stage.

Image Handling

You may have noticed in the last two chapters that the Web pages that were discussed
were, well, dull. They accomplished the tasks at hand but lacked a lot in the way of
aesthetic appeal. Yet one of the strengths of the Web browser is the ease with which it
integrates graphics—you can have a graphical background (tiled or untiled), inline
graphical images, floating pop-up pictures, and animated icons. Indeed, without
images, Web pages lose much of their impact (if you’ve been around the Web long

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

enough, you may even remember text-only browsers, such as Lynx, which were
functional but not particularly inspiring).

This section deals with basic image manipulation methods. If you are familiar with
Dynamic HTML or JavaScript, many of these methods may seem like old friends;
although, like everything else dealing with Visual Basic, even these old friends can
look different under the guise of a typed programming language like VB.

Deceptive Debugging Dialogs

There is a fairly serious design flaw in the implementation of DHTML applications.
When you first run your applications, they don’t start where you might expect them to.
On my system, for example, pressing the Play button on the toolbar launched a
perfectly functioning application—in my Windows/Temp folder. In the exercises of
Chapter 14, this didn’t really matter that much, since the whole page was
self-contained. However, if you want to include any external resources (such as
images, video, sound, or resource files), then every reference that you create has to be
absolute: you have to include the protocol and server location of your resource, rather
than just providing a relative path. For example, if you want a background graphic
named bg1.jpg for your Web page, the only way (apparently) that you can get the
browser to find it is to reference its absolute path

<BODY BACKGROUND="http://www.myserver.com/images/bg1.jpg">

instead of:

<BODY BACKGROUND="images/bg1.jpg">

Modifying The Debug Mode

As it’s likely that you won’t be deploying your Web pages in the same folder that you
develop the page (and it’s almost certain that you won’t be deploying your site in the
Windows/Temp folder), this limitation appears fairly profound. However, it turns out
that you can get your Web page to play in the correct folder by changing the Debug
mode.

1. Before you begin, back up your template DHTML files, since changing the
Debug option will cause Visual Basic to modify your templates for its own
needs.

2. From the Project menu, select the bottom entry. This contains the Project
Properties, although the specific text of the menu item changes depending upon
what you named your Project. Selecting the Properties menu will bring up the
Project Properties dialog box.

3. Select the Debugging tab, and choose Wait For Components To Be Created.
At least in the beta, the default Start Component was set to DHTMLPage1 (see
Figure 15.1). Then, press OK.

Figure 15.1 The Project Properties dialog box Debugging tab.

4. When you run the project, Visual Basic won’t automatically create a new
DHTML page. You will need to manually open a browser to the Web page that
you loaded. Once the page loads, however, all of your relative links should
point to the correct images or resources.

Making A Button

The majority of graphics that end up on Web pages (unless it’s a gallery of some sort)
will almost certainly be buttons. Over the years, graphical buttons have evolved into
three-state creations: base, highlighted, and pressed.

A button has a base state that is typically consistent with the background—it doesn’t
really stand out, other than having enough of a graphical design to indicate its
functionality as a button. When the mouse moves over a button, many graphical
designers have the button highlight in some fashion. This highlight state can consist of
having the button become lighter, move, or even animate (it’s not uncommon to use
animated GIFs). Finally, a button has a pressed state, in which the button is shown
recessed, moved, or otherwise pushed behind the plane of action of the page (see
Figure 15.2).

Figure 15.2 Three different button stages.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

javascript:displayWindow('images/15-01.jpg',418,377)
javascript:displayWindow('images/15-01.jpg',418,377)
javascript:displayWindow('images/15-02.jpg',300,40)
javascript:displayWindow('images/15-02.jpg',300,40)
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Creating A VB Button

You can create a button using the DHTML Application Wizard, as outlined here. You’ll
also want to read the “Combining VB And Scripting” section later in this chapter.

1. Create a new folder in your work directory called Images, and place the three
graphical buttons Enter.jpg, EnterHi.jpg, and Enter-Pressed.jpg into it (these files are
stored on this book’s CD-ROM, or you can make your own with the same names). In
the root directory, create a new Web page called ButtonTest.htm and add the code
shown in Listing 15.1.

Listing 15.1 HTML text for ButtonTest.htm.

<HTML>
<HEAD>
<TITLE>Button</TITLE>
</HEAD>
<BODY
 BACKGROUND="images/islands.jpg"
 BGCOLOR="#ff8000"
 TEXT="white"
 LINK="yellow"
 VLINK="red"
 ALINK="white"
 >
<IMG
 ID=Enter
 SRC="images/enter.jpg"
 WIDTH=100
 HEIGHT=40
 ALT="Enter"
 BORDER="0"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 HSPACE=0
 >
</BODY>
</HTML>

2. Create a new DHTML application project in VB. Open the DHTML Editor, and
choose Open|Use Existing HTML File in the DHTML Page Properties dialog, and
open ButtonTest.htm.

3. Ensure that your debug mode is set to the first option (Wait For Components To
Be Created) as outlined in “Modifying The Debug Mode,” presented earlier in this
chapter.

4. Open the code window for the DHTML page, and select the Enter object. This is
the image. Choose the method Enter_onmouseover, and enter the following code:

 private Function Enter_onmouseover
 Enter.src="images/EnterHi.jpg"
 End Function

5. Choose the onmousedown event, and add the following code:

 private Function Enter_onmousedown
 Enter.src="images/EnterPressed.jpg"
 End Function

6. In the onmouseup event, notice that the graphic is set to the highlight state, not
the base state. This is because the mouse is still over the button. Add the following
code to support the Enter button’s onmouseup event:

 private Function Enter_onmouseup
 Enter.src="images/EnterHi.jpg"
 End Function

7. The onmouseout event is where the button is restored to its initial state. Add the
following code to support the Enter button’s onmouseout event:

 private Function Enter_onmouseout
 Enter.src="images/Enter.jpg"
 End Function

TIP
Staying Alert
Notice that an alert box is called, rather than a msgbox. Calling a message box
would create an alert behind the Web page rather than in front of it, and it would
halt all processing of the Web page until the reader figures out that there is
something there (probably by closing the Web page window). Also, notice that the
alert is generated by the document parentWindow object. At least in the beta, the
baseWindow object usually threw an exception whenever this was attempted, so it
is necessary to get a reference to the window belonging to the document.

8. Finally, the onclick event handles the actual action of the button. For a number of
reasons, it is usually best to separate the mechanics of the button press (mouseover,
mousedown, mouseup, and mouseout) with the trigger. By keeping the code
distinct, you can offload some of the mechanics to other environments (as shown in
the “Combining VB And Scripting” section, later in this chapter). It also makes it

easier to debug the code when you can see functionality clearly delineated. Add the
following code to support the Enter button’s onclick event:

 private Function Enter_onclick
 document.parentWindow.alert "You just clicked on a _
 button!"
 End Function

9. Run the application, then open Internet Explorer and display the Web page that
you initially loaded.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The image object in DHTML is represented in Visual Basic by HTMLImg
(note the alternate spelling here). This object is remarkably robust (see Table
15.1 for a partial list). Microsoft currently uses it not only for images
themselves (in either JPG, GIF, PNG, or BMP formats), but also as another
way of displaying AVIs and VRML (Virtual Reality Markup Language)
worlds.

Table 15.1 Image object properties and methods.

Property Or
Method Example Description

align Img.align=“Left” Sets or retrieves the
current alignment of
inline images. Can
also be set via the
text-align property in
CSS.

alt Img.alt=“This is a button” Sets the alternate text
displayed when the
mouse rolls over a
graphic. The alt
attribute also appears
while graphics are
loading.

border Img.border=2 Sets the width of the
border around a
graphic when that
graphic is used as the
hotspot for a link.
Setting border=0
turns the border off.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

className Img.className=“Hilite” Sets the CSS style
rule for the image.
For more information
about styles and
classes, see “Doing It
With Style” later in
this chapter.

dataFld Img.dataFld=“DataImage” Sets the default field
value of an image
(used with Remote
Data Services). With
Visual Basic, it is
better to use ADO
directly.

dataSrc Img.dataSrc=“WeatherDB” Sets the data source
for dataFld (used
with Remote Data
Services). With
Visual Basic, it is
better to use ADO
directly.

dynsrc Img.dynsrc=“WeatherMap.avi” Sets the image to an
AVI or similar digital
movie. NetShow is
recommended
instead.

height Img.height=480 Sets the height of the
image in pixels.
Original image is
scaled to match.

hspace Img.hspace=10 Sets the number of
pixels from the
horizontal edge of a
graphic to the text.

Id Img.Id=“myImage” Makes an image
available as an object
in Visual Basic.

isMap Img.isMap=True Determines whether
an image is a
server-side image
map (isMap=True).

loop Img.loop=3 Indicates the number
of times a dynsrc
movie, GIF
animation, or other
animated resource
plays. Setting loop to
0 stops it, and setting
it to -1 causes it to
repeat indefinitely.

lowsrc Img.lowsrc=“images/thumbs/ Loads and displays a
low-resolution
mypic.jpg”version of
the image. If src is
also specified, then
the src image will
eventually replace the
lowsrc image.

offsetHeight Height=Img.offsetHeight Returns the total
height of an image,
including that not
necessarily visible
save through
scrolling (read-only).

offsetWidth Width=Img.offsetWidth Returns the total
width of an image,
including that not
necessarily visible
save through
scrolling (read-only).

offsetTop Top=Img.offsetTop Returns the position
of the top of the
image relative to its
containing object (in
pixels).

offsetLeft Left=Img.offsetLeft Returns the position
of the left of the
image relative to its
containing object (in
pixels).

parentElement Var ctnr=Img.parentElement Returns a reference to
the object that
contains the image.

readyState If img.readyState=4 then
AssignResource

Indicates the loading
status. ready-State=3
indicates the image is
in a loading state,
while readyState=4
indicates that it has
completed loading.

scrollHeight Sh=img.scrollHeight Specifies the total
visible height of the
picture that can be
seen without
scrolling.

scrollLeft Sl=img.scrollLeft Specifies the distance
in pixels between the
left edge of the image
and the left edge of
the container.

scrollTop Img.scrollTop=Img.scrollTop+20 Specifies the distance
in pixels between the
top edge of the image
and the top edge of
the container.

scrollWidth Sw=Img.scrollWidth ScrollWidth is the
total visible width of
the picture that can
be seen without
scrolling.

Src Img.Src=“images/newPicture” Returns the URL of
the image when used
as a read property. As
a write property, used
to set a new URL,
which will cause the
picture to change to a
new one.

start Img.start Begins an animation
if the Loop property
had been set initially
to 0.

style Img.style=“margin:4px;” Sets some aspect of
the style property, the
entry point for CSS.
See “Doing It With
Style” later in this
chapter.

useMap Img.useMap=“#MyMap” Provides the local
URL for the MAP
object as a client-side
image map.

vspace Img.vspace=10 Sets the number of
pixels minimum
distance between the
top or bottom of an
image and any
flowing text.

width Img.width=400 Sets the width in
pixels of the image,
stretching it, if
needed.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The attributes of most importance when dealing with images are probably the src, height, and width
properties. The src property points to a URL, either local or complete, that contains an image. The image itself
can be in JPG, GIF, PNG, or BMP formats (although the last one is not recommended). For example, the
following bit of code will load two images, one from a local images folder contained in the same directory as
the HTML movie, the other from another server:

Picture1.src="images/myPicture/gif"
Picture2.src="http://www.microsoft.com/images/BillG.jpg"

You can also set the tag’s dynSrc property to a URL hosting an AVI or VRML file. This was the
primary way of displaying AVIs in Internet Explorer 3. In later versions of Internet Explorer, the NetShow
control has pretty much superceded the dynSrc property, because it gives finer control to Web designers.
Likewise, while you can display VRML movies using the tag, you are better off using either a Java or
ActiveX control-based VRML component for all but the simplest 3D worlds. The control doesn’t
have the hooks necessary to really manipulate these worlds from JavaScript.

NOTE
There is some talk in the W3C (the group that administers Web formats) of eventually folding the tag
itself into the <OBJECT> tag, but given the current usage of on the Web, that’s likely to happen later
than sooner.

Combining VB And Scripting

You may have noticed, especially if you have a slower machine, that your Web application wasn’t exactly
responsive. Indeed, on both a 150 MHz machine and a 400 MHz Pentium Pro, the speed at which this
application worked was rather disappointing. However, a moment’s thought will indicate why.

When you roll over a graphic, the system checks to see if there is an event attached. In this particular case, the
DHTML Web class slips in its own event drivers, so the event gets passed up to the DLL. The DLL calls the
associated handler, grabs a reference to the image object in the IE shell, associates a new source URL to the
graphic, releases the image back to IE, and closes out. Even as an in-process server, the DLL is not likely to be
anywhere near as fast as working native in the browser.

There’s another problem here too. The way a button works is pretty consistent within an application—it is
only the resulting action that changes from one button to the next. Yet, if you had 10 buttons on your page,
you’d need to fill 50 different event handlers. It would be far better if you could have one set of routines that
would handle the mechanics of the buttons (which only requires changing the names of the button graphics)
and then 10 handlers for the resulting actions of the 10 buttons.

Writing A JavaScript Button Handler

Just as there are times that you need to extend Visual Basic’s capabilities with the judicious use of C++, so

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

there are times (especially with Web work) where JavaScript provides a better solution to problems than
Visual Basic. The language’s lightweight features and portability (both Internet Explorer and Netscape
Navigator support it) make it the de facto scripting language for Web page development, and it incorporates its
own rather quirky brand of object-oriented design. In the following exercise, the various mouse events
(onmouseover, onmousedown, and so on) are intercepted in JavaScript and assigned actions. Because this
scripting is contained in-process to Internet Explorer, it actually runs slightly more efficiently than the
corresponding Visual Basic would.

1. In a text editor, use the code in Listing 15.2 to create a file in your working directory, and name the
file ButtonScripts.js.

Listing 15.2 Button manipulation routine (ButtonScripts.js).

// Returns the current browser as either NS (Netscape) or
// IE (Internet Explorer)
function getBrowser(){
 var nav="";
 if (navigator.appName.indexOf("Netscape")>-1){
 nav="NS";
 }
 if (navigator.appName.indexOf("Explorer")>-1){
 nav="IE";
 }
 return nav;
 }

// Returns the browser's version number rounded down to
// the nearest integer
function getVersionNumber(){
 var num=0;
 return parseInt(navigator.appVersion,10);
 }
// Called by the image, makeButton assigns event handlers to
// the image and determines the type of the image (gif, jpg,
// etc.). It also ensures that on rollover a hand icon is // displayed.

function makeButton(me){
 me.extension=me.src.substring(me.src.length-4, _
 me.src.length);
 me.onmousedown=btnPressed;
 me.onmouseover=btnOver;
 me.onmouseup=btnOver;
 me.onmouseout=btnRestore;
 me.handleButton=handleButton;
 if ((getBrowser()=="IE") && (getVersionNumber()>3)){
 me.style.cursor="hand"
 }
 this.btnOver();
 return true;
 }

// Event called when the mouse is pressed on the graphic.
// If the name of the graphic is Enter.jpg then this routine
// assumes the depressed state is called EnterPressed.jpg.

function btnPressed(){
 if (getBrowser()=="IE"){
 this.src="images/"+(this.id)+"Pressed"+this.extension;
 ExecFunction(this.id)
 }

 else {
 this.src="images/"+(this.name)+"Pressed"+ _
 this.extension;
 ExecFunction(this.name)
 }
 this.pressed=true;
 }

// Event called when the mouse moves over the graphic.
// If the name of the graphic is Enter.jpg then this routine
// assumes the highlight state is called EnterHi.jpg.

function btnOver(){
 if (getBrowser()=="IE"){
 this.src="images/"+(this.id)+"Hi"+ _
 this.extension;
 Describe(this.id);
 }
 else {
 this.src="images/"+(this.name)+"Hi"+this.extension;
 Describe(this.name);
 }
 if (this.pressed){
 this.pressed=false;
 this.handleButton();
 }
 }

// Event called when the mouse moves off the graphic.
// This restores the graphic to its original state

function btnRestore(){
 if (getBrowser()=="IE"){
 this.src="images/"+(this.id)+this.extension;
 }
 else {
 this.src="images/"+(this.name)+this.extension;
 }
 }

// ExecFunction acts as a switchboard.
// Associate the id of the image
// with the action you want completed
// (Default is to do nothing)

function ExecFunction(id){
 switch(id){
 // Put a case in for each function
 // if button name is "Enter" then
 // code here would look like:
 // "Enter":
 // DoEnterAction(); // This is user defined
 // break; // This terminates the choice
 }
 }
// Describe is called when the mouse moves
// over or off of the button.
// You can customize actions by specifying
// the ID of the image and

// associating code as with ExecFunction.
// Default action is to set the
// status window to the name of the button.

function Describe(id){
 switch(id){
 default:
 if (""+id=="undefined"){
 window.status=window.defaultStatus;
 }
 else {
 window.status=id;
 }
 break;
 }
 }

2. Modify the ButtonTest.htm file as shown in Listing 15.3.

Listing 15.3 ButtonTest modified to enable buttons in JavaScript.

<HTML>
<HEAD>
<TITLE></TITLE>
<SCRIPT SRC="ButtonScripts.js"></SCRIPT>
<SCRIPT>
function notify(){
 window.report.innerText=DHTMLPage1.GetInfo());
 }
</SCRIPT>
</HEAD>
<BODY
 BACKGROUND="islands/islands.jpg"
 BGCOLOR="#ff8000"
 TEXT="white"
 LINK="yellow"
 VLINK="red"
 ALINK="white">
<IMG ID=Enter
 SRC="images/enter.jpg"
 WIDTH=100
 HEIGHT=40
 ALT=""
 BORDER="0"
 ONLOAD="makeButton(this)"
 ONCLICK="notify()">
<DIV ID=report> </DIV>
</BODY>
</HTML>

3. In your DHTML application, remove the onmousedown, onmouseover, onmouseup, and
onmouseout handles of the Enter object.

TIP
Providing Security
A DHTML application involves the use of an ActiveX control. Because such a control has access to the
entire machine, it represents a considerable security risk. So after you have completed your control, you
will need to code sign it to provide some security validation. Otherwise, it will only run in low security
environments and will raise alert boxes even there.

4. In the (General) section of DHTMLPage1, add the GetInfo() function:

 Public Function GetInfo() as String
 GetInfo = "You pressed this button at " + Time$()
 End Function

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

This example actually demonstrates two concepts: adding JavaScript into a VB
application and calling a Visual Basic function from JavaScript. The first
concept is straightforward—just because VB hooks into the Internet Explorer
event queue doesn’t mean that you can’t still run scripts in Web pages. The
script here illustrates that concept quite well. In general, if you have both a
JavaScript event handler and a Visual Basic event handler for the same event,
the JavaScript will be performed first.

This is demonstrated by the second concept—you can call a VB function from
JavaScript. There are two event handlers for the Enter image’s onclick event.
The JavaScript handler calls a JavaScript function called Notify. Notify in turn
references the DHTMLPage1 object, which has defined a GetInfo routine.
That routine returns a string indicating when the button was pressed to the
nearest second, which is displayed in a <DIV> below the button. After you get
past the ActiveX alert (which will be covered momentarily), then the Visual
Basic onclick event is called.

Although there is a lot that can be done with image manipulation in Visual
Basic, in most circumstances you will be better off encapsulating mechanical
functionality (such as buttons) in JavaScript code. By and large, these don’t
need to be secured anyway. The danger of people looking through your source
code comes in exposing your business logic, not multimedia functions.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Preloading Images

One problem that any Web developer faces when dealing with graphics is
latency—it takes time to download images. Although this is an unavoidable
situation, it gets worse when you start introducing button-state graphics.
Ideally, you don’t want to have an obvious wait when a user presses a button
for the down state to show up. If the image is cached on the client, it takes
very little time to display it, but if it’s not cached, then the lack of
responsiveness could make your user press the same button several times.

One way of getting around this is to preload you graphics. To do this, it’s
necessary to create an image object without displaying it, and preferably
without letting it disturb the flow of output. Although it’s not directly
possible from Visual Basic, you can force the IE engine to create a generic
image file without having to display it. To pull this off, you need to call the
execScript function to run some JavaScript, as follows:

Public Sub PreloadGraphic(URL)
Call Document.parentWindow.execScript(_
 "var Img=new Image();Img.src='"+URL+"';")
End Sub

You would call this function after the page has initially loaded but at some
point prior to needing the graphic specified in the URL (for example, in the
BaseWindow_onLoad() event handler). Because the image is cached, when
next you call myImage.src=URL, the browser uses the cached copy rather
than the remote copy, significantly speeding up the time to draw the graphic.

The only caveat here is that preloading graphics still takes time. You still
need to factor in total download time of graphics. All that you’ve done by
preloading is made the image available sooner.

Doing It With Style

HTML started out being rather bland. The primary heading on a page was
supposed to be <H1>, the secondary headings <H2>, and so forth. Paragraphs
were differentiated by <P> tags, but nowhere was there any specification that
said what a paragraph (or a header tag, for that matter) should look like. This
seemingly glaring omission was, of course, deliberate. By deliberately
divorcing content from description, the original HTML specification was
essentially trying to maintain an appearance agnosticism. In other words, it
was the responsibility of the browser rather than the Web page to set the styles
used in a page.

However, somewhere along the line, the focus of most Web pages began to
change. Rather than being produced to display the latest in physics or
mathematical research, Web pages became vehicles for companies to market
their products or for individuals to express themselves. As a consequence, the
small number of tags mushroomed as specialized needs arose. Some of them
(such as the irritating <BLINK> tag) disappeared into obscurity, while others,
including the tag, became heavily integrated into Web development

tools.

The tag demonstrates both the utility and danger of taking the
approach of adding a tag for each specialized function. Using the
tag, you can set the font style and size by setting the STYLE and SIZE
attributes. The drawback to using the tag is that it provides
absolutely no information to the document about how the currently enclosed
text fits in with the rest of the document. If the relevant text is within a
paragraph tag but you still set the size of the SPANned text to, say, 24pt bold,
then is the text contained therein still a paragraph? In other words, if

<DIV>This Is A Header?!</DIV>

is visually equivalent to

<H1>This Is a Header?!</H1>

then how can the user distinguish between a header tag and a paragraph that
looks like a header tag? This may seem a fairly minor distinction if all you are
doing is marking up the page, but once you have programmatic control of the
elements on the page, then the distinction is every bit as important as the
distinction between a long and a double in Visual Basic.

In Chapter 12, the notion of the data layer and the presentation layer was
given, with the focus on XML as the data layer. Although it may be awhile
before widespread acceptance of XML lets you work with that element, it is
already possible using Cascading Style Sheets and DHTML to create at least a
basic data/presentation layer split, something that is perhaps more important to
client/server programmers than to most Web developers.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Cascading Style Sheets (also referred to as CSS) are an attempt to separate the data (or
context) layer of the Web page from the presentation layer. The style sheets are cascading
because any style that is applied to an HTML element is also applied to all contained
elements, unless they are explicitly overridden. For example, if you apply a new to a paragraph that contains the bold tag (), then the also
modifies the contents of the bold tag. In this way, if you set the style of the body to a given
attribute (such as a or), then you also set the style of
everything inside the document to that same attribute, unless an element explicitly sets its
own attribute to something else.

There are two ways that you can modify the style of an element. In the first, you set the
style attribute of the tag to a name-value pair, with the CSS name being followed by a
colon, and the value following the colon. You can also have more than one CSS element
within a style tag. In this case, each pair of attributes is separated by a semicolon. For
example, if you want to set the color of a text block to red and the font size to 18 points,
you’d use the following expression:

<P style="color:red;font-size:18pt;font-family:san-serif;">
This is a warning!</P>

You only need to alter those values that you need to overrule. All the other CSS properties
inherit their values from the containing object (ultimately the <BODY> of the document).

This approach can set the individual styles of an object, but any change that is made to the
style of a block affects only that block and any block that it contains. In an HTML
document, it’s actually pretty likely that you will have more than one instance where you’d
like a particular style (such as, a “warning” style—red, larger, san-serif) of block. By
specifying the block attributes as styles, you are in the ugly position of having to manually
change each style should you want to make a global change (changing the warning style’s
font size to 14 points instead of 18 points, for instance).

Fortunately, CSS lets you create rules, also called classes, that specify style information
for similar elements. As an example, you can create a .Warning class that embodies the

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

style rules that you need, as shown in Listing 15.4.

Listing 15.4 Style and rule class example.

<HTML><HEAD><TITLE>CSS Sample</TITLE>
<STYLE>
P {font-family:serif;font-size:11pt;}
H1 {color:blue;}
.Warning {color:red;font-family:san-serif;}
</STYLE>
</HEAD>
<BODY>
<H1>Warning Test</H1>
<P>Here is the basic message.</P>
<P Class="Warning">Warning, Will Robinson! Warning!</P>
</BODY>
</HTML>

Three classes were declared in the <STYLE> section of the document in Listing 15.4. The
first two redefined current HTML tags <H1> and <P> respectively. Note that whenever an
already-existing tag has its style redefined through a rule, it doesn’t take a period.

The .Warning class, on the other hand, starts with a period to indicate that it is essentially
a user-defined class. In practice, this means that an HTML element calls the class through
the class attribute. The class then overrides the tag’s implicit declarations with any explicit
declaration, leaving the remainder unchanged. For example, the paragraph tag is redefined
so that its font-size is 11 points. The .Warning tag subclasses the paragraph tag, setting
the color to red and the font-family to san-serif, but it retains the 11 point font-size. If the
Warning property had sub-classed the heading 1 style (that is, <H1 CLASS=Warning>)
then the heading would be 24 points tall and colored red with a san-serif font.

NOTE
It should be noted that a CSS class is completely unrelated to a Visual Basic class, except
in the very loosest definitions of object-oriented programming.

There are a number of different ways that you can integrate styles and CSS classes into
your DHTML applications. The first (and simplest) method is to define the CSS attributes
in the <STYLE> section of your template document’s <HEAD> declaration, as
demonstrated in Listing 15.4. While this works reasonably well for simple Web pages, this
approach has the problem of requiring the same code to appear identically in multiple
pages, which increases the chance of stylistic discrepancy between pages.

A second method would be to link to a common style sheet, using the <LINK> tag. Using
this method, you extract the style sheet rules and place them in a separate document (with
no enclosing <STYLE> tags), then reference them as an external document. Listing 15.5
shows the use of the <LINK> tag.

Listing 15.5 The <LINK> tag loads in CSS documents.

<!-- Contents of DocStyle.css -->
P {font-family:serif;font-size:11pt;}
H1 {color:blue;}

.Warning {color:red;font-family:san-serif;}

<!-- Declaration of LINK -->
<HTML><HEAD><TITLE>CSS Sample</TITLE>
<LINK REL="stylesheet" TYPE="text/css" HREF="DocStyle.css">
</HEAD>
<BODY>
<H1>Warning Test</H1>
<P>Here is the basic message.</P>
<P Class="Warning">Warning, Will Robinson! Warning!</P>
</BODY>
</HTML>

By removing style sheets from the HTML documents, several documents can use the same
set of definitions, making for a more consistent display of information. It also takes you
one step closer to an XML-based data-driven output, because, syntactically, there’s not a
lot of difference between

<DIV CLASS="Warning">This is a warning! Alert! Wake up!</DIV>

and

<WARNING>This is a warning! Alert! Wake up!</WARNING>

which is the format that an XML document would take.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Some Stylish Properties

In general, when you put together a Visual Basic DHTML application, you will usually be working with a Web
designer to put together the “look and feel” of the HTML document. This is one of the greatest benefits of working
with the WebClass formats, because the division of labor means that a client/server programmer can concenrate on
adding functionality without having to learn all the intricacies of Web design. Manipulating styles and style sheets
definitely falls into that category, although there are a few basic style properties that are essential to your job as a
programmer.

There are several dozen properties associated with the style sheet, although for the purpose of client/server
programming, you can get by with a fairly small subset of style properties. These are outlined in Table 15.2 and assume
a <DIV> element called myDiv as the object on which they act. For a complete listing of all of the style properties,
check out the books mentioned at the end of this chapter. Table 15.2 displays the properties as they would be called
from Visual Basic, rather than inline as HTML code.

Table 15.2 Style attributes most useful to client/server programmers.

Property Or
Method Example Description

border MyDiv.style.border=“solid blue 2px” Determines the border style of
divisions or table cells. Can be
sub-classed by position or function
(that is,
style.borderTopColor=“blue”, or
style.borderBottomWidth=“4px”).

clear MyDiv.style.clear=True Causes the next element or text to
be displayed below the current
element.

clip MyDiv.style.clip=“rect (0 200 150 0)” Sets or determines the clipping
region of a division. Rectangular
coordinates are given as (top right
bottom left). See overflow.

color MyDiv.style.color=“#0000FF” or
MyDiv.style.color=“blue”

Sets the fore (or text) color. You can
either use a hex triplet color pair
(#RRGGBB) or a predefined name
(blue).

cssText Debug.print myDiv.style.cssText Returns the entire defined CSS rule
for the given element.

cursor MyDiv.style.cursor=“hand” Sets or retrieves the cursor type for
a given object. Some possible values
include: hand, crosshair, text,
default, wait, move, help, and the
directional arrows n-resize,
ne-resize, and so forth.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

display MyDiv.style.display=“none” or myDiv.style.display=“” Controls whether an element is
hidden or displayed. When set to
none, display hides the element,
reflowing text to fill in where the
element was (cf., invisibility). When
set to a blank string, display shows
the element again.

font (also,
fontFamily,
fontSize,
fontStyle,
fontVariant,
fontWeight)

MyDiv.style.font=“Helvetica 12pt Italic” Sets or retrieves the font attributes
of a container.

left, top, width,
height

MyDiv.style.width=“100px” Sets the positional attributes for the
container. Note that position can be
set in one of several coordinate
systems, including pixel (px), point
(pt), centimeter (cm), inches (in),
and printers ems (em).

listStyleImage MyDiv.style.listStyleImage=“url(images/folderIcon.gif)” Sets or retrieves the bullet graphic
for a list item. Note the url() syntax.

listStylePosition MyDiv.style.listStylePosition=“outside” Sets or retrieves the position of the
bullet relative to the list item
(outside is outdented, and inside is
indented).

listStyleType MyDiv.style.listStyleType=“square” Sets the type of bullet in
elements or the numbering scheme
in elements. For ,
values include: none, circle, disc,
and square. For , values
include: none, decimal,
lower-alpha, lower-roman,
upper-alpha, and upper-roman.

margin (also
marginLeft,
marginTop,
marginRight,
marginBottom)

MyDiv.style.margin=“3px” Sets the space between the
boundaries of the container and the
content of the container.

overflow MyDiv.style.overflow=“hidden” Determines how content overflows
the prescribed boundary box of the
container, with values including
hidden, auto, scroll, and visible.
hidden will display just the clipped
region if clip is defined.

padding MyDiv.style.padding=“3px” Sets the width of the padding space
between the container boundaries
and the surrounding content.

position MyDiv.style.position=“absolute” Sets the way that the element
interacts with the rest of the page.
See “Absolute Position Corrupts
Absolutely” later in this chapter.

pixelLeft,
pixelTop,
pixelWidth,
pixelHeight

MyDiv.style.pixelLeft=
myDiv.style.pixelLeft+10

Sets or retrieves the requested
attribute in pixels as a pure number
rather than as a string-based number
and units.

posLeft,
posTop,posHeight,
posWidth

MyDiv.style.posLeft=20 Sets or retrieves the requested
attribute in the last units that the
container was referenced, as a pure
number. So, if a previous statement
has set the left position as
myDiv.style.left=3in, then the
myDiv.style.posLeft is 3.

styleFloat MyDiv.style.styleFloat=left Converts a span into an inline
floating element that can be
positioned either to left, right, or
none to turn float off.

visibility MyDiv.style.visibility=“visible” Makes the element visible on the
screen (visible) or invisible
(hidden). Unlike display, visibility
still keeps the element’s flow intact
even when invisible.

zIndex MyDiv.style.zIndex=5 Sets the order in which absolutely
positioned elements appear on the
page, with the higher zIndex
appearing toward the user.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Please note that the CSS equivalents for these properties might differ slightly
in syntax—usually, capitalization of the properties is replaced with a dash and
lower case equivalent. Thus, listStyleImage has a CSS equivalent form of
list-style-image.

Absolute Position Corrupts Absolutely

In order for DHTML to work, it’s necessary to create at least two distinct types
of containers, although Internet Explorer thankfully defines three. HTML
works by creating a flow diagram—every element within the page has some
rules about how it follows the preceding element. For example, a paragraph
element will normally cause a line break so that the next element appears
below the paragraph, usually with about half a line of space appended to
distinguish between paragraphs. Images can partially break this ordering
through the use of the ALIGN attribute. Setting ALIGN=“left”, for example,
will always make the image appear to the left and flush with the body of text in
which it’s contained.

However, in certain circumstances, you will want to remove an item from the
normal flow of the page and position it absolutely on the page. For example,
creating floating pop-up boxes of text in a Web page are impossible to do
without absolute positioning, and the engine that handles replacement of text
with innerHTML likewise is unable to work if the container has a static
position on the page.

You can control how the element appears with the use of the position
property. Setting position to absolute causes the element to position itself
absolutely relative to its container. Listing 15.6 provides an example of code
using absolute positioning.

Listing 15.6 An HTML code fragment that demonstrates absolute positioning.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<DIV ID=outerCtnr style="position:absolute;
 left:20px;top:40px;">
 <DIV ID=innerCtnr style="position:absolute;
 left:30px;top:50px;">
 This is some text
 </DIV>
</DIV>
<DIV ID=newCtnr style="position:absolute;
 left:100px;top:120px;">
 This is another container
</DIV>
<DIV ID=newCtnr2 style="position:relative;left:10px;
 top:15px;width:120px;height:80px;">
 This is yet another container
</DIV>

The outerCtnr division is positioned absolutely at 20 pixels from the left of
the page boundaries and 40 pixels from the top. The innerCtnr division is
positioned absolutely as well, but relative to the outerCtnr, not the page.
Thus, the innerCtnr division starts 50px from the left and 90px from the top.

On the other hand, the newCtnr division is positioned absolutely, relative to
the page, as left=100px; top=120px, because its parent container is the page
itself.

Sometimes, you will want a container to relatively follow another container.
To do this, use the relative value for the position attribute. For example, if
newCtnr2 had no modifiers other than relative in the style sheet, then it
would appear directly beneath the bottom of the newCtnr. However, by
setting left to 10px and top to 15px, newCtnr2 is displaced that many pixels
to the right and below newCtnr.

NOTE
You must set the position attribute of a container to either relative or
absolute in order for it to be modified with the innerHTML attribute. If
position is static, then the browser will not display any changes to the
innerHTML, even though it registers them internally.

In order to turn off either absolute or relative positioning, you can set the
position attribute to static—this is the default value and indicates that the
element will be flowed with the normal rules of the browser.

To complicate matters, in Internet Explorer 4 you cannot change the position
attribute after it’s set in the document, at least through code. To get around it,
you could retrieve the position property of the element and toggle its value,
then set the outerHTML of the element to the element with the position
property toggled, written as a string. This is a fairly ugly function, however,
and won’t be covered here.

CSS has an astonishingly diverse set of units for positioning elements, which
are summarized in Table 15.3. Although this range of units may seem overkill
for positioning items on a Web page, keep in mind that the eventual intention
of CSS is to provide a single comprehensive standard for output to any number

of devices, from computer screens to printers to Braille and aural readers.

Table 15.3 Units of measure (note that all are approximately the same length).

Unit Of Measure Example Description

px 18px Pixel (one dot on a computer
screen—size dependent upon
monitor density)

pt 18pt Point (1/72 of an inch—note that
this is the computer point, rather
than the printer’s point)

in 0.25in Inch (absolute measure)

cm 1cm Centimeter (absolute measure)

mm 10mm Millimeter (absolute measure)

pc 1.5pc
Pica (1 pica=12pt) (absolute
measure)

em 1.1em Element’s font-height

ex 1ex Element’s font x-height

Internet Explorer’s positional properties provide a rich model to write code
from—they are also incredibly confusing. The properties left, top, width, and
height take and return strings consisting of the position followed by the unit
string. For example, the left position of a <DIV> positioned absolutely at 1
inch from the margin could be given as 1in, 72pt, or 12pc, but if the units are
not included (that is, 12) then the results could be unpredictable.

To retrieve the position in pixels, use the pixel properties (such as pixelTop,
pixelLeft, and so forth). These get the positions of the objects as pure
numbers, relieving you from the onerous duty of removing the units. The
posTop, posLeft, posWidth, and posHeight properties will return an absolute
numeric value based on the unit that was last assigned to the positional
property. For example, if myDiv.style.left=“6pc”, then myDiv.style.posLeft
would be 6, while myDiv.style.pixelLeft would return 36 on a standard
640×480 monitor (6 picas is half an inch; on a 640×480 screen 1 inch is 72
pixels long on most monitors, so half of 72 is 36).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Style Sheets And VB

When it comes to style sheets in Internet Explorer, the object model as documented by
Microsoft gets ugly quick. Fortunately, most of what you need to be able to do with style
sheets can be handled with a handful of properties and functions. Like everything else
with Internet Explorer, getting IE to go the first 9/10 of a mile is easy—it’s that last 500
feet that can kill you.

As has been hinted throughout this section, nearly every element in DHTML (with the
exception of form elements, header information, and specialized tags, such as <HR>) has
an associated style property. This is an object that provides an entry point to the CSS
properties. For example, to get the position property of a <DIV> object named myDiv,
you’d access the style property like this:

debug.print myDiv.style.position

If you wanted to create a placeholder shortcut, you can still get most of the style
properties through Intellisense in VB by declaring the holding variable as type
HTMLStyle:

dim st as HTMLStyle
set st=myDiv.style
st.position="absolute"

You can also change the style of a container by assigning a new className attribute:

myDiv.className="Warning"

Here, you need to be conscious of case, because myDiv.className= “Warning” is not
the same as mydiv.className=“warning” in Internet Explorer.

Manipulating class names can simplify and clarify your code. For example, if you

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

defined the following style sheet

<STYLE>
.Default {color:red;}
.Highlight {color:orange;}
.Pressed {color:maroon;}
.Hidden {visibility:hidden;}
.Visible {visibility:visible;}
</STYLE>

and if you had a <DIV> with ID=myLink

<DIV ID=mylink CLASS="Default"
 onmouseover="this.className='Highlight'"
 onmousedown="this.className='Pressed'"
 onmouseup="this.className='Highlight'"
 onmouseout="this.className='Default'"
 >

you could essentially implement rollover buttons with almost no real code. Likewise, you
could shorten your visibility code using class names:

mydiv.className="Hidden"

Ruling Style Sheets

The next step to working with style sheets comes with the question: How can a class be
changed dynamically? A good example of this would be an annotation. With Dynamic
HTML, you can have a document that contains embedded annotations. Normally, you
don’t want to see the annotations, because they interrupt the flow of the document, but
it would be nice to be able to see these annotations when you press a button. In this
case, you are actually changing a class rather than simply an element. Unfortunately, it
is considerably harder to access the classes to manipulate them than it is to modify a
single element.

The Document object contains more than one style sheet. It actually has a collection of
style sheets that are defined either internally through <STYLE> tags (with one sheet
per set of tags) or externally with a <LINK> tag. These style sheets are zero-based.
That is, the first sheet is document.styleSheets(0), and each style sheet is of type
HTMLStyleSheet.

In turn, each style sheet is made up of a collection of rules. A rule is essentially the
same as a CSS class—a collection of CSS properties that have been explicitly defined
and not surprisingly has a VB type of HTMLStyleSheetRule. A rule has three
properties: readOnly (which determines whether the rule can be modified),
selectorText (the class name), and a style property (which is the same as an element’s
style property). If you modify a rule’s style, then all elements that have that rule as a
class will get changed as well.

The function GetRule takes the name of a rule and returns a reference to the rule’s style
if the rule’s name is found in the DHTML document’s collection of style sheets. Listing
15.7 defines the GetRule function so that it returns the style object of that particular

sheet’s rule.

Listing 15.7 The GetRule function retrieves the style object associated with a given
class.

public Function GetRule(RuleName as String) as HTMLStyle
 Dim styleSheet as HTMLStyleSheet
 Dim rule as HTMLStyleSheetRule
 Dim styleSheetIndex as Integer
 Dim ruleIndex as Integer

 set GetRule=Nothing
For styleSheetIndex=0 to Document.StyleSheets.Length-1
 set styleSheet=Document.StyleSheets(styleSheetIndex)
 For RuleIndex=0 to styleSheet.Rules.Length-1
 set rule=styleSheet.Rules(ruleIndex)
 if rule.SelectorText=RuleName then
 Set GetRule=rule.style
 Exit Function
 end if
 Next
 Next
End Function
' Usage:
' dim st as HTMLStyle
' set st=GetRule("Annotation")
'(Make every annotation visible on the page)
' st.display=""

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Maintaining A Dialog Box

The advantages of working with Internet Explorer should be obvious by now, but there are
a few drawbacks as well. One of the most obvious problems is that when you use an IE
front end, your application coexists with the browser’s interface. The user can press the
Back and Forward buttons (or worse, the Refresh button), causing havoc with maintaining
state and initiating some potentially crashing code. Also, while you can launch a new
window from a Web page, the window is modeless—you can click onto any other window
currently open, raising the prospect that needed data doesn’t get to the right place at the
right time. Fortunately, Internet Explorer 4 and higher provides a new window data
type—a custom dialog box—that satisfies both requirements.

Supplying Standard Dialog Boxes

Before going into detail about creating custom dialog boxes, it’s worth looking at the
dialogs that you can create directly from the object model. They may very well fill your
needs without you having to customize a Web page.

All standard dialog boxes are called as methods from the document’s window object
(usually through document.parentWindow). The simplest dialog box, one that just
displays a line of text and an OK button, is invoked with the alert method, as follows:

document.parentWindow.alert "Your document has been scanned."

The alert box gets used far more often than it should on Web pages, because it stops the
system until such time as you respond to it, and you can only respond in one way (to get
rid of the alert box).

If you need the user to make a decision, you can also invoke the confirm dialog box, which
has a Yes and No button (returning true and false respectively):

dim rslt as Boolean

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

rslt=document.parentWindow.confirm("Do you want some & " _
 "more information?")
if rslt then
 HelpText.innerText="Here's more information."
end if

Finally, you can get text information from the user with the prompt dialog box:

Dim Name as String
Name=document.parentWindow.prompt ("What is your name?", _
 "Nemo!")

This takes a prompt and a default value (which is set to undefined, if it’s not explicitly set)
and returns the resulting value. As a design note, if you need more than a single prompt,
you are much better off designing a form with input boxes than using multiple prompts.
Your users will thank you for it.

Launching New Browser Windows

The distinctions between standard browser windows and dialog boxes are subtle, although
they can trip you up if you mix up calling standards. From Visual Basic, you can launch a
window through the window.open command—this essentially launches another instance
of the browser window, although you can control which parts of the interface appear in the
window. The syntax for launching a window from a VB DHTML application is given as

Dim wnd as HTMLWindow2
Set wnd=Document.parentWindow.open(URL, _
 windowName,windowFeatures)

where URL is either the local or absolute URL of the document to be displayed,
windowName is a string containing the name that a frame call can refer to (it’s actually
pretty meaningless in most scripting applications, because you’ll probably want to work
with the actual window reference, contained in the wnd variable in this example), and
windowFeatures is a list of comma-delimited properties contained as a string, as
summarized in Table 15.4.

Table 15.4 Properties for specifying how a regular browser window will be displayed with
the open() method.

Attribute Example Description

CopyHistory copyHistory Sets the same history for the
new window as the one that
calls it, if the tag is included
(affecting the Previous and
Next buttons).

Directories directories Displays the directories (or
selected links) in the browser’s
toolbar.

Height Height=400 Displays the height of the total
window in pixels.

Location location Displays the address bar when
included.

MenuBar menubar Displays the menu bar below
the title bar.

Resizable resizable Displays the resize box in the
lower-right portion of the
window.

Scrollbars scrollbars Displays scrollbars in the
window frame if the document
is too large for the window.

Status status Displays the status bar.

Toolbar toolbar Displays the toolbar (the bar
that includes the Back,
Forward, Refresh, and other
buttons).

Width width=480 Sets the width of the window
in pixels.

Thus, if you want to display a window with no toolbar or address bar, but that does include
a status bar and is resizable (original to 640×480), then for the Microsoft site the code
would look like:

Dim wnd as HTMLWindow2
Set wnd=Document.parentWindow.open(_
 "http://www.microsoft.com","","width=640, _
 height=480,resizable,status")

Creating A Custom Dialog Box

Standard browser windows can be limited to simply a title bar by eliminating all the
interface attributes in the window.open statement. However, such windows have some
serious limitations:

• They are not modal. Clicking outside an invoked window will set the focus to
what is clicked on, whereas true modal behavior will intercept any effort to click
outside the window.

• Getting information from a window is almost impossible after it closes, without
some elaborate preparatory work.

• Although you can close a window through scripting code (via the window.close()
function), the browser will generate a warning message to the user that code is
attempting to close the window. This is both distracting and makes the integrity of
the code look suspect.

With Internet Explorer 4, there is a way to get around these issues. IE4 supports the
showModalDialog() method, which will display a window with no supporting interface
elements (buttons, menu items, and so forth), which address all three of these issues. The
syntax is similar to that of the open method, although not identical:

Dim Answer as Variant

Answer=window.showModalDialog(URL,argumentsVar,features)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The URL is again a pointer to the HTML page that you want to have appear in the
dialog box. The features are again contained in a string, but you need to be careful
here. For some reason, the features are separated by semicolons instead of commas,
and they share nothing in common with the open() properties. These are outlined in
Table 15.5.

Table 15.5 Features list of the showModalDialog method.

Attribute Example Description

Center Center=yes Determines whether the
dialog is centered on the
screen. If center=yes
then this overrides the
dialogLeft and
dialogTop properties.

DialogHeight DialogHeight=400 Sets the height of the
dialog in pixels.

DialogLeft DialogLeft=200 Sets the distance from
the left side of the
screen in pixels.

DialogTop DialogTop=100
Sets the distance from
the top of the screen in
pixels.

DialogWidth DialogWidth=400 Sets the width of the
dialog box in pixels.

The second parameter in the showModalDialog() method takes some explanation.
You can essentially pass any string, number, or variant array in through the
argumentsVar. Within the dialog Web page itself, this variable can in turn be
referenced through the window.dialog-Arguments property, although it is the
responsibility of the programmer to parse the arguments.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Visual Basic 6 includes two new useful functions for parsing strings: split() and
join(). Split() takes as arguments a string and a delimiting character (such as a
comma or semicolon) and then breaks the string into a variant array using the
delimiting character as the divider. For example,

Dim CommaList as String
Dim CommaArray() as Variant
CommaList="sunny,partly cloudy,cloudy,rain,snow")
Set CommaArray=Split(CommaList,",")
Debug.Print CommaArray(0) 'Returns the first element
 'of the newly created array

will cause the word “sunny” to get printed out to the debug window.

The join() function in turn takes a variant array and concatenates it with a
delimiting character to create a string:

CommaList=Join(CommaArray,";")
Debug.print CommaList

The preceding code will print the following to the debug window:

"sunny;partly cloudy;cloudy;rain;snow"

You can use these two routines in a number of circumstances, although they really
shine with parsing data. Typically, you will want to populate your dialog box with
data when you create it—usually by filling fields within the dialog itself. You can
do this by building a variant array of name-value pairs, then parsing this data inside
the dialog box, as illustrated in Listing 15.8.

Listing 15.8 Code demonstrating how you can populate a variant array to set
values within a dialog box.

'This is called from the originating Web document
Dim Args(5) as Variant
Args(0)="City:Olympia"
Args(1)="State:Washington"
Args(2)="Skies:Cloudy"
Args(3)="Hi:76"
Args(4)="Lo:56"
Args(5)="Forecast:Light rain interspersed with showers."
document.parentWindow.showModalDialog _
 "WeatherReport.htm",Args,"dialogWidth=600; _
 dialogHeight=400;center=yes"

'Within the WeatherReport.htm page DHTMLPage object
Private Function DHTMLPage_onload()
 Dim Index as Integer
 Dim ObjName as String
 Dim ObjValue as String

 Dim Args as Variant
 ' Create an alias variable for the dialog arguments
 Args=document.parentWindow.dialogArguments
 For Index=0 to ubound(Args)
 'Split the array at the color to get name/value
 ObjName=split(Args(Index),":")(0)
 ObjValue=split(Args(Index),":")(1)
 'Retrieve the named object and set its value
 document.all(ObjName).Value=ObjValue
 Next
End

If the dialog box needs to return a value, use the window.returnValue property
within the dialog window. Note that this too can be a variant type, allowing you to
pass arrays of data rather than just a single value back from the dialog box. When
the dialog box is closed (using the window.close) method, the
window.returnValue is passed as a return value for the showModalDialog
function. Incidentally, one advantage to using dialogs is that you can close them
without the system raising a warning message. Even if you don’t make use of the
argument passing, showModalDialog is worth remembering for that fact alone.

Accessing ActiveX And Applets

For a while, the public relations machine at Microsoft pushed the notion of
ActiveX components in Web pages, but a number of factors have conspired to
change this. Internet developers have been reluctant to adopt ActiveX controls,
because they don’t work uniformly on Netscape browsers (which still make up the
lion’s share of the market). Components developed in Visual Basic required a
download of the control, plus such heavyweight packages as MSVBVM60.DLL.
You could develop lightweight components in C++ through the use of Active
Template Libraries (ATL), although the smaller size came at a cost of forcing the
developer to create much of the framework for the code herself. Finally, in order to
distribute these components, you needed to code-sign the control, with a cost of
$400 to obtain the license and a business fitness rating that many smaller
developers didn’t necessarily have access to.

With the current Internet Explorer 4 browser (and even more so with IE 5), many
of the initial reasons for using custom ActiveX controls have largely disappeared.
Dynamic HTML can reproduce much of the interactivity that ActiveX controls
originally targeted, while Internet Explorer ships with a number of specialized
components, including:

• NetShow (video and sound)

• Structured graphic control (2D vector graphics)

• Path (animation positioning control)

• Sequencing (event sequencing)

• Direct Animation (3D graphics)

• Chat

• NetMeeting (collaborative services)

All of these are beyond the scope of this book, but you should check the

bibliography at the end of this chapter for some highly recommended references.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Although multimedia services are readily available, you might need other capabilities that
don’t ship with Internet Explorer. For example, you might want a calendar or graphic
control. In general, although you can add controls to your page via the DHTML Editor in
Visual Basic, I’d recommend using the ActiveX wizard or your favorite HTML editor to
insert such controls.

Building A Scheduling Calendar

A scheduling calendar is a simple yet fairly powerful demonstration program that shows
what type of things can be done with ActiveX controls. In it, the Microsoft Access
Calendar component is coupled with a <TEXTAREA> box. When you click on a date, the
control queries a database to determine whether an entry exists for the date and retrieves it
if it does. You can also type a new entry into the box, and when you select a different date,
the current entry is added to the database. This is admittedly a very crude program, but it
provides the basics for ActiveX integration.

1. In an external HTML editor, create an HTML file called calendar.htm, as shown
in Listing 15.8.

Listing 15.8 HTML template code for Calendar.htm.

<HTML>
<HEAD>
<TITLE>Calendar Test</TITLE>
</HEAD>
<BODY BGCOLOR="#ffffff">
<H1>Calendar</H1>

<TEXTAREA ID=Comment COLS="42">
Press on a date to see or
set its message.</TEXTAREA>
<OBJECT CLASSID=CLSID:8E27C92B-1264-101C-8A2F-040224009C02
 HEIGHT=187 ID=Calendar1 STYLE="HEIGHT: 187px; LEFT: 20px;
 POSITION: absolute; TOP: 144px; WIDTH: 344px" WIDTH=344>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<PARAM NAME="Year" VALUE="1998">
<PARAM NAME="Month" VALUE="9">
<PARAM NAME="Day" VALUE="8">
<PARAM NAME="ShowDateSelectors" VALUE="-1">
<PARAM NAME="ShowDays" VALUE="-1">
<PARAM NAME="ShowHorizontalGrid" VALUE="-1">
<PARAM NAME="ShowTitle" VALUE="-1">
<PARAM NAME="ShowVerticalGrid" VALUE="-1">
</OBJECT>
</BODY>
</HTML>

The calendar object is defined in the <OBJECT></OBJECT> tag pair. Its
CLASSID attribute is the universal identifier, or GUID, that Windows uses to
identify all objects in the Registry. After the <OBJECT> tag, the definition includes
a series of parameter tags (<PARAM>) which contain name-value pairs for
initializing the control.

2. You will need to create a database to hold the entries. Using Access or Visual
Basic’s Database editor, create a one-table database that includes a text field called
DateStamp and a memo field called Comment. Call the table Comments, then, use
the ODBC Control Panel to create a system DSN called Calendar, with read and
write privileges.

3. Create a new DHTML application project (the names are unimportant here,
although Calendar is as good as any). Assign the Calendar.htm file to the class. This
should give you two objects: Calendar1 (the calendar ActiveX component) and
Comments (a TextArea control). You should also create a reference to the ADO 2
classes (or use a database environment control).

4. In the (General_Declarations) section of the DHTMLPage, declare two
variables: LastDateStamp and LastComment:

 Private LastDateStamp As String
 Private LastComment As String

These are used for updating the database.

5. In the click event for the calendar (invoked when you select any new element),
place the code shown in Listing 15.9. This updates the database with the last element
or adds a new entry into the database if the date wasn’t previously selected.

Listing 15.9 Code for the calendar’s click event; this adds or updates the database with the
old entry before displaying the new.

Private Sub Calendar1_click()
 Dim Conn As Connection
 Dim RS As Recordset
 Dim DateStamp As String
 Dim commandStr As String

 'Open a connection to the Calendar database
 Set Conn = New Connection

 Conn.Open "Calendar"
 Set RS = New Recordset
 'If the last dateStamp was previously defined then
 If LastDateStamp <> "" Then
 'Open the record containing the current dataStamp _
 RS.Open "SELECT * FROM Comments WHERE _
 DateStamp='" + LastDateStamp + "';", Conn, _
 adOpenKeyset
 'If the last comment had contents then update it.
 If LastComment <> "" Then
 'If there are no records that match the old datestamp
 If RS.RecordCount = 0 Then
 'Close the recordset
 RS.Close
 'Replace single quote character with an "'"
 'character. This simplifies reading and
 'writing the SQL.
 LastComment = Replace(LastComment, "'", Chr(96))
 'Insert a new record into the database with the
 'appropriate dateStamp and comment.
 commandStr = "INSERT INTO Comments _
 (DateStamp,Comment) SELECT '" _
 + LastDateStamp + "' AS DateStampe,'" _
 + LastComment + "' AS Comment;"
 Conn.Execute commandStr
 Else 'Otherwise
 'Change the comment associated with
 'an already extant record.
 RS.MoveFirst
 RS("Comment") = LastComment
 RS.Update
 RS.Close
 End If
 End If
 End If
 'Create a DateStamp from the new data
 DateStamp = CStr(Calendar1.Month) + "/" + _
 CStr(Calendar1.Day) + "/" + CStr(Calendar1.Year)
 'Open the record for that date, if it exists.
 Set RS = Nothing
 Set RS = New Recordset
 RS.Open "SELECT * FROM Comments WHERE _
 DateStamp='" + DateStamp + "';", Conn, adOpenKeyset
 'If it doesn't, clear the comment box test.
 If RS.RecordCount = 0 Then
 Comment.Value = ""
 Else
 'Otherwise, replace the text with the entry's
 'contents, making sure that you convert the
 'acute symbo ("`") with its regular equivalent ("'").
 RS.MoveFirst

 Comment.Value = Replace(RS("Comment"), Chr(96), "'")
 End If
 RS.Close
 Conn.Close
 ' Set the old date stamp to the current one
 LastDateStamp = DateStamp
 ' Clear the last comment
 LastComment = ""
End Sub

6. Finally, you should catch the keyup event to ensure that every time the Comment
box changes, the Comment.Value is also up-to-date:

 Private Sub Comment_onkeyup()
 LastComment = Comment.Value
 End Sub

7. Run the program, and try adding comments into the field to see what happens.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

The salient point about adding an ActiveX control like the calendar control is
that it is similar to adding a control to the form. Visual Basic uses a
multithreaded apartment approach, as does Internet Explorer. However, many
older ActiveX controls were designed to work within a single-threaded
environment. You can convert the component you just created to single thread
by going into the Project Properties dialog box (Project|Project Properties),
and set the Threading option to Single. This won’t guarantee that the
component will run, it just increases the likelihood—there have been some
significant changes in ActiveX technology since it was first released in 1996.

Java-based applets offer an interesting challenge to the Visual Basic/DHTML
programmer. If an applet has been built around a COM interface (that is, if it
was created in Microsoft’s Visual J++ program to expose a COM table), then
it should work fine, in the same way any other ActiveX component works. If
the applet wasn’t built around a COM interface, then the control can probably
still be manipulated from JavaScript, but you won’t be able to directly control
it from Visual Basic.

The Future Of Internet Programming…

is really, really bright. If the decade of the 1980s saw the rise of GUI
programming and the 1990s the rise of the Internet, then the first decade of the
millenium looks to be about the rise of contextual distribution.

One way of thinking about this is to look at the increasing application of
distributed computing—the Internet, intranets, extranets—in disciplines that
traditionally haven’t been computer oriented, such as textiles, groceries,
manufacturing, construction, and so forth. In essence, most of these deal with
the process of distributing assets—getting raw materials to factories, getting
finished goods to points of purchase, advertising the availability of goods for
access by consumers, and the disposal of waste products in this whole train.
With sophisticated access to databases, it becomes possible to track these

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

goods at all stages of production, which means diminishing the waste and
increasing the efficiencies of all of these. Online shopping is beginning to
make serious inroads against malls and other traditional retail outlets. If you
look at a success story like Amazon.com, you can see that they have been
effective not by replacing the media that they deal with by electronic
equivalents, but rather using the electronic media and the tracking systems
developed through the Internet to minimize inventories and reduce the number
of extraneous distribution points.

Contextual distribution also means that data is increasingly carrying its own
means of presentation. XML is significant as a data technology not for its
format (which is fairly simple, all things considered) but because it can carry
implicit structure and meaning within itself. Technologies such as Web classes
mean that the media itself can be transformed readily through the application
of database programming principles, adapting to the capabilities of the viewing
tools. While DHTML applications may have somewhat less impact initially
because of the relatively limited distribution of suitable browsers, even that
will change over time.

A browser cannot (and should not) replace all commercial applications, but it
should become a common medium upon which developers can build programs
that extend beyond one machine. Unlike the dumb terminal paradigm that
characterized the 1960s and 1970s (and which certain companies would love
to see return with NCs in the next decade), the smart client essentially means
that programs become collaborative in nature. An example of this can be seen
in games, the vanguard of new technologies. With surprisingly little fanfare,
most games have developed multiplayer support, because the human nature of
game playing is almost always more interesting than algorithmic alternatives.

Client/server technology is following this trend as well. On one end, the data
engines are moving away from proprietary technology to device compatibility
(look no further than the support VB6 adds for Oracle database access). On the
other end, clients are moving from proprietary solutions to generalized ones,
usable by a much wider range of people because these users do not need as
much training or specialized support as they would for customized clients.

Internet Explorer 5

Much of Chapter 12 was devoted to the XML capabilities of Internet Explorer
5, even though this product is still some months from hitting the market as I
write this. Although XML is integral to IE5, that technology is not the only
reason IE5 is the perfect match for Visual Basic programming. The DHTML
application classes work as well using Internet Explorer 5 as they do with IE4,
and actually, with the changes being considered for the newer version, they
might work even better.

A core change in IE5 is the introduction of behaviors. A behavior is a code
document, essentially a COM object that can be assigned to an element in the
HTML code as readily as a style or CSS class can. For example, you could
create code validation routines that would be invoked automatically by a
certain class of elements (a <CODE-VALIDATOR> class, say). If this
sounds like a functional version of XML, you get an idea about where

Explorer technology is heading.

This notion works closely with the concept of namespaces. With namespaces,
you can create libraries of objects that all work together in an integrated
fashion, analogous to the Java notion of packages, but working with HTML.
Namespaces also provide another mechanism for data typing and conversion.

Finally, Internet Explorer 5 is scheduled to incorporate most, if not all, of the
CSS2 specification, approved this summer. This gives added support to
alternate device output of Web pages (most significantly to printers). One of
Visual Basic’s failings is that it is difficult to produce printed output from the
language, as at least one of the authors can attest. Integrating Visual Basic 6
and Internet Explorer 5 would provide the best of both worlds, as data could be
formatted for output to an IE engine from a Visual Basic class, without the
hassle of worrying about precise placement of printed elements.

Summary

In this chapter, you learned about creating more sophisticated Dynamic HTML
applications, touching on such topics as images, scripting, dialog boxes, style
sheets, and ActiveX components. There’s a lot to cover, and this chapter only
begins to scratch the surface of Internet client/server programming. Use the
exercises in this book as a jumping point to build your own applications. The
game is changing, and we’re all in for a really wild ride.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Bibliography

While it’s easy to develop a beer belly as a programmer—the sedentary nature
of the profession has turned more than one reasonably fit body into
jelly—programmers typically have strong arms. This apparent paradox can be
explained by the fact that in order to stay proficient in the field, you usually
have to walk around with three to five books, each weighing in at four or five
pounds apiece, just to keep up. In the last several chapters, I’ve frequently had
at least 3 books by my side for reference, and one day (while in transition from
one chapter to the next), I had 10 books, all open, spread out on my desk.

For the Internet developer, there are a number of superb references out there,
and surprisingly there are even some that are more or less current. I would be
remiss, of course, not to mention the Coriolis books in general, which provide
excellent tutorials and training guides for much of the Microsoft line. I also
wish to point to the Wrox line of books, which are timely, concise, and
informative (and of which I mention several here).The following
recommendations are organized by topic.

XML, XSL, And Style Sheets

Boumphrey, Frank: Style Sheets for HTML and XML. Wrox Press 1998. ISBN:
1-861001-65-7. A highly detailed look at the CSS1 and CSS2 specifications,
along with the most cogent description of XML style sheet technologies I’ve
seen yet.

Holzner, Steve: XML Complete. McGraw Hill 1998. ISBN: 0-07-913702-4. A
detailed analysis of XML with a focus of structure and DTDs.

Light, Richard: Presenting XML. SamsNet 1997. ISBN: 1-57521-334-6 A
good general introduction to XML and its relationship to SGML and HTML.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Server-Side Technology

Francis, Brian, et al.: Professional Active Server Pages 2. Wrox Press 1998.
ISBN: 1-861001-26-6. A solid sequel to the first book (see the following
entry), this one doesn’t so much review the material in the first but expands on
it.

Homer, Alex, et al.: Professional Active Server Pages. Wrox Press 1997.
ISBN: 1-861000-72-3. Considered by many as the definitive reference on
Active Server Pages, this provides a strong overview of the technology.

Dynamic HTML

Barta, Mike, et al.: Professional IE4 Programming. Wrox Press 1997. ISBN:
1-861000-70-7. One of the most complete references on programming Internet
Explorer 4, including many of the component technologies, such as Direct
Animation, Chat, NetMeeting, and Sprites.

Goodman, Danny: Dynamic HTML, The Definitive Reference. O’Reilly 1998.
ISBN: 1-565924-94-0. Written by one of the greats in the computer field, this
is a solid reference book summarizing the thousands of permutations of
Microsoft and Netscape HTML implementations, covering HTML, CSS, the
Document Object Model, and JavaScript.

Homer, Alex and Chris Ullman: Instant IE4 Dynamic HTML. Wrox Press
1997. 1-861000-68-5. My most dog-eared book. A handy reference to most
facets of Dynamic HTML.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Part IV
Appendixes

Appendix A
Creating The Sample Database

Most of the examples in this book are from the sample database created for the
book. The DDL and DML statements used to create the examples are included
on the CD-ROM. Please note that different databases have slightly different
syntaxes. The CD-ROM contains scripts for Oracle, Sybase SQL Anywhere,
Microsoft SQL Server, and Microsoft Access. You might need to alter the
statements somewhat to accommodate your own database’s SQL dialect. Also,
please note that dates are notoriously a pain in the neck to enter into the
database. If you get an error while inserting a date value, you may need to either
change the values in the SQL inserts or alter the way that your database reads
dates. For instance, the default format for dates in Oracle is set when the
database loads. In my own installation of Oracle, the default format is
‘dd-mon-yyyy’ such as ‘2-Apr-1999’. You can usually change a session setting
to alter your default date format in your individual session. In Oracle, the
command is ALTER SESSION SET NLS_DATE_FORMAT =
‘mm/dd/yyyy’.

You can either add the tables and data to an existing database or create a new
database. Ask your database administrator for assistance if necessary. You
should then create a user ID of Coriolis. You can do this with the following
command:

GRANT CONNECT TO Coriolis IDENTIFIED BY Coriolis

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

In this example, the password is also Coriolis. Your database administrator
might need to perform this action for you.

The actual commands are stored on the CD-ROM under the \SampData
directory with file names such as Oracle.sql for Oracle and SQLAnywh.sql for
SQL Anywhere. I recommend copying the files that you will use to your hard
drive in case you need to edit any of them. When you are ready, log on as user
ID Coriolis and use your database’s facilities to read in and run the commands
in the file. For Oracle (using SQL*Plus), the command would be

Start C:\Oracle.SQL

assuming that the file is stored on the root directory of the C: drive.

Table And Data Creation Commands

Most of the data created was randomly generated using an Excel spreadsheet,
which is also included on the CD-ROM. If you examine the data, you will notice
that it does not match what is on the database because each time the spreadsheet
updates, all the random values change. There are 300 orders, 600 line items, 100
customers, 35 employees (19 female and 16 male), and 4 departments. The Item
table lists 10 items in inventory but is a highly simplified design.

All the tables have appropriate integrity constraints defined.

I also included three small tables: State, City, and Airport. These small tables
have no integrity constraints defined. Although the tables are meant to relate to
one another, I purposefully gave them inconsistent data so you can experiment
with defining your own integrity constraints and practice with outer joins. You
will find duplicate rows as well as rows with no corresponding rows on other
“related” tables (such as cities without states).

The following sample commands are for Sybase SQL Anywhere but are very
similar to other databases. The most notable differences are in the DDL used to
create tables: Oracle calls the NUMERIC data type NUMBER and the
VARCHAR data type VARCHAR2. When you run these statements for the
first time, you will get errors on the DROP TABLE commands since the tables
do not yet exist. There is no harm.

DROP TABLE LOCATION ;

CREATE TABLE LOCATION
(LOC_ID CHAR (CHAR (3) NOT NULL,
 LOC_NAME VAR CHAR (CHAR (30) NOT NULL);
ALTER TABLE LOCATION
ADD CONSTRAINT PK_LOC_ID PRIMARY KEY (LOC_ID) ;

DROP TABLE DEPARTMENT ;

CREATE TABLE DEPARTMENT
(DEPT_NO SMALLINT NOT NULL,

 DEPT_LOC_ID CHAR (3) NOT NULL,
 DEPT_NAME VARCHAR (30) NOT NULL);

ALTER TABLE DEPARTMENT
ADD CONSTRAINT PK_DEPT_ID PRIMARY KEY (DEPT_NO) ;

ALTER TABLE DEPARTMENT
ADD CONSTRAINT FK_DEPT_LOC FOREIGN KEY (DEPT_LOC_ID)
REFERENCES LOCATION (LOC_ID) ;

DROP TABLE EMPLOYEE ;

CREATE TABLE EMPLOYEE
(EMP_NO SMALLINT NOT NULL,
 EMP_LNAME VARCHAR (21) NOT NULL,
 EMP_FNAME VARCHAR (15),
 EMP_SSN CHAR (9),
 EMP_DOB DATE,
 EMP_HIRE_DATE DATE NOT NULL,
 EMP_TERM_DATE DATE,
 EMP_SALARY NUMERIC (9,2),
 EMP_DEPT_NO SMALLINT,
 EMP_MGR_ID SMALLINT,
 EMP_GENDER CHAR (1),
 EMP_HEALTH_INS CHAR (1),
 EMP_DENTAL_INS CHAR (1),
 EMP_COMMENTS VARCHAR (255));

ALTER TABLE EMPLOYEE
ADD CONSTRAINT PK_EMP_ID PRIMARY KEY (EMP_NO)

ALTER TABLE EMPLOYEE
ADD CONSTRAINT FK_EMP_DEPT FOREIGN KEY (EMP_DEPT_NO)
REFERENCES DEPARTMENT (DEPT_NO) ;

ALTER TABLE EMPLOYEE
ADD CHECK (EMP_HEALTH_INS IN ('Y','N')) ;

ALTER TABLE EMPLOYEE
ADD CHECK (EMP_DENTAL_INS IN ('Y','N')) ;
ALTER TABLE EMPLOYEE
ADD CHECK (EMP_GENDER IN ('F', 'M')) ;

DROP TABLE CUSTOMER ;

CREATE TABLE CUSTOMER
(CUST_NO SMALLINT NOT NULL,
 CUST_LNAME CHAR (21) NOT NULL,
 CUST_FNAME CHAR (15),
 CUST_ADDR1 CHAR (38),

 CUST_ADDR2 CHAR (38),
 CUST_ADDR3 CHAR (38),
 CUST_CITY CHAR (21),
 CUST_ST CHAR (2),
 CUST_COUNTRY CHAR (21),
 CUST_PHONE CHAR (10),
 CUST_FAX CHAR (10),
 CUST_EMAIL CHAR (24));

ALTER TABLE CUSTOMER
ADD CONSTRAINT PK_CUST_NO PRIMARY KEY (CUST_NO) ;

DROP TABLE ITEM;

CREATE TABLE ITEM
(ITEM_NO SMALLINT NOT NULL,
 ITEM_COST NUMERIC (11,2) NOT NULL,
 ITEM_PRICE NUMERIC (11,2) NOT NULL,
 ITEM_DESC VARCHAR (30) NOT NULL) ;

ALTER TABLE ITEM
ADD CONSTRAINT PK_ITEM_NO PRIMARY KEY (ITEM_NO) ;

DROP TABLE ORDERS ;

CREATE TABLE ORDERS
(ORD_NO SMALLINT NOT NULL,
 ORD_DATE DATE NOT NULL,
 ORD_CUST_NO SMALLINT NOT NULL,
 ORD_CURRENCY CHAR (2) NOT NULL,
 ORD_EXCH_RATE NUMERIC (12,6),
 ORD_TAX_LOCAL NUMERIC (11,2),
 ORD_TAX_ST NUMERIC (11,2),
 ORD_TAX_FED NUMERIC (11,2),
 ORD_FREIGHT NUMERIC (11,2),
 ORD_DISCOUNT NUMERIC (11,2),
 ORD_TOTAL NUMERIC (11,2));
ALTER TABLE ORDERS
ADD CONSTRAINT PK_ORD_NO PRIMARY KEY (ORD_NO) ;

DROP TABLE LINE_ITEM;

CREATE TABLE LINE_ITEM
(LINE_ORD_NO SMALLINT NOT NULL,
 LINE_NO SMALLINT NOT NULL,
 LINE_ITEM_NO SMALLINT NOT NULL,
 LINE_QTY SMALLINT NOT NULL,
 LINE_PRICE NUMERIC (11,2) NOT NULL,
 LINE_TOTAL NUMERIC (11,2) NOT NULL);

ALTER TABLE LINE_ITEM
ADD CONSTRAINT PK_ORD_LINE_NO
PRIMARY KEY (LINE_ORD_NO, LINE_NO) ;

ALTER TABLE LINE_ITEM
ADD CONSTRAINT FK_LINE_ORD FOREIGN KEY (LINE_ORD_NO)
REFERENCES ORDERS (ORD_NO) ;

ALTER TABLE LINE_ITEM
ADD CONSTRAINT FK_LINE_ITEM FOREIGN KEY (LINE_ITEM_NO)
REFERENCES ITEM (ITEM_NO) ;

DROP TABLE STATE ;

CREATE TABLE STATE
(STATE_ID CHAR (2) NOT NULL,
 STATE_NAME VARCHAR (21) NOT NULL) ;

DROP TABLE CITY;

CREATE TABLE CITY
(CITY_ID CHAR (3) NOT NULL,
 CITY_NAME VARCHAR (21));

DROP TABLE AIRPORT ;

CREATE TABLE AIRPORT
(AP_CITY_ID CHAR (3) NOT NULL,
 AP_NAME VARCHAR (21) NOT NULL);

Because of space constraints, the INSERT statements are not printed here.
However, they are included on the CD-ROM.

The following constraint must be added after all of the rows are added to the
EMPLOYEE table.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT FK_EMP_MGR FOREIGN KEY (EMP_MGR_ID)
REFERENCES EMPLOYEE (EMP_NO) ;

After all of the rows have been inserted, the following commands will need to
be run (they are on the CD-ROM as well).

UPDATE LINE_ITEM SET LINE_PRICE =
(SELECT ITEM_PRICE
 FROM ITEM
 WHERE ITEM_NO = LINE_ITEM_NO) ;

UPDATE LINE_ITEM
SET LINE_TOTAL = LINE_QTY * LINE_PRICE ;

UPDATE ORDERS SET ORD_TOTAL =
(SELECT SUM(LINE_TOTAL)
 FROM LINE_ITEM
 WHERE LINE_ORD_NO = ORD_NO) ;

UPDATE ORDERS
SET ORD_TOTAL = ORD_TOTAL + ORD_FREIGHT ;

UPDATE ORDERS SET ORD_FREIGHT = 0
WHERE ORD_TOTAL IS NULL ;

COMMIT WORK ;

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Appendix B
Differences Between Jet SQL And ANSI SQL

Microsoft Jet is mostly ANSI-89 SQL compliant but does vary from the ANSI standard
in some key areas. The following sections outline most of the significant differences
between Jet SQL and ANSI SQL. For the most part, Jet SQL is less restrictive than ANSI
SQL. For example, when using the BETWEEN clause, ANSI SQL requires that the first
operand be less than or equal to the second operand. Jet SQL makes no such demand.

Data Types

Table B.1 lists common ANSI SQL data types in the first column. The second column
shows the Jet equivalent for each. The third column shows some of the variations you will
see in other databases. For instance, although Sybase has a column data type NUMERIC,
Oracle’s equivalent is NUMBER. N/A indicates there is no equivalent. For example, Jet
has a data type CURRENCY with no ANSI equivalent. If you need to guarantee
portability between databases, you should avoid using data types where there are no ANSI
or Jet equivalents.

Table B.1 ANSI SQL data types and their Jet equivalencies.

ANSI SQL Jet SQL Variations

BIT N/A1 VARBINARY

N/A BIT1

N/A BYTE

N/A COUNTER2

DATE3 DATETIME TIMESTAMP

N/A GUID

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

CHAR TEXT

DECIMAL N/A

DOUBLE PRECISION DOUBLE FLOAT, FLOAT8,
NUMBER, NUMERIC

INTEGER LONG INT

N/A LONGBINARY BLOB

N/A LONGTEXT LONG

REAL SINGLE FLOAT4

SMALLINT SHORT INTEGER4

1The Jet BIT data type is not the same as the ANSI BIT data type. Whereas the ANSI BIT
is used to store binary data, Jet uses it to store No/Yes values (0 or 1).
2This COUNTER is used in much the same way as some databases use “Auto
Incrementing” as an attribute of a column.
3Sybase uses separate DATE and TIME data types.

The LIKE Clause

In ANSI SQL, you perform pattern or wildcard searching with the LIKE clause and the
percent sign (%) and underscore (_) characters. The percent sign represents any number of
characters, and the underscore represents exactly one character. The Jet equivalents are the
asterisk (*) for any number of characters and the question mark (?) for single characters.
For example, the following SQL SELECT statements search for any last name where the
first letter is “M,” the third letter is “c,” and the letters “al” occur anywhere after that (such
as “MacDonald”).

ANSI:

SELECT EMP_LNAME
FROM EMPLOYEE
WHERE EMP_LNAME LIKE 'M_c%al'

Jet:

SELECT EMP_LNAME
FROM EMPLOYEE
WHERE EMP_LNAME LIKE 'M?c*al'

The BETWEEN Clause

The ANSI BETWEEN clause requires that the first comparison operand be less than or
equal to the second comparison operand. Jet does not have this requirement. The following
Jet SELECT is valid:

SELECT *
FROM EMPLOYEE
WHERE EMP_SALARY BETWEEN 50000 AND 30000

This query returns no rows using ANSI SQL.

COMMIT, ROLLBACK, And LOCK

ANSI SQL provides certain commands with no Jet equivalents. COMMIT is used to make
permanent changes to the database, whereas ROLLBACK undoes all changes back to the
beginning of the current transaction. In other words, Jet SQL has no transaction support.
Likewise, ANSI SQL provides the LOCK and LOCK TABLE keywords to lock a table,
preventing other users from updating it. Jet SQL has no equivalent.

If you peruse the Visual Basic documentation, you will undoubtedly notice that Microsoft
directly contradicts my statements because it claims that Jet supports transactions through
the DAO BeginTrans, CommitTrans, and Rollback methods. The key phrase here is
“DAO methods.” In other words, Visual Basic actually provides the transaction support via
Jet. Is this a flaw? Nothing is a flaw if it works. However, supporting transactions in this
way does put an additional burden on the client.

In Chapter 5, I discussed some of the implications of this support, such as the Listen
method. Listen alerts the developer that a record currently being edited has been altered by
another user. The basic sequence of events is something like the following:

1. VB client number one displays a record for edit.

2. VB client number two updates the record.

3. VB client number one looks at the database to determine if the record has been
updated.

4. VB client number one determines the record has been changed and dumps the
problem in the developer’s lap.

This process is not really what client/server is all about. The client—and not the
database—manages the transactions. Thus, I stand by my assertion that Jet has no true
transaction support.

The PARAMETERS Keyword

Jet SQL supports the PARAMETERS keyword not supported by ANSI SQL.
PARAMETERS allows you to create a query where search criteria are generated
dynamically. You specify a variable name followed by a data type. Then, your WHERE
clause references your variable, as shown in the following SQL SELECT statement:

PARAMETERS [LOW_SAL] CURRENCY, [HIGH_SAL] CURRENCY;
SELECT *
FROM EMPLOYEE
WHERE [EMP_SALARY] BETWEEN [LOW_SAL] AND [HIGH_SAL] ;

Essentially, the PARAMETERS statement creates variables for which your program must
supply values. The following VB code shows this in action:

' The Parameters clause.
Dim sParm As String
sParm = "Parameters [Low_Sal] Currency, [High_Sal] Currency;"

' The SQL statement with Parameters
Dim sSelect As String

sSelect = sParm & "Select * From Employee " _
 & "Where [Emp_Salary] Between [Low_Sal] And "High_Sal];"

' The QueryDef object
' dbs is a previously created Database object
Dim qdf As QueryDef
Set qdf = dbs.CreateQueryDef ("Salary Search", sSelect)

' Supply the parameter values
qdf("Low_Sal") = 30000
qdf("High_Sal") = 50000

' Create a Recordset
Dim rstSal As RecordSet
Set rstSal = qdf.OpenRecordset(dbOpenSnapshot)

' Destroy the QueryDef object
dbs.QueryDefs.Delete "Salary Search"

TRANSFORM And PIVOT

Jet supports the TRANSFORM and PIVOT statements, which generate a cross-tab report
that is otherwise impossible to produce in ANSI SQL. The following SQL statement is
from the Northwind sample database provided with Visual Basic. It generates the report
shown in Figure B.1.

TRANSFORM SUM(CCUR([ORDER DETAILS].[UNITPRICE] *
 [QUANTITY]*(1-[DISCOUNT])/100)*100) AS PRODUCTAMOUNT
SELECT PRODUCTS.PRODUCTNAME, ORDERS.CUSTOMERID,
 YEAR([ORDERDATE]) AS ORDERYEAR
FROM PRODUCTS
INNER JOIN (ORDERS INNER JOIN [ORDER DETAILS]
 ON ORDERS.ORDERID = [ORDER DETAILS].ORDERID)
 ON PRODUCTS.PRODUCTID = [ORDER DETAILS].PRODUCTID
WHERE (((ORDERS.ORDERDATE) BETWEEN #1/1/95# AND #12/31/95#))
GROUP BY PRODUCTS.PRODUCTNAME, ORDERS.CUSTOMERID,
 YEAR([ORDERDATE])
PIVOT "Qtr " & DATEPART("q",[ORDERDATE],1,0)
 IN ("Qtr 1","Qtr 2","Qtr 3","Qtr 4");

Figure B.1 A cross-tab report generated using Jet SQL.

Aggregate Functions

Jet SQL does support the standard ANSI SQL aggregate functions such as SUM and MIN.
It also adds other aggregate functions such as VAR, VARP, STDEV, and STDEVP.

javascript:displayWindow('images/17-01.jpg',723,461)
javascript:displayWindow('images/17-01.jpg',723,461)

VAR returns the variance (the square of a standard deviation) for a set of data. VARP
returns the variance of a given population from the database. STDEVP and STDEV
calculate the actual standard deviations. STDEVP calculates the standard deviation of a
population whereas STDEV evaluates the standard deviation of a population sample.

Jet does not permit the use of the DISTINCT operand within an aggregate function, such
as SUM(DISTINCT (Emp_Salary)).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Previous Table of Contents Next

Appendix C
ODBC Functions

Open Database Connectivity (ODBC) is a standard by which drivers can be
written to access different back-end databases. Most RDBMS vendors write
their own drivers to access their own product via ODBC. Additionally, some
vendors, such as Microsoft and Intersolv, market drivers that offer connectivity
to a wide variety of back ends. Not all drivers are created equally. For
instance, it is my experience that the Microsoft ODBC driver for Oracle is
more functional than the one provided by Oracle, but that Oracle’s driver is
faster.

ODBC Architecture

When you use ODBC to access the back-end database, ODBC itself acts as
both a traffic cop and interpreter between the database and the application.
Most significant in this architecture is that ODBC is implemented as an API to
which application programs speak. There may be (and usually are) intervening
layers between your program and ODBC, shielding developers from the
complexities of the API. For instance, VB developers can use Data Access
Objects (DAO), Remote Data Objects (RDO), or ActiveX Data Objects (ADO)
to avoid having to code the individual API calls. RDO is most tightly coupled
with ODBC, whereas ADO relies on a Microsoft “access provider” to access
ODBC.

The architecture of ODBC as it relates to the VB developer is shown in Figure
C.1. When you use Data Access Objects, the DAO layer shown in the figure
comes into play. Depending on whether the developer uses ODBCDirect, Jet
may or may not get loaded. When you use ODBCDirect, Jet is bypassed and

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

RDO is loaded instead. However, when you use Remote Data Objects, only
RDO is loaded. Thus, you may have either Jet or RDO acting as a layer
between Visual Basic and the ODBC layer. With the ODBC API model,
Visual Basic talks directly to the ODBC layer that, although somewhat more
efficient than communicating through the RDO layer (and much more efficient
than going through Jet), comes at the expense of the developer having to write
all the ODBC API calls.

Figure C.1 The ODBC architecture.

One of the jobs of the ODBC API layer is loading and unloading various
database-specific drivers. Which driver to load is determined by how the
ODBC data source was defined in the ODBC Administrator applet in the
Control Panel. Each driver announces to ODBC its capabilities, and ODBC
translates (as much as possible) the API call to the driver. If the driver is
incapable of handling the specific function, ODBC returns a “Driver Not
Capable” error message to the application. ODBC is also responsible for
converting data formats as necessary.

The driver itself is loaded when a SQLConnect, SQLDriverConnect, or
SQL-BrowseConnect function is called. A driver may be single-tiered or
multiple-tiered. Most nonrelational data sources (such as a dBase file) have
single-tiered drivers. A single-tiered driver means that the driver directly
manipulates the data in the file rather than passing control to another process.
The range of ODBC functionality of these drivers is typically limited due to
the nature of the data itself. For instance, you can define a plain text file as a
data source, but you will typically be able to perform only SELECT and
INSERT operations. More robust data sources are designed to be updated. A
FoxPro data source, for instance, also supports UPDATE and DELETE
operations but does not support some of the more advanced functions
supported by RDBMS engines such as Oracle and Microsoft SQL Server.

A multiple-tiered driver does not interact directly with the data. Instead, it
passes the request directly to the server, such as Oracle.

ODBC Conformance Levels

As stated earlier, ODBC has three levels of conformance. All drivers should
support the “Core” or “Base” level functions defined by the SQL Access
Group. The SQL Access Group also defines Level 1 and Level 2 extended
functionalities. For a driver to be considered Level 1 (or Level 2) compliant, it
must support all functions within that level. Sometimes a driver may support
most but not all functions, omitting minor functions that may have no impact
on your application. Though a driver may not be technically Level 2
compliant, the function(s) omitted may be so minor as to be irrelevant. When

javascript:displayWindow('images/18-01.jpg',466,480)
javascript:displayWindow('images/18-01.jpg',466,480)

choosing an ODBC driver, you should consider what level it conforms to and,
if it is not wholly Level 1 or Level 2 compliant, whether the omissions are
critical to your application.

In addition to the ODBC API conformance level, ODBC also defines an SQL
conformance level that specifies the SQL grammar that must be supported at
each level.

The following sections summarize the functional and grammatical
conformance requirements of each level.

Core Level Conformance Requirements
• Allocate environment (including connection and statement handles)

• Free environment (including connection and statement handles)

• Execute SQL statements

• Retrieve a result set (query result) as well as information about that
result set

• Retrieve error information

• Commit and roll back transactions

• CREATE TABLE
• DROP TABLE
• SELECT
• INSERT
• UPDATE
• CHAR and VARCHAR data types

• Basic functions

Level 1 Conformance Requirements
• Retrieve catalog information from the database

• Display driver capabilities information

• Provide driver-specific connection dialogs

• Retrieve a partial result set

• ALTER TABLE
• CREATE INDEX
• DROP INDEX
• CREATE VIEW
• DROP VIEW
• GRANT
• REVOKE
• All ANSI SELECT functionalities

• Subqueries

• Aggregate functions (such as SUM, MIN, MAX, and AVG)

• Numeric data types (such as NUMERIC, SMALLINT, and so on)

Level 2 Conformance Requirements
• Scrollable cursors

• Use native SQL (that is, use PL/SQL with Oracle)

• Retrieve extended catalog information (such as stored procedures and
privileges information)

• List available data sources

• Send and receive arrays of parameters

• Outer joins

• UNION
• Positioned updates and deletes

• Scalar SQL functions (such as LENGTH and SUBSTR)

• Batch processing of SQL statements

• DATE and other data types

The CD-ROM includes all of the ODBC function declarations for Visual
Basic, as well as comments about their purpose. Also included are the needed
constants and a sample application.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Visual Basic 6 Client/Server Programming Gold Book
(Publisher: The Coriolis Group)
Author(s): Michael MacDonald and Kurt Cagle
ISBN: 1576102823
Publication Date: 10/01/98

Search this book:

Table of Contents

Index

Symbols
(pound sign), 99

%TYPE notation, 424

<!ATTLIST> directive, 488–489

<…> (preprocessor tag), 454

A
Absolute positioning, 637–638

AbsolutePosition property, 426

CacheStart object, 192

rdoResultset object, 240

RecordSet object, 190, 298

Abstraction, 383

Access (Microsoft), 36

Access_mode option, 98

Active Data control, 307–308, 312

Active Data Objects. See ADO.

Active Server pages, 557

Active Template Libraries. See ATL.

ActiveConnection object, 289

ActiveConnection property, rdoResultset object, 240

ActiveX, 269, 381, 397, 646–647

component scripting, 475

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

objects, 374

proxy objects and, 18

VBSQL control, 110–111

Ad Hoc Report Writer application, 264–265, 322

adAddNew constant, 305

adAffectAll argument, 443

adApproxPosition constant, 305

adBookMark constant, 305

adDelete constant, 305

AddNew method

rdoResultset object, 249

RecordSet object, 196, 303

adFind constant, 305

adHoldRecords constant, 305

Administration, 32–36

adMovePrevious constant, 305

adNotify constant, 305

ADO (Active Data Objects), 93, 114–124, 128–129, 267, 309

Command object, 273

Connection object, 273

converting DAO to, 321–322

converting RDO to, 322–330

Data control, 95

Data Environment, 597

data types, 271–272

Error object, 274

event-driven access model support, 274–275

events, 311

Field object, 274

Filter property, 312

methods, 311–312

nonhierarchical object structure, 311

object cross-reference, 311

objects, 311

ODBCDirect conversion to, 129

OpenSchema method, 324

Parameter object, 273, 320

parameters in, 292–293

properties, 311–312

Property object, 274

RecordSet object, 274

SQL Trace facilities and, 447

ADO MD (multidimensional), 271

adoPrimaryRS_WillChangeRecord procedure, 126

ADOR.Recordset object type, 402–403

adResync constant, 305

adRsnClose code, 386

adSchemas query type, 284

adSchemaSchemata schema, 325

adUpdate constant, 305

adUpdateBatch constant, 305

Aggregate functions, 71

in HAVING clause, 77

Aggregate SQL functions, 76–78

Aggregated commands, 353–355

Aggregation, 384

Aliases, 363

ALIGN attribute, 637

Align property, 203

All columns option, 446

All method, 474

AllowZeroLength property, 173

ALTER TABLE command, 59

Anchor link tag, 524

Animated icons, 617

Annotation, 640

Anomalies, 53

ANSI-92 compliance, 65–66

ANY keyword, joined queries and, 89–90

Apartment model threading, 398–399

API (Application Programming Interface), 66

Append method, 148

Append mode, 98

AppendChunk method

Field object, 175, 306

Parameter object, 294

rdoColumn object, 256

AppleTALK (Macintosh), 21

Application Programming Interface. See API.

Application servers, 9

Application Wizard, 125, 619

Applications

Ad Hoc Report Writer, 322

DAOBatchUpdate, 313–317

DAOHierarchy, 149

partitioning, 17

RDO Ad Hoc Report Writer, 264–265

Architecture, 19

ARPANET, 6

ASP (Active Server Pages), 504, 507

dictionaries, 526

Response object, 516–517

script, 506–507

XML calls from, 495

Assignment entities, 50

Associate event rdoResultset object, 239

AsyncCheckInterval property (rdoConnection object), 232–233

Asynchronous timing, 425

AsyncProgress event (DataReport object), 348

ATL (Active Template Libraries), 647

Atomic-level function statements, 15–16

<!ATTLIST> directive, 487

Attributes, 487

assignments, 51

inheritance, 121

Attributes property, 473

Connection object, 278

Field object, 173, 305–306

Parameter object, 293

rdoColumn object, 256

Relation object, 179–180

TableDef object, 169–170

AUTOINCREMENT default, 435

AVG function, 79, 80

aXCliEmpDemo.DLL component, 400

aXctlLineItem project, 369

B
Bands, 347

Bandwidth, 7

Base-level ODBC compliance, 109

BaseWindow object, 570, 593

Batch updating, 241–244, 444, 445

BatchCollisionCount property

rdoResultset object, 240–241

RecordSet object, 190

BatchConflictValue property (rdoColumn object), 256

BatchSize property, 317

rdoResultset object, 245

RecordSet object, 190

BeforeConnect event (rdoConnection object), 231

BeginTrans method, 140–141

Connection object, 281

rdoConnection object, 234

rdoEnvironment object, 218–221

Workspace object, 152

BeginTransComplete event, 277

Behaviors, 653

Binary data, 48

Binary Large Objects. See BLOB data type.

Binary mode, 5, 98, 100

Get function and, 102

Binary number storage, 47

Binding controls, 394–395

Binding object, 367–368

BindingCollection object, 123

Bindings collection, 367–368

BlackBird tool, 504

BldForm procedure, 405–406

<BLINK> tag, 451

BLOB data type, 48

Blocks, 572

BOF property

rdoResultset object, 245

RecordSet object, 190–191, 298

BOFAction property

Data control, 203

Remote Data control, 263

Bookmark property

rdoResultset object, 245

RecordSet object, 191, 298–299

Bound controls, 202

Boyce-Code normal form, 56

BrowsCap.ini file, 549–550

BrowserCap object, 551

Browsers, 506

XML and, 498

Buffer class, 576–584

Buffering, 516

Bugs, 331

Bus topology, 20

Business objects, 375, 384–399. See also Remote business object.

binding controls to, 394–395

as components, 379–391

events, 379

Initialize event, 385

methods, 377–378

Terminate event, 385

Business services, 10, 12

Business tier, 396

Buttons, 619–624

ButtonScripts.js, 625–628

ButtonTest script, 628–629

ButtonTest.htm, 620

C
CacheSize property

QueryDef object, 180–181

RecordSet object, 192, 299

Calendar.htm code, 648

Cancel method

Connection object, 282

rdoConnection object, 234

rdoResultset object, 249

RecordSet object, 196

CancelBatch method (RecordSet object), 304

CancelUpdate method, 316

rdoResultset object, 249

RecordSet object, 196, 304

Caption property, 203

Cascading Style Sheets. See CSS.

Case-sensitivity of character data, 72

CAST function (Sybase), 78

CD-ROM

sample data, 69

sample tables, 58

<![CDATA[> tag, 493

CDATA tag, 493–494

CellIndex, 594

Centralized data dictionary lookup table, 419–421

CGI (Computer Gateway Interface), 503

Channel Definition Format, 482

CHAR data type, 45–46

Character data

case-sensitivity of, 72

types, 45

Character equivalents, 491

Character reference, 491–492

Check constraints, 44, 61

Checksum data integrity verification (in packets), 21

Child-parent relationships, 43

ChildNodes collection, 468

ChildNodes property, 468

ChunkRequired property (rdoColumn object), 256

Cities_onchange event, 605

Class modules, 395

creating, 375

instantiating, 379

Classes

attribute inheritance, 121

as data consumer, 123

as data source, 123

Clean data, 445

Click event, 649–650

Client components, 397

Client tier, 396

Client/server programming, 7–14, 553

Clone method (RecordSet object), 196–197, 304

Close keyword, 4

Close method

Database object, 160

QueryDef object, 183

rdoConnection object, 235

rdoResultset object, 249

RecordSet object, 197

Workspace object, 155

clsEmpDemo application, 385

clsEmpDemo.cls application, 386

Clustered indexes, 60

Clustered property (Index object), 176–177

CmdMove buttons, 409

CollatingOrder property

Database object, 158

Field object, 174

Columns

definition modifications, 59

on dependent tables, 43

derived, 68–69

indexes for, 60

ColumnSize method (rdoColumn object), 256

COM (Component Object Model), 12, 374. See also Objects.

Command hierarchies, 350–351

Command object, 119, 288–289, 336–337, 352

ADO, 273

component (OLE DB), 270

Execute method, 290

properties, 289–290

CommandText property (Command object), 289

CommandTimeOut property, 323

Command object, 289

Connection object, 278

CommandType property (Command object), 289–290

COMMIT command, 90

CommitTrans method

Connection object, 281–282

rdoConnection object, 234

rdoEnvironment object, 222

CommitTransComplete event, 277

CommonDialog control, 381

CompactDatabase method, 141

Compliance, 67

Component architecture, 411

Component model, 11–13

Component Object Model. See COM.

Component-based development, 12

Components, 397

minimizing, 22

objects compared, 380

Composite indexes, 177

Compound indexes, 177

Compound keys, 41, 50

Compound primary keys, 413

Computer Gateway Interface. See CGI.

CONCAT function, 81

Concurrency, 237–238, 440–441

Conditional constraints, 414

Conditional referential integrity, 417–418

Confirm dialog box, 642

ConflictTable property (TableDef object), 170

Connect event (rdoConnection object), 231

Connect property

Database object, 158–159

QueryDef object, 181

rdoConnection object, 233

TableDef object, 170

ConnectComplete event, 277

Connection object, 135, 165, 275–285, 335, 403

ADO, 273

Database property, 165

events supported by, 276–277

methods, 281–284

properties, 278–281

StillExecuting property, 165

Transactions property, 165

Connection objects, 332

Connection Properties dialog box, 336–337

Connection property

Database object, 159

RecordSet object, 192

Connections collection, 138, 165

ConnectString property

Command object, 289

Connection object, 278

parameters, 278–279

Constraints, 5, 44, 61

adding to tables, 59

check, 61

domain integrity, 62

foreign key, 44, 61

naming, 62

primary key, 61

user integrity, 61–62

Container object, 138, 166–167

AllPermissions property, 166

Inherit property, 167

Owner property, 167

Permissions property, 167

UserName property, 167

Container property (Document object), 168

Containers collection, 138, 166–167

Containment, 383

Contextual distribution, 651–652

CONVERT function (Sybase), 78

CopyQueryDef method (RecordSet object), 197

Core-level ODBC compliance, 109

Correlated subqueries, 87–88

Correlation names, 73

COStream class, 578

method definitions, 579–581, 583

module, 578

property definitions, 581–583

COStream objects, multiple, 584

Count collection, 528

COUNT function, 79

CREATE TABLE statement, 57–59

CreateDatabase method, 141–142

Workspace object, 155

CreateField method

Index object, 178

TableDef object, 171–172

CreateGroup method, 156–157

Workspace object, 155

CreateIndex method (TableDef object), 171–172

CreateParameter method, 291

CreateProperty method

Database object, 161

Field object, 175

Index object, 178

QueryDef object, 183

CreateQuery method (rdoConnection object), 234–235

CreateQueryDef method (Database object), 161

CreateRelation method, 178

Database object, 161

CreateTableDef method (Database object), 161

CreateUser method (Workspace object), 155

CreateWorkspace method, 142

Cross-process calls, 398

Cross-process components, 397

CSR records, 429

CSS (Cascading Style Sheets), 452, 631–632

CURRENTVAL method, 436

CURRVAL method, 436

Cursors

hierarchical, 116

models, 295

types, 294

usage, 433

CursorDriver property

rdoConnection object, 233

rdoEnvironment object, 217

CursorLocation property

Connection object, 279–280

RecordSet object, 299

CursorType property (RecordSet object), 299

Custom events, 543

Custom tags, 518

CustOrdDetHierarchy project, 344

CyScape, 551

D
DAO (Data Access Objects), 94, 104–108, 113, 309

converting to ADO, 313, 321–322

hierarchy model, 135

Microsoft Jet and, 105

object cross-reference, 311

object hierarchy, 106, 139

object models, 133

RDO object cross-reference, 210

transaction demonstration program, 153–155

DAO ODBCDirect workspaces, 209

DAOBatchUpdate program, 315–317

DAOHierarchy application, 149

Data

isolating for customer maintenance, 17

loading into memory, 419

in packets, 21

Data Access Objects. See DAO.

Data Blades, 28

Data collisions, 7

Data consumer, 122–123, 367

Data control, 201–206

Align property, 203

BOFAction property, 203

bound controls, 202

Caption property, 203

Database object, 202

EOFAction property, 203

Error event, 204–205

invisible, 202–203

RecordSet object, 202

RecordSetType property, 203

Refresh method, 204

Reposition event, 205

UpdateControls method, 204

UpdateRecord method, 204

Validate event, 205

Data Control Language. See DCL.

Data Definition Language. See DDL.

Data dictionaries. See also Dictionaries.

maintaining, 433

Data dictionary tables, 419

Data Form Wizard, 127–128

Data handling, 388

Data hierarchies, 116

Data integrity, 440

Data Link, 332

Data Link Properties dialog box, 335

Data Manipulation Language. See DML.

Data members, 116

Data Project, 125

Data providers, 269, 367

Data services, 11

Data source, 122

class as, 123

Data source name. See DSN.

Data Source object component (OLE DB), 270

Data sources, stored procedures and, 341–343

Data tier, 396

Data trees, 467

Data types, 45–46

Data validation, 412

Data View window, 332

Data warehouses, 31

Data-aware classes, 120

Database design, 27

Database administrator. See DBA.

Database development, 95

Database normalization, 48, 52–56

Database object, 107, 157–165, 202

Close method, 160

CollatingOrder property, 158

Connect property, 158–159

Connection property, 159

CreateProperty method, 161

CreateQueryDef method, 161

CreateRelation method, 161

CreateTableDef method, 161

DesignMasterID property, 159

Execute method, 161–162

MakeReplica method, 162

NewPassword method, 163

OpenRecordSet method, 163

PopulatePartial method, 163

QueryTimeOut property, 159

RecordsAffected property, 159

Replicable property, 159

ReplicaID property, 160

Synchronize method, 164–165

Updatable property, 160

V1XNullBehavior property, 160

Version property, 160

Database property (Connection object), 165

Database tables, 41

Database techniques, 411

Databases

administration, 32–36

anomalies, 53

case-sensitivity of character data, 72

design, 49–56

hybrid, 28

indexes, 176

many-to-many relationships, 50

number storage, 47

object storage, 48

Databases collection, 138, 157–165

DataBindings collection, 369–370

DataEnvironment collection, 338

DataEnvironment Designer, 332–334

Shape language, 359

DataEnvironment object, 119, 332–335, 343–344, 338–346, 350

reusability of, 344

DataMember property, 115, 385–372, 395

DataRepeater control, 370–372

DataReport Designer, 346–347

Section object, 347

DataReport object, 333, 346–348

hierarchical commands in, 355–356

toolbox, 347

DATE data type, 47

DateChanged event (rdoColumn object), 253

DateCreated property

Document object, 168

QueryDef object, 181

RecordSet object, 192

DateUpdatable property (Field object), 174

DAYS_AFTER function (Oracle), 83

DB2 (IBM), 31

DBEngine object, 106–107, 136–137, 139–146

BeginTrans method, 140–141

CompactDatabase method, 141

CreateDatabase method, 141–142

CreateWorkspace method, 142

DefaultPassword property, 139

DefaultType property, 140

DefaultUser property, 139–140

Errors collection, 137

Idle method, 143

IniPath property, 140

LogInTimeOut property, 140

OpenConnection method, 143–144

OpenDatabase method, 144

RegisterDatabase method, 145

RepairDatabase method, 145

SetOption method, 146

SystemDB property, 140

Workspaces collection, 107, 137, 149–155

DBEngine.Workspaces (0) object, 150

DCE (Distributed Computing Environment), 6–7

DCL (Data Control Language), 63–64

GRANT ALL PERMISSIONS command, 64

GRANT command, 63

REVOKE command, 63

DCOM (Distributed Component Object Model), 13–14, 18, 374. See
also Objects.

application partitioning, 17

DDE (Dynamic Data Exchange), 268

DDL (Data Definition Language), 56–63

ALTER TABLE command, 59

CREATE TABLE statement, 57–59

DROP TABLE command, 60

object modification with, 57

Deadlock, 439

Deadly embrace, 237, 439

Debug mode, 618

DECIMAL (38) data type, 437

Decision support systems. See DSSs.

Decoding values, 412

Decomposition, 15

Dedicated operating systems, 23

DefaultCursorDriver property, 150

rdoEngine object, 214

DefaultDatabase property (Connection object), 280

DefaultPassword property, 139

DefaultType property, 140

DefaultUser property, 139–140

DefaultValue property (Field object), 174

DeHierarchy object, 344

Delegation, 122, 383

DELETE command, 91

Delete method

rdoResultset object, 249–250

RecordSet object, 197, 303

Denormalization, 56

Dependent tables, 43

Derived columns, 68–69

Description property (Error object), 147, 288

Design, 49–56

entity-relationship modeling, 49, 56

DesignMasterID property (Database object), 159

Destination addresses (in packets), 21

DHTML (Dynamic HTML), 452, 497, 505, 557, 573–576, 596, 639,
655. See also HTML.

Application Wizard, 619

applications, 564

classes, 557

embedded annotation, 640

HTML code generated by, 563–564

property pages, 608

tables, 585

Web application creation, 557–564

DHTML Editor, 565

DHTML Web classes

implementing tables with, 576

DHTMLEvent
class properties, 567–568

object, 566–569

DHTMLEvent.x property, 567

DHTMLEvent.y property, 567

DHTMLPage class, 565

DHTMLPage object, 565–566

Dialects of SQL, 66

Dictionaries, 526 See also Data dictionaries.

item additions to, 527

key-value pairs, 546

Dictionary object, 526

DINSTINCT function, 78

Direction property

Parameter object, 187, 293

Type object, 187

Dirty data, 445

Disconnect event (rdoConnection object), 231

DisconnectComplete event, 277

DisplayData routine, 600–601

DisplayServerVariables subroutine, 547–548

DISTINCT keyword, 324

DistinctCount property (Index object), 177

Distributed Component Object Model. See DCOM.

Distributed Computing Environment. See DCE.

<DIV> element, 634

DML (Data Manipulation Language), 67–68

SELECT statement, 68

UNION ALL statement, 76

UNION statement, 76

Document object, 168–169, 561, 569–570

Container property, 168

DateCreated property, 168

KeepLocal property, 168–169

Properties collection, 168

Replicable property, 169

Document Type Definition, 454

Document Type Descriptions. See DTDs.

Document-centric computing, 268

DocumentNode property, 467, 472

Documents collection, 138, 168–169

Documents object, 139

DOM (Document Object Model), 556, 564, 585

Internet Explorer 5.0 and, 459

Domain integrity, 44

Domain integrity constraints, 62

DOMDocument
class, 460

methods, 460–461

properties, 460–461

readyState property, 465

DOMDocument object, 463, 467

documentNode property, 467

DOUBLE PRECISION data type, 46

DownloadTimer variable declaration, 465

DownloadTimer_Timer() event handler, 465

Drivers, 66

DROP TABLE command, 60

DSN (data source name), 108

DSN-less connection strings, 223

DSSs (decision support systems), 31

DTDs (Document Type Description), 483, 496, 481

internal, 483–485

linking to external file, 496

Dummy tables, creating, 69

Dynamic cursors, 294

Dynamic Data Exchange. See DDE.

Dynamic HTML. See DHTML.

Dynamic object, 135

Dynamic row-level locking, 442

Dynamic-type record set, 189

Dynaset object, 135

Dynaset-type record set, 188

DynSrc property, 622

E
Early binding, 382

ECMAScript, 566

Edit method, 317

rdoResultset object, 250

RecordSet object, 197–198

EditMode property

rdoResultset object, 245

RecordSet object, 192, 299

EIS (executive information systems), 31

Electronic sensing, 20

<!ELEMENT> node, 485–486

ElementFromPoint method, 594

Embedded annotation, 640

EMP correlated variable, 89

EmpCLSDemo object, 391

EmpCLSDemo.VBP application, 384

EmpCLSDemo_MoveComplete event, 390

EmpCLSDemo_rsUpdateComplete event, 390

EmpName property, 376

Encapsulation, 16–17, 356–359, 381

Encoding, 412

ENCTYPE attribute, 531

EndOfRecordSet event (RecordSet object), 297

Entities, 50, 490–492. See also External entities.

assignment entities, 50

attribute assignments, 51

multiple occurrences, 49

Entity-relationship modeling, 49, 52, 56

Enumerator component (OLE DB), 270

EOF function, 103–104

EOF property

rdoResultset object, 245

RecordSet object, 298

EOFAction property

Data control, 203

Remote Data control, 263–264

Error event, 262

Data control, 204–205

DataReport object, 349

Error object, 146–147, 287–288

ADO, 274

Description property, 147

HelpContext property, 147

HelpFile property, 147

Number property, 147

properties, 288

Source property, 147

Error object component (OLE DB), 271

Errors collection, 146–147, 287–288

ErrStat variable, 377–378

Escaped characters, 492–493

EstablishConnection method (rdoConnection object), 235

Ethernet, 20

Event object, 593

ExecScript function, 630

EXECUTE IMMEDIATE command, 432

Execute method, 135

Command object, 290

Connection object, 282

Database object, 161–162

QueryDef object, 183

rdoConnection object, 235

ExecuteComplete event, 277

Executive information systems. See EIS.

EXISTS keyword in subqueries, 89

ExportReport method, 348

Extended ODBC. See Level 2 ODBC compliance.

Extensions, 66

Extensible Markup Language. See XML.

External DTD files, 496

External entities, 494–495. See also Entities.

F
Fahrenheit/Celsius Converter application, 587–595

FetchComplete event (RecordSet object), 297

Field object, 305–306, 310

ADO, 274

AllowZeroLength property, 173

AppendChunk method, 175

Attributes property, 173

CollatingOrder property, 174

CreateProperty method, 175

DateUpdatable property, 174

DefaultValue property, 174

FieldSize property, 174

ForeignName property, 174

GetChunk method, 175

OrdinalPosition property, 174

OriginalValue property, 174

properties, 305–306

Required property, 174

Size property, 174–175

SourceField property, 175

Type property, 175

ValidateOnSet property, 175

ValidationRule property, 175

ValidationText property, 175

Value property, 175

VisibleValue property, 175

Field objects, 172–175

FieldChangeComplete event (RecordSet object), 297

Fields collection, 138, 172–175, 180, 189, 294, 305–306

FieldSize property (Field object), 174

Fifth normal form, 56

File handles, 101

File pointers, 102–103

File Transport Protocol. See FTP.

File_number option, 98

FileDateTime function, 104

FileName parameter, 279

FillCache method (RecordSet object), 198

FillCities routine, 599–600

FillStates routine, 598–599, 613–614

Filter property, 317

ADO, 312

RecordSet object, 192, 299

Find method (RecordSet object), 302

FindFirst method (RecordSet object), 198

FindLast method (RecordSet object), 198

FindNext method (RecordSet object), 198

FindPrevious method (RecordSet object), 198

First normal form, 53–54

denormalization to, 56

Fixed attributes, 488

Flat file access, 99–100

Flat file I/O, 97

FLOATING POINT data type, 46

Floating-point numbers, 47

Flow diagrams, 636

FNF. See First normal form.

 tag, 630–631

Foreign keys, 5, 42–43, 50

constraint definitions, 43

constraints, 44, 61, 414

referential integrity and, 44

Foreign property (Index object), 177

ForeignName property (Field object), 174

ForeignTable property (Relation object), 180

<FORM> tag, 530–531, 608

Form collection, 535–536

Format objects, 368

Forward-only cursors, 294

Forward-only object, 135

Forward-only-type record set, 189

Forward-only-type result set, 236–237

Fourth normal form, 56

FreeFile function, 98–99

frmClsSrvEmp form, 404

frmDSNList module, 113–114

frmEmpClsDemo form, 389–394

frmGeneral form, 404

frmSrvLogIn form, 404

“from address” (in packets), 21

FTP (File Transport Protocol), 502

Functions

atomic-level, 16

decomposing, 15

G
Gates, Bill, 268

Get function, 102

Binary mode and, 102

GET protocol, 525, 530

GET request, 524

GetAttr function, 104

GetAttribute function, 473–474

GetAttributeNodes function, 475–476

GetBrowserID function, 550–551

GetBrowserVersion function, 550–551

GetCell function, 586–587

GetChunk method

Field object, 175, 306

rdoColumn object, 256

GetClipString method

rdoResultset object, 250

ResultSet object, 329

GetDataDic procedure, 426–427

GetIDNode function, 476–477, 489

GetNamedNode function, 477–478

GetNamedNodeCount function, 477–479

GetNodeIndex function, 477, 479

GetRecordset function, 403

GetRecordset object, 406–407

GetRows method

rdoResultset object, 250–251

RecordSet object, 198–199

GetRule function, 641

GetSchema function, 403

GetStringFromDictionary code, 528–529

GRANT ALL PERMISSIONS command, 64

GRANT command, 63

Graphical backgrounds, 617

Graphical buttons, 619

GROUP BY clause, 83–85, 352

HAVING clause and, 85

Group object, 157

Groups collection, 156–157

H
Hash collisions, 526–527

Hashing, 526

HAVING clause

aggregate functions in, 77

GROUP BY clause and, 85

hDbc property (rdoConnection object), 233

Header tag, 451–452

Height properties, 622

Hello World application, 511–514, 558–563

HelpContext property (Error object), 147

HelpFile property (Error object), 147

hEnv property

rdoEnvironment object, 216–217

HIDDEN element, 532

Hierarchical cursors, 116

Hierarchical Flexgrid control, 350–351, 353

Hierarchical model. See Navigational file model.

hStmt property (rdoResultset object), 245

HTML (Hypertext Markup Language), 9, 451, 497. See also DHTML.

blocks, 572

controls, 607–610

editing techniques, 572–573

editors, 507

embedding in entities, 492

embedding in scripts, 509

flow diagrams, 636

form objects, 608–610

input devices, 597

name conventions, 610

pages, 555

specifications, 555

XML compared to, 457

HTMLBlockElement object, 572

HTMLImg object, 621–622

HTMLOptionElements collection, 612

HTMLSelectElement collection, 611–612

HTTP (Hypertext Transport Protocol), 502–503

Hubs, 20

Hybrid databases, 28

Hypertext Markup Language. See HTML.

Hypertext Transport Protocol. See HTTP.

I
IBM DB2, 31

ID nodes, accessing, 489

IDENTITY keyword, 435

Idle method, 143

IDOMNode object, 469

IDOMNodeList method, 468–469

IDOMNodeList object, 473

IEEE format, 47

IgnoreNulls property (Index object), 177

IIS (Internet Information Server), 271, 504–505, 551, 557

applications, 509–510

Image object

methods, 622–624

properties, 622–624

Images

animated icons, 617

graphical backgrounds, 617

inline graphical images, 617

preloading, 629–630

 tag, 456, 490, 622

Implements keyword, 382–383

Implied attributes, 487

In-process components, 397

In-process servers, 380–381

Index object, 176–178

Clustered property, 176–177

CreateField method, 178

CreateProperty method, 178

DistinctCount property, 177

Foreign property, 177

IgnoreNulls property, 177

Primary property, 177

Unique property, 177

Index property (RecordSet object), 192

Indexed Sequential Access Method. See ISAM.

Indexes, 60

clustered, 60

creating, 60

maintaining, 60

query optimizer and, 61

unique indexes, 41

Indexes collection, 176–178

InfoMessage event, 277

Informix, 38

Inherit property (Container object), 167

Inheritance, 121

delegation, 122

reuse, 121–122

Inherited property (Property object), 148

IniPath property, 140

Initialize event (DataEnvironment object), 344

Inline graphical images, 617

Inner joins, 179

Inner queries. See Subqueries.

InnerHTML property, 587

InnerText property, 587

<INPUT> tag, 525, 531

Input # function, 100–101

Input function, 101

Input mode, 100

InputBox function, 320

INSERT command, 90–91

InsertAdjacentHTML method, 586

InsertCell method, 596

InsertRow method, 596

Instancing property, 399, 402

Instantiation, 120

INTEGER data type, 46

Internal DTD, 483–485

Internal hash tables, 526

Internet, 14

architecture, 501

ARPANET and, 6

three-tiered architecture examples on, 9

Internet Client SDK, 489

Internet Explorer, 497, 548–549, 555, 564

behaviors, 653

DOM and, 459

positional properties, 638–639

tables in, 595–596

XML capabilities of, 459, 652–653

XML parser, 458, 465–467, 472–473

Internet Information Server. See IIS.

Intranets, 556

Invisible Data control, 202–203

IP. See TCP/IP.

IPX/SPX protocol, 21

IRequestDictionary interface, 529

IS NOT NULL function, 72

IS NULL function, 72, 78

ISAM (Indexed Sequential Access Method), 5, 66, 133–134

IsolateODBCTrans property (Workspace object), 151

IsolationLevel property (Connection object), 280

Item lookup table, 419–420

Item Maintenance form, 341–343

Item function, 469

Items collection, 528

J
JAD (joint-application development), 14–15

Java, 566

JavaScript, 507, 566

button handler, 625

ButtonScripts.js, 625–628

ButtonTest script, 628–629

execScript function, 630

Notify function, 629

Jet-SQL, 66

Jet. See Microsoft Jet.

Join function, 645

Joins, 73. See also Self-joins.

Joint-application development. See JAD.

K
KeepLocal property

Document object, 168–169

QueryDef object, 181

Key-value pairs, 546

Keys collection, 528

Keyset cursors, 294

Keyset-type result set, 237

L
LAN Manager, 23–24

NetBIOS protocol, 21

LastError property, 463

LastModified property

rdoResultset object, 245–246

RecordSet object, 192

LastQueryResults property (rdoConnection object), 233

LastUpdated property

QueryDef object, 181

RecordSet object, 192

Late binding, 382

LEFT function, 80–81

LENGTH function, 80

Level 0 ODBC compliance, 66–67

Level 1 ODBC compliance, 67, 109

Level 2 ODBC compliance, 67, 109

LIKE keyword, 71

Line Input function, 101–102

<LINK> tag, 633

Linked lists, 5

LoadXMLFile function, 462–463

Lock escalation, 439

Lock_mode option, 98

LockEdits property

rdoResultset object, 246

RecordSet object, 192–193

Locking, 237

page-level, 31–32

record locking, 31

row-level, 31–32

LockType property

rdoResultset object, 246

RecordSet object, 300

LOF function, 103–104

LOF property (RecordSet object), 190–191

Logic

embedding data in, 17

isolating for customer maintenance, 17

Logical Units of Work. See LUWs.

LogInTimeOut property, 140

rdoConnection object, 233

rdoEnvironment object, 217

Workspace object, 151

LogMessages property

QueryDef object, 181

rdoConnection object, 233

LONG data type, 46

Lotus Approach, 40

LTRIM function, 81–82

LUWs (Logical Units of Work), 90, 437–438

M
Macintosh AppleTALK, 21

MakeIE5WeatherTable method, 595–596

MakeReplica method (Database object), 162

Many-to-many relationships, 50

Marshalling, 398

MarshallOptions property, 443

Massively parallel processing. See MPP.

MAX function, 79–80

MaxRecords property

QueryDef object, 181

RecordSet object, 300

MAXVALUE clause, 436

MDAC (Microsoft Data Access Components), 267, 269

MDB files, 134

mdiRemote form, 404

<META> tags, 517

Microsoft, 551

Access, 36

ActiveX Data Objects 2.0 library, 310, 313, 403

ActiveX Data Objects Recordset 2.0 library, 402–403

Data Access Components. See MDAC.

Developers Network Web site, 130

Jet, 105–106, 133–134

as DAO object model, 133

DAO object hierarchy in, 135–136

replication, 160

Network. See MSN.

SQL Server, 38–39

Web site, 36, 39

Transaction Server. See MTS.

Universal Data Access Web page, 331

Visual Basic home page, 331

XML Library, 459–460

MIN function, 79, 80

Minimum ODBC. See Level 0 ODBC compliance.

MOD function, 83

Mode property (Connection object), 280

MoreResults method (rdoResultset object), 251

Move method

rdoResultset object, 251

RecbordSet object, 199, 302

MoveComplete event, 388

RecordSet object, 297

MoveFirst method

rdoResultset object, 251

RecordSet object, 199

MoveLast method, 135

rdoResultset object, 251

RecordSet object, 199

MoveNext event, 391

MoveNext method

rdoResultset object, 251

RecordSet object, 199

MovePrevious method

rdoResultset object, 251

RecordSet object, 199

MoveTo method, 471

MoveToNode method, 471

Mozilla, 549

MPP (massively parallel processing), 32

MSADC directory, 410

MSADO15.DLL library, 274, 310

MSADOR15.DLL library, 274, 310

MSN (Microsoft Network), 503–504

MTS (Microsoft Transaction Server), 271, 400

MTSTransactionMode property, 400

Multi-tiered architecture, 8–10

Multiple inheritance, 121

Multiplexing ring networks, 20

N
N-tiered architecture, 8

partitioning, 10

NAME attribute, 531

Name property

Field object, 305

rdoResultset object, 246

RecordSet object, 193

Namespace, 520, 550, 653

NativeError property (Error object), 288

Natural joins, 179

Navigational file model, 5

Nested Recordset objects, 365

NetBEUI, 21

NetBIOS protocol, 21

Netscape Navigator, 555

NetWare, 23

NetWare Loadable Module. See NLM.

Network architecture, 19

Network Interface Card. See NIC.

Network Operating System. See NOS.

Networks, 19, 33–34

bus topology, 20

hubs, 20

protocols, 21

ring networks, 20

star network topology, 20

topology, 19

NewPassword method, 156

Database object, 163

NewValue argument, 252

NextNode method, 471

NextRecordSet method (RecordSet object), 200

NEXTVAL method, 436

NIC (Network Interface Card), 19

NLM (NetWare Loadable Module), 23

NOCYCLE clause, 436

NodeFromID method, 489

NodeName property, 472

Nodes. See also Root elements.

attributes, 456

tags and, 472

NodeType action, 475

NodeValue property, 472

NoMatch property (RecordSet object), 193

NOMAXVALUE clause, 436

Nondedicated servers (Windows NT), 24

Nonrelational database design, 40–41

Normalization, 56, 554

NOS (Network Operating System), 22, 30–31

pre-purchase evaluation, 22

Notify function, 629

Null value handling, 77–78

Number property (Error object), 147, 288

Number storage, 47

NUMERIC (S,P) data type, 46, 437

Numeric data, 46

NumericScale property (Parameter object), 293

O
Object hierarchies, 106

Object Linking and Embedding. See OLE.

Object-oriented database. See OOD.

Object-oriented programming. See OOP.

Objects, 11. See also COM; DCOM.

behavior, 120

components compared to, 380

data, 120

encapsulation, 381

modifying with DDL, 57

persistence, 396

proxies, 17–18

state, 120

storage, 48

ODBC (Open Database Connectivity), 109

Connection object, 135

data sources, 134

Level 0 compliance, 64–65

Level 1 compliance, 67

Level 2 compliance, 67

SQLNumParams function, 108

ODBC 3.0 Programmer’s Reference And SDK Guide, 67

ODBC API, 112–114, 129

ODBC driver, 66

ODBC.BAS code module, 113

ODBCDirect, 94, 105–106, 135

converting to ADO, 129

as DAO object model, 133

Workspace object, 138

ODBCTimeOut property (QueryDef object), 181

OLE (Object Linking and Embedding), 268

OLE DB, 269–271

component definitions, 270–271

data consumer, 115

data provider, 115

driver, 66

OLTP systems, 31

Onclick event, 621

Online transaction processing systems. See OLTP systems.

onmousedown event, 620

onmousemove event, 590–591, 593, 595

onmousemove routine, 594

onmouseout event, 621

onmouseup event, 621

OnRequestStates event handler, 544–545

OOD (object-oriented database), 28

OOP (object-oriented programming), 121

Open command, 98

Open Database Connectivity. See ODBC.

Open keyword, 4

Open method (Connection object), 282–283

Open System Interconnection Reference Models. See OSI Reference
Models.

Open method, 643–644

Open_mode options, 98

OpenConnection method, 135, 143–144

rdoEnvironment object, 222

OpenDatabase method, 144

OpenRecordSet method, 135

Database object, 163

QueryDef object, 184

RecordSet object, 200

TableDef object, 171–172

OpenResultset method (rdoConnection object), 212, 236

OpenSchema method, 284, 324, 327–328

Connection object, 283–285

Optimistic locking, 442

<OPTION> tags, 614

Oracle, 29

DAYS_AFTER function, 83

TO_CHAR function, 78

Version 8, 37–38

Web site, 38

ORDER BY clause (SELECT statement), 75–76

Order-entry applications, 53, 419

OrdinalPosition property (Field object), 174

OriginalValue property (Field object), 174

OSI Reference Models, 21

Out-of-process servers, 380–381

Output mode, 98

Owner property (Container object), 167

P
Packets, 21

Page-level locking, 31–32, 442

PageSize property (RecordSet object), 298

Parameter object, 184–187, 291–294, 319–320

ADO, 273

AppendChunk method, 294

Direction property, 187

properties, 293

Value property, 187

Parameter query application, 317–321

Parameters collection, 180, 184–187, 291–294

Parameters demonstration program, 259–261

Parent/child Recordset objects, 363–364

ParentWindow object, 594

Parsers, 497

XML, 458

Partial-key dependency, 54. See also Primary keys.

PartialReplica property (Relation object), 180

Partitioning, 17

Password property (rdoEnvironment object), 217

Passwords, 63

Peer Web Services, 513

Peer-to-peer networks, 19

PercentPosition property

rdoResultset object, 246

RecordSet object, 193

Permissions property (Container object), 167

Persistable property, 400

Persistence, 396

Pessimistic locking, 442

PGML (Precision Graphics Markup Language), 483

PL/SQL, 38, 422. See also SQL.

Polymorphism, 381

PopulatePartial method (Database object), 163

Position property, 637–638

POST protocol, 525, 530

Pound sign (#), 99

POWER function, 83

Precision Graphics Markup Language. See PGML.

Prepare property (QueryDef object), 181–182

Prepared property (Command object), 290

Preprocessor tag (<…>), 454

PreviousNode method, 471

Primary keys, 41, 43–44, 50, 434–437, 446–447. See also Partial-key
dependency.

compound, 413

constraints, 61

identifiers, 5

referencing, 59

Primary property (Index object), 177

Print # statement, 103

PrintForecast subroutine, 480

PrintReport method, 348

Process boundaries, 396

ProcessingTimeOut event (DataReport object), 348–349

ProcessTag event handler, 520–522

declaration for, 523

ProcessTag function, 524

ProcessTags event, 542

Prompt argument constants, 222

prop_DDL string, 148

prop_name string, 148

prop_type string, 148

prop_val string, 148

Properties collection, 147–149, 156, 189, 285–287, 294

Append method, 148

Document object, 168

Properties list, 558

Property Let procedure, 378

Property object, 285–287

ADO, 274

Attributes property, 286

BaseTableName property, 286

Inherited property, 148

Name property, 286

Value property, 286

PropertyLet statement, 376–377

Protocols, 21

IPX/SPX, 21

packets, 21

TCP/IP, 21

Provider parameter, 278–279

Proxy objects, 17–18

Pseudo-row-level locking, 442

Public keyword, 376

Push technology, 542

Put function, 103

Q
Queries, 16–17, 258

joining, 89–90

strings, 525

Query optimizers, 61

QueryComplete event, 262

rdoConnection object, 231–232

QueryDef object, 138, 180–184, 319

CacheSize property, 180–181

Close method, 183

Connect property, 181

CreateProperty method, 183

DateCreated property, 181

Execute method, 183

Fields collection, 180

KeepLocal property, 181

LastUpdated property, 181

LogMessages property, 181

MaxRecords property, 181

ODBCTimeOut property, 181

OpenRecordSet method, 184

Parameters collection, 180

Prepare property, 181–182

RecordsAffected property, 182

Replicable property, 182

ReturnsRecords property, 182

SQL property, 182

StillExecuting property, 182

Type property, 183

Updatable property, 183

QueryDefs collection, 180–184

QueryTimeout event (rdoConnection object), 232

QueryTimeOut property

Database object, 159

rdoConnection object, 233

QuickBasic, 93

R
RAD (rapid application development), 14

RAISERROR command, 428, 430

Rand Corporation, 6

Random access techniques, 4

binary mode, 5

random mode, 5

Random mode, 5, 98

Get function and, 102

Rapid application development. See RAD.

RDBMS (relationship database management systems), 6, 27, 34–35

application data logic, 34

compared to relational databases, 28–29

constraints, 61

cost considerations, 35

cost-of-ownership term, 35

design, 34

Informix, 38

licensing fees, 35

Lotus Approach, 40

maintenance fees, 35

Microsoft Access, 36

Microsoft SQL Server, 38–39

network, 33–34

Oracle Version 8, 37–38

performance, 33

query optimizers, 61

selecting, 29–30

servers, 33

service model, 34

Sybase Adaptive Server Enterprise, 37

Sybase SQL Anywhere, 37

unique indexes, 41

vendor stability and reputation, 35–36

XDB Systems, 39–40

RDC (Remote Data Control), 94, 108–109

rdConcurBatch object, 238

rdConcurRowVer object, 237

rdConcurValues object, 237

RDO (Remote Data Objects), 94, 108–109, 129, 209, 309

Ad Hoc Report Writer application, 264–265

batch update demonstration program, 241–244

collections, 213

converting to ADO, 322–330

DAO object cross-reference, 210

event driven asynchronous programming, 224–231

object cross-reference, 311

parameters demonstration program, 259–261

Remote Data control, 261–264

result set types, 236

ResultSet property, 109

RowCount property, 109

WithEvents clause object declaration, 211

rdoColumn object, 252–257

AppendChunk method, 256

Attributes property, 256

BatchConflictValue property, 256

ChunkRequired property, 256

ColumnSize method, 256

DateChanged event, 253

GetChunk method, 256

SourceColumn property, 256

SourceTable property, 256

Status property, 256

Type property, 253–254

WillChangeData event, 252–253

rdoColumn objects, 252

rdoColumns collection, 252–257

rdoConnection object, 212–213, 223–237

AsyncCheckInterval property, 232–233

BeforeConnect event, 231

BeginTrans method, 234

Cancel method, 234

Close method, 235

CommitTrans method, 234

Connect event, 231

Connect property, 233

CreateQuery method, 234–235

CursorDriver property, 233

Disconnect event, 231

EstablishConnection method, 235

Execute method, 235

hDbc property, 233

LastQueryResults property, 233

LoginTimeout property, 233

LogMessages property, 233

OpenResultset method, 236

QueryComplete event, 231–232

QueryTimeout event, 232

QueryTimeout property, 233

RollbackTrans method, 234

RowsAffected property, 233

StillExecuting property, 234

Transactions property, 234

UpdateOperation property, 234

WillExecute event, 232

rdoConnections collection, 223–237

rdoCreateEnvironment method, 213

rdoCreateEnvironment property (rdoEngine object), 215–216

rdoDefaultLogInTimeOut property (rdoEngine object), 215

rdoDefaultPassword property (rdoEngine object), 215

rdoDefaultUser property (rdoEngine object), 215

rdoEngine object, 211, 213–216, 322

DefaultCursorDriver property, 214

rdoCreateEnvironment property, 215–216

rdoDefaultLogInTimeOut property, 215

rdoDefaultPassword property, 215

rdoDefaultUser property, 215

rdoLocaleID property, 215

rdoRegisterDataSource property, 216

rdoVersion property, 215

rdoEnvironment object, 211, 216–223, 322

BeginTrans method, 218–221

CommitTrans method, 222

CursorDriver property, 217

hEnv property, 216–217

LoginTimeout property, 217

OpenConnection method, 222

Password property, 217

UserName property, 217

rdoEnvironments collection, 216–223

rdoErrors collection, 211

rdoLocaleID property (rdoEngine object), 215

rdoParameter object, 257–261

rdoParameters collection, 257–261

rdoPreparedStatement object, 212, 261

rdoPreparedStatements collection, 261

rdoQuery object, 211

rdoRegisterDataSource property (rdoEngine object), 216

rdoResultSet object, 212–213, 238–252

AbsolutePosition property, 240

ActiveConnection property, 240

AddNew method, 249

Associate event, 239

BatchCollisionCount property, 240–241

BatchSize property, 245

BOF property, 245

Bookmark property, 245

Cancel method, 249

CancelUpdate method, 249

Close method, 249

columns, 252

Delete method, 249–250

Edit method, 250

EditMode property, 245

EOF property, 245

GetClipString method, 250

GetRows method, 250–251

hStmt property, 245

LastModified property, 245–246

LockEdits property, 246

LockType property, 246

MoreResults method, 251

Move method, 251

MoveFirst method, 251

MoveLast method, 251

MoveNext method, 251

MovePrevious method, 251

Name property, 246

PercentPosition property, 246

Requery method, 251

Restartable property, 246

ResultChanged event, 239

ResultCurrencyChanged event, 239

RowCount property, 247

RowStatusChanged event, 239

Status property, 247

StillExecuting property, 247

Transactions property, 247

Type property, 247

Updatable property, 247–248

Update method, 251

UpdateCriteria property, 248

UpdateOperation property, 249

WillUpdateRows event, 239–240

rdoResultsets collection, 238–252

rdoTable object, 212, 261

rdoTables collection, 261

rdoVersion property (rdoEngine object), 215

RDS (Remote Data Services), 267, 271, 508

RDS.DataControl object, 306

RDS.DataSpace object, 306

RDSServe.DataFactory object, 306

ReadyState property, 465

Record locking, 31

Record sets, 188–189

RecordChangeComplete event (RecordSet object), 297

RecordCount property, 317, 426

RecordSet object, 193, 300

TableDef object, 170

RecordsAffected property

Database object, 159

QueryDef object, 182

RecordSet object, 135, 138, 187–202, 294–305, 310, 320, 333,
345–346, 350–351, 362, 403, 409, 420

AbsolutePosition property, 190

AddNew method, 196

ADO, 274

BatchCollisionCount property, 190

BatchSize property, 190

BOF property, 190–191

Bookmark property, 191

CacheSize property, 192

CacheStart property, 192

Cancel method, 196

CancelUpdate method, 196

Clone method, 196–197

Close method, 197

Connection property, 192

constants, 305

CopyQueryDef method, 197

DateCreated property, 192

Delete method, 197

Edit method, 197–198

editing methods, 303

EditMode property, 192

events, 295–298

Fields collection, 172, 189

FillCache method, 198

Filter property, 192

FindFirst method, 198

FindLast method, 198

FindNext method, 198

FindPrevious method, 198

GetRows method, 198–199

Index property, 192

LastModified property, 192

LastUpdated property, 192

LockEdits property, 192–193

LOF property, 190–191

methods, 302–303

Move method, 199

MoveFirst method, 199

MoveLast method, 199

MoveNext method, 199

MovePrevious method, 199

Name property, 193

nested, 365

NextRecordSet method, 200

NoMatch property, 193

OpenRecordSet method, 200

parent/child, 363–364

PercentPosition property, 193

properties, 298–301

Properties collection, 189

RecordCount property, 193

RecordStatus property, 193–194

ReQuery method, 200

Restartable property, 194

Seek method, 200

Sort property, 194

StillExecuting property, 194

Transactions property, 194–195

Type property, 195

Updatable property, 195

Update method, 200–201

UpdateOptions property, 195–196

ValidationRule property, 196

ValidationText property, 196

RecordSetChangeComplete event (RecordSet object), 298

RecordSets collection, 187–201

RecordSetType property (Data control), 203

RecordStatus property (RecordSet object), 193–194

Reference by implication, 252

REFERENCING NEW clause, 428

REFERENCING OLD clause, 428

Referential integrity, 5, 42–43, 412–416, 429

foreign keys and, 44

Refresh method

Data control, 204

Remote Data control, 264

RefreshLink method (TableDef object), 171–172

RegisterDatabase method, 145

Relation object, 178–180

Attributes property, 179–180

ForeignTable property, 180

inner joins, 179

PartialReplica property, 180

Table property, 180

Relational databases

compared to RDBMS, 28–29

data organization, 40

design, 40–41

Relations collection, 138, 178–180

Relationship database management systems. See RDBMS.

Relative positioning, 638

REMAINDER function, 83

Remote business object, 401. See also Business objects.

Remote components, 397

Remote Data control, 261–264

BOFAction property, 263

EOFAction property, 263–264

Error event, 262

QueryCompleted event, 262

Refresh method, 264

Reposition event, 262

UpdateControls method, 264

UpdateRow method, 264

Validate event, 262, 263

Remote Data Control. See RDC.

Remote Data Objects. See RDO.

Remote Data Services. See RDS.

Remote objects, stateless, 396

Remote Provider parameter, 279

Remote server, 402

Remote Server parameter, 279

RemoteSvrClient application, 404

RepairDatabase method, 145

RepeatedControlName property, 371

Replica sets, 160

Replicable property

Database object, 159

Document object, 169

QueryDef object, 182

ReplicaFilter property (TableDef object), 170–171

ReplicaID property (Database object), 160

Replication, 160

ReportCommit template, 539–540

ReportCommit_Respond handler, 542

Reposition event, 262

Data control, 205

Requery method

rdoResultset object, 251

RecordSet object, 200, 302–303

Request object, 525–526, 529

Request.Form object, 538

Required attributes, 487

Required property (Field object), 174

Respond event, 542

Respond handler, 542

Response object, 516–517, 543

Restartable property

rdoResultset object, 246

RecordSet object, 194

Result sets, 437

forward-only-type, 236–237

keyset-type, 237

static-type, 237

ResultChanged event (rdoResultset object), 239

ResultCurrencyChanged event (rdoResultset object), 239

ResultSet object (GetClipString method), 329

ResultSet property, 109

RETURN statement, 430

ReturnsRecords property (QueryDef object), 182

Reuse (inheritance), 121–122

REVOKE command, 63

RIGHT function, 80–81

Ring networks, 20

ROLLBACK command, 90

RollbackTrans method

Connection object, 281–282

rdoConnection object, 234

RollbackTransComplete event, 277

Root elements, 454

ROUND function, 82

Row-level locking, 31–32, 237, 442

RowCount property, 109

rdoResultset object, 247

RowIndex, 594

Rows, 41

organization in tables, 42

primary keys, 41

Rows collection, 585

RowsAffected property (rdoConnection object), 233

Rowset object component (OLE DB), 270

RowStatusChanged event (rdoResultset object), 239

RTC record type, 430

RTN record type, 430

RTRIM function, 81–82

Rule class, 632–633

S
Scalar functions, 71, 76–77

WHERE clause, 77

Scheduling calendar, 647–651

Schwartz, Randal, 503

Scripting, 507

Second normal form, 54–55

denormalization to, 56

Seek function, 102–103

Seek method (RecordSet object), 200

Select control, 611

SELECT statement, 68

HAVING clause, 85

ORDER BY clause, 75–76

WHERE clause, 70–71

Self-joins, 73–75. See also Joins.

SendTags parameter, 523

Sequence numbers (in packets), 21

SEQUENCE object, 435

Sequential files, 4, 97

Server queries, 16–17

Server-side technology, 654

ServerVariables object, 547

Service model, 34

Service providers, 269

Services architecture model, 373–374

Services model, 10, 11

Session object, 539

Session object component (OLE DB), 270

SET command, 47

SetAttr function, 104

SetAttribute function, 473–474

SetOption method, 146

SGML, 482, 497

instance languages, 482

Shape command, 359–366

Shape language, 354, 366

Shorthand notation, 457

ShowData method, 408–409

ShowModalDialog method, 644–645

ShowRecs procedure, 426

SINGLE data type, 46

SINGLE PRECISION data type, 46

Size property

Field object, 174–175

Parameter object, 293

SMIL (Synchronized Multimedia Integration Language), 482–483

Snapshot object, 135

Snapshot-type record set, 189

SNF. See Second normal form.

Sort property (RecordSet object), 194, 300–301

SOUNDEX function, 80

Source property

Error object, 147, 288

RecordSet object, 301

SourceColumn property (rdoColumn object), 256

SourceField property (Field object), 175

SourceNameTable property (TableDef object), 171

SourceTable property (rdoColumn object), 256

sp_lookup stored procedure, 425

Split function, 645

SQL (Structured Query Language), 65, 134. See also PL/SQL.

AVG function, 79–80

CONCAT function, 81

COUNT function, 79

DELETE command, 91

dialects, 66

DINSTINCT function, 78

GROUP BY clause, 83–85

INSERT command, 90–91

Jet-SQL, 66

joins, 362

LEFT function, 80–81

LENGTH function, 80

LTRIM function, 81–82

MAX function, 79–80

MIN function, 79–80

MOD function, 83

POWER function, 83

RDBMS and, 6

REMAINDER function, 83

RIGHT function, 80–81

ROUND function, 82

RTRIM function, 81–82

SOUNDEX function, 80

statements, 8

SUBSTR function, 80–81

SUM function, 78–79

TRIM function, 81–82

TRUNCATE function, 82

UPDATE command, 91

SQL Anywhere (Sybase), 32, 423–424

SQL Builder, 338

SQL functions, 76

SQL property (QueryDef object), 182

SQL Server, 106

page-level locking, 31–32

row-level locking, 32

SQL Trace facilities (ADO and), 447

SQLNumParams function, 108

SQLOpen function, 110

SQLSetPacket function, 110

SQLState property (Error object), 288

src properties, 622

Star network topology, 20

State lookup table, 421–422

State property, 324

Command object, 290

Connection object, 281

RecordSet object, 301

Stateless remote objects, 396

Static cursors, 294

Static-type result set, 237

Status property

rdoColumn object, 256

rdoResultset object, 247

RecordSet object, 301

StayInSync property, 364

StillExecuting property

Connection object, 165

QueryDef object, 182

rdoConnection object, 234

rdoResultset object, 247

RecordSet object, 194

Stored procedures, 63, 421–422, 424–427

data sources as, 341, 343

Stored procedures. See also Triggers.

String literals, 45

Strings, 45

XML attribute values as, 456

Structured Query Language. See SQL.

Style attributes, 634–636

Style class, 632–633

Style sheets, 639, 640–641, 654

links to, 633–634

Subqueries, 86–90

correlated, 87–88

SUBSTR function, 80–81

SUM function, 78–79

Supports method (RecordSet object), 304–305

Sybase, 29

Adaptive Server Enterprise, 37

CAST function, 78

CONVERT function, 78

SQL Anywhere, 32, 37

Web site, 37

Synchronize method (Database object), 164–165

Synchronized Multimedia Integration Language. See SMIL.

SystemDB property, 140

T
T-SQL, 37, 39, 418

Table events, 587

Table lock, 237

Table property (Relation object), 180

Table-type record sets, 188

TableDef object, 169–172

Attributes property, 169–170

ConflictTable property, 170

Connect property, 170

CreateField method, 171–172

CreateIndex method, 171–172

OpenRecordSet method, 171–172

RecordCount property, 170

RefreshLink method, 171–172

ReplicaFilter property, 170–171

SourceNameTable property, 171

ValidationRule property, 171

ValidationText property, 171

TableDefs collection, 138, 169–172

Tables, 5, 41, 576. See also Dummy tables.

CD-ROM samples, 58

constraint additions to, 59

creating with buffer, 577

joining, 72–73

primary key references, 59

rows, 41–42

self-joins, 73–75

WHERE clause and, 72–73

Tag prefix, 520, 550

Tags, 453

nodes and, 472

TCP/IP (Transport Control Protocol/Internet Protocol), 21, 502

Templates, 124, 518–521

links in, 543–544

Terminate event (DataEnvironment object), 344

Text files, 4

Thin clients, 13–14

Third normal form, 55–56

Threads, 398

Three-tiered architecture, 8–9

partitioning, 10

Tiers, 396

Timestamp, 446–447

TNF. See Third normal form.

TO_CHAR function (Oracle), 78

Token Ring architecture, 20. See also Ring Technology.

Topology, 19

TPS (transactions per second), 31

tr_cust_validate trigger, 429–430

tr_dd_validate trigger, 427–428

tr_validate_customer trigger, 430

Transact-SQL. See T-SQL.

Transaction logs, server queries and, 17

Transactions, 437–444

data row locks, 439

performance and, 439

Transactions per second. See TPS.

Transactions property

Connection object, 165

rdoConnection object, 234

rdoResultset object, 247

RecordSet object, 194–195

Transaction object component (OLE DB), 270

Transport Control Protocol. See TCP/IP.

Triggers, 63, 421–422, 427–433, 434. See also Stored procedures.

TRIM function, 81–82

Troubleshooting, 331, 466–467

TRUNCATE function, 82

Two-tiered architecture, 8–9

Two-tiered database applications, 7–8

Type object (Direction property), 187

Type property

Field object, 175, 305

Parameter object, 293

QueryDef object, 183

rdoColumn object, 253–254

rdoResultset object, 247

RecordSet object, 195

Workspace object, 151

U
UDA (Universal Data Access), 268

UDS (Universal Data Storage), 268

UML (Unified Modeling Language), 396

UNION ALL statement, 76

UNION statement, 76

Unique indexes, 41

Unique keys, 44

Unique property (Index object), 177

Universal Data Access. See UDA.

Universal Data Storage. See UDS.

UnLoad event, 386

UNSIGNED LONG data type, 46

Updatable property

Database object, 160

QueryDef object, 183

rdoResultset object, 247–248

RecordSet object, 195

UPDATE command, 91

Update method, 316

rdoResultset object, 251

RecordSet object, 200–201, 303

UpdateBatch method (RecordSet object), 303

UpdateBTN_onclick handler, 605–606

UpdateCity routine, 601–603

UpdateControls method

Data control, 204

Remote Data control, 264

UpdateCriteria property, 445

rdoResultset object, 248

Updated columns, 446

UpdateOperation property

rdoConnection object, 234

rdoResultset object, 249

UpdateOptions property (RecordSet object), 195–196

UpdateRecord method (Data control), 204

UpdateRow method (Remote Data control), 264

URLFor function, 546

User integrity, 44

constraints, 61–62

User object, 155–156

CreateGroup method, 156

creating, 156

NewPassword method, 156

User services, 10

USER_AGENT key, 549–550

UserName property, 151

Container object, 167

rdoEnvironment object, 217

Users collection, 155–156

V
V1XNullBehavior property (Database object), 160

Validate event, 262–263

Data control, 205

ValidateOnSet property (Field object), 175

Validation, 386–388

ValidationRule property

Field object, 175

RecordSet object, 196

TableDef object, 171

ValidationText property

Field object, 175

RecordSet object, 196

TableDef object, 171

Value property, 611

Field object, 175, 306

Parameter object, 187, 293

VARCHAR data type, 45–46

VARCHAR2 data type, 45

VB DHTML applications, 643

VBScript, 504–505, 509–510

VBSQL, 110–111, 129

ActiveX control, 110–111

driver, 66

Vector Markup Language, 482

Version property (Database object), 160

Views, 62–63

updating through, 62

Vines (Banyan), 24

Virtual Sequential Access Method. See VSAM.

VisibleValue property (Field object), 175

Visual Data Manager utility, 128

Visual interface, 553

Visual Modeler, 396

Visual Studio, 396

VRT record type, 417, 427

VSAM (Virtual Sequential Access Method), 5

W
WaitConn event, 324

Walls, Larry, 503

.Warning tag, 633

Watcom SQL. See Sybase SQL Anywhere.

Weather14.mdb sample, 519

WeatherEditor.htm template, 597–598

WeatherSubmitForm event, 535

WeatherTable_onmousemove handler, 606–607

WeatherTable_onmouseout handler, 606–607

WeatherUpdate subroutine, 541

Web Class, 510, 524

events, 533–534

Web events, 533–534

Web pages, 451

WebClass format, 634

WebClass_Start method, 515

WebClass_Start procedure, 512

WebClass1.asp program, 514

WHERE clause, 446

BETWEEN modifier, 71

EMP correlated variable, 89

IN modifier, 71

in scalar functions, 77

table relations and, 72

WHERE clause (SELECT statement), 70–71

Width properties, 622

WillChangeData event (rdoColumn object), 252–253

WillConnect event, 277

WillExecute event (rdoConnection object), 232

WillUpdateRows event (rdoResultset object), 239–240

Window object, 570

methods, 571–572

properties, 571–572

Window.open statement, 644

Windows NT

Microsoft SQL Server, 38

NetBEUI, 21

as a nondedicated server, 24

WithEvents clause, 211, 274, 318

Wizards, 124

Workspace object, 137–138, 149–155

BeginTrans method, 152

Close method, 155

collections, 150

CreateDatabase method, 155

CreateGroup method, 155

CreateUser method, 155

DefaultCursorDriver property, 150

IsolateODBCTrans property, 151

LogInTimeOut property, 151

Type property, 151

UserName property, 151

Workspaces collection, 107, 149–155

Write # statement, 103

Write statement, 515

WriteStateTable function, 589–590

WriteStateTable routine, 603–605

WriteTable subroutine, 587

WriteTemplate method, 542–543

X
XDB Systems, 31, 39–40

XML (Extensible Markup Language), 461–462, 652, 654

annotated weather report program, 467–468

API, 460

asynchronous file loading, 463–464

attributes, 456

browsers and, 498

comments, 454

data structures, 455–456

document parsing, 463

DTDs, 483

HTML compared to, 457

images in documents, 490

Internet Explorer 5.0 and, 459, 465–467, 472–473

Microsoft XML Library, 459–460

nodeType action, 475

parsers, 458, 497

portability, 452

root elements, 454

shorthand notation, 457

tags, 454–457

weather report program, 453–454

<XMP> tag, 523

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1576102823/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

	KFLDJIEDDPCCJEKLHPHHPAPBJEMOJCID:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HCOHAEOPINBAMPJEGDODEICLCKEIMAAC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LCNONFIHADBEAIKGDEPHBPFDNDEOPJEN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AHOKHCKOLJNNNLIGHJBNOMLONHHDLJOM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NFBOOJOLFJEDAPMMPJKFNMPEBOLKEBLM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KLHJGDMHJOJJMHKOBNAPOKGNHIBKHGIL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PJMBPLJICNOMPPOGHGHEKPCFOICEPPOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OMGDGIEPIEBALPPMAILKKBDGIHJMOEJJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HKDBONAFDGGCNGLCALCFIOOPFFOGNKPM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DBJCLANPLCGJHIHIBOCMFHFIDIIJMHGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LEDGOHEHJOILHLFKBCLAFFIHPJIIPDCB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DGNPEFKOJNIHAKCIOGCCKGANGJPALHBB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KDLKEANLOHGEELJGJFJLOJFGEOJMIMBD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GFGBALNHEOFBHHJCAPENHALMDJKDOIAI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FAEIOGDAGDGBEPCFLPFMFMPLAHJPLGKIBA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OCJJODLMHEDCDOGGHCCLJGLJBADEDLKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IGGOIELAMMBBLENJOGECMICMBPGMKONJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CLPBGPNLFFEDLCHPPPIAJOKBKPKPAKPE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ENHNNPJMFKPAIIKFMNKFBHBHBLJJLLAJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LEMLIJABHFPNCBJMABEJKIEFFCGFEPDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GPKFPCKNELHANPKJLHPJKBEGNMPNKIKK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DGECKCONPCJIAJCFLGCHKHFCKAJAFOOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IFBFPFGEADJPBEKFINMHHFHKJBEKEKGD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HFHOMOHEIJPCHGEGMJILLANOAKMCMCJN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BGHMIMNBFDBDNICPFMDAILLFOLDNLAIOEH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KMOFKDINDABJOKBDDFBODEFBDGHLNEAK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ONJPNNGCNBBNKIKBENHHLMIOJFBPKNKM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MDFHILNFFCNLCGDEEPENDGGODFHNHPHJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FJHIPHKEBJBPOAOLPLDFININGDPACKDM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MPCPENHMGJLMNNFMDAJLDFJBNPEMCCKPBA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NPEFFMAHKGLNANHEHFNMDNCMEBIBOONCPI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EMPMGHKIDNHGEDDDGOIACNJACFOKOJHN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KMNLPJFJFDAHHJKDPHCBBGFJKNOMLDFH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KCIOGLFNHGDFDCJNJCNDFEGJOOLOFOOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GBPHPDFCHFHPAPKLGBMMBAIEMMPFGKKI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OMMPLAMHJGLPCPDIMMHGJFGCGEJKHLIC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HDJIKNNFICFPDHFGABONCBANNHOJNPLM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KKKJOJMFNOFFGGFMFMDOABHBAKFCKHLJKC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PHJLIAHFEDADFBBCNJFLFKNJAJMPIGCN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KBIJBCGOCNOKMLJPMHLFDFLCCKFEGLBK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	POHINHHOLMDECEDBNCIJGDCCHILNHCFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DPACMMKBGKPEJBKAMLDGFAEGEPPCNKKG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JODDBGBONFPGMEIIFEHPLCBFJAHPHHHI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IKGMDKECBPMHHANKDCFMFMKGLBEHCECFFK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	POCDPHBPEOFMAHEGKMGGBJNAGCPCJAOOII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EGHDBNAMGMNDMGLMJMADMMIDKFCDFMDAJC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KKLIIJFIFPLBLDJFICGFBCJACBAEIPBB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NFHBLHIGBPGJOJCBAJEDIIGALOLCCBNM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KMBDBEHHPCIHBEKOKKHFNKCKLFBNAKFA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BAIHJGPPODAHOPCHANBBOCOLJDBAALMG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HPJHEEHNIKILIOAFEDCHIKKLCHOGNGDG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NJHIFPIPFMAHKDNFJKFBFNOLJOLODJFGHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MHIBONLBFMFMDOGPKBCCPGNFFLNLCPAHMC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CAHJKEJEIODCAFMHGFDNJCEHIKEKDNNK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DOPHPNOMMOPEHGDDNHFPNMOEFBABNPDM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FJJLLPKMMPCHKFMJLJPICLIGLMIFIIHF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FKBGEFJPNGLNLFBLPFGFFNDPEPHJFJNK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CJOICDFEMKHEGIHAAEMCNOEMAEJLDKCP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BJDDFPJFDOAOPPPKIIKEFMFMCABPGNPEGG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CHIKBLJHIOJEIKFMDAJPBKCBIGNAMBAFLE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FNCFJOOOGOJMBBODPCMIENINBDFGIIFD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NAKEPFJKIAOKGODIPLCIMKFMFMKGNLBHAM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BFKMLKIKFIJMCIABMHAPNCOIHFEICJHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OLPLOEHOBLFMAHBLKLDGNCKHLKBDNAIHMO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FLKBMFLMJNOJKABAGAFBIBAFBGHBJKIA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JPKPOPAHEIOGCNGMBGKIIPLOBIPFBLMC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JMHKAIEJBDMHCPCJDHJINHELPILJKHGK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AFGCAMMFHOHKOMDAEPMIFLDGHNGNNPGP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BANDJGCEFAMCFAFOHBIMLGDINPHGCNHG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GIADPMKJDJLBKOMHAMKMFMDANOKMFIFAED:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CLKDNKFAKPGIPJBLIAPJEHCNDGLNJOIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JKHLIMFBPLFGELDNFMDABDJLNJBPCKHIMJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OMGNKMCGFNAECFKKGFJHANFGLIFHPKHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IDKFHMEFJNPBMACLBBBHBJMEFOPOILON:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OCCPIOEEGMPEDJDMPCDCPBALDBINGAFP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GCODOJOEJBCGIACMLBCMENALPNPCFHIA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EANMALHKICMGDKHPKAIKJEAKBCGBHJAI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NFNMOEAMAFPDGJCDALALNMCIMHPDJNOH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DMBNMHHNCCECKDEFAFHDMDNIILPFNDHL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JBGMDLALHKIHBIPBJFHBAEACEODHMBGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FJDJEENIKOEOPLABPGPPEOMEOEAMJFJA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BEHODCPCHIOIKKIDGMFMFMPJLMFLKOAIIE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MPIPGPONCIEOEDFBCAKMLFAEDDCBMLBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CDEMDKGAEBOJKHMDIDMNKLADPPGLKBID:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OBKBGLDDGFIFDBMANJPKPDHHLMEPOBFK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LBKMIDPPFEOFBKCLIBKPIOLGIBGGKBGH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ACOGOBOEGGGGHDFFALPPOCJHIHDAEPDN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KMKNNHDHDAHPOMEPJGBENAFCGFDLGAKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ANACEKKFILKHAINJGCBGDJEEFOCALLMD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BPGEGMEBBIOJDAMJDBLJPNKIEOCIGJBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KGMJAINLPIMAPFPMEGGFJPGPHJHAOKJA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HAPMOHJENIIJCIKMEALPKCIAHOCBKICB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OFOKCBCICLOIFDNAACHBMJBHFIMNLBNB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KONLBPNHGFKJEPGBBHKIBPHJNMPBDBFA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KPOCFJEKDOHKFKBMOBHFGBFIKPDKKPCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OCPCJEOACFHAJHMPHNLDFKKILGNAFDNG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CBOHFMDAFFEGAPCFFJENOPKNPNNHBELODE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NAGHAENEGNNCBFLNBMHKLBPLEEEPOJCK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PNKCPEFFBJEFOLMIKEPKBPLHLMBNLPKA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PAGNJNJODABJJCFGDLMHJGOOOLFAJGNG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BBFIOBNNPGAEJDBMLHJCIEHMHMHBLHBA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PPPGBGNCEBBBPCFDPOIHJEMPMOENNCCA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BHBGIBJHFMFMOIHCKCGJIPICIDPDADPAGK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NEFKNLIENPMPMDOAONAFGEFBJKIDMCAD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LIAKLIBLMKACIMHCMIIHHEINBKFMFMCCHN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KBNPCDBKCDIHBIPEKNLKFEBBDBAJOKHC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KOEMMMGEFMDANKDJNMJOLAKGILNAHPOLJF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IJCGFMDACMPELDNPDKLNOBEDLKPOHHKMCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PIHFCAIGEHPABLJCCBGAPMAHCNPOBIGD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EFPEKOABALGABNOACPMABMAKKIBAKLAC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HDIJLDPAGCDOAOJLKCFMAHFABFLMDHNLEN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ONGNIPCFKCEDPPNDGADLMBKNCPFPBGBA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KIDNJGBCPHFMAHCJOEPGPIPIAJODGGFGGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GFCKJNJNHLLKILPDIPKAFFFLINIBKHDC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IJJAMFLJJJHOMOOKEOFCHJOOCINNGHEB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OOAJNMIDLEGHNPKCBKAHFNMBKHDIAPBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JDOGIDGADNCFNLIEPKIGIGPGPPHHMEEL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FMFMJPBCNPDKPMCDBDBDPEPKGFMDDGJJFMAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HNIPMAECLCMDGAEEGOPPIFPMBICLKOCG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LLELFKDFPMPDBLMBAIOKHDPPIICMOBCF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ECCPFNKGFIOMEGAEIABJJELGNJFBIHEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JNCAJENGPLMEJGLNEFMFPKMGLEFHBHOA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NHJBBCEHFMFMIKHIHBPNDNOAIDPOENHOHK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KCOFNOMEDAIFNPHKGOMEAKGNDICGPECN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JNONJLBGOJHEMCJHMLAMBLBIENJMCNLD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JJKFECBHNJOFNDHPBLAGDNEALLELBHFJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NGBFGKGHEKDAAIJMLKGDOOMJCEOFDIFP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GHHAIHNMALCNHFEKMAIIDEHBAGKOKLFB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DHPKHCGOELBLDGPDPNEFEHKLHBLLHJIF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GHKBKOGMHCAEJDMLMDAFBAPLGKMGKNFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FGIOGFLMLEJHMBMLKFAEGFAFIFBGDJAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LLCHEELNONILPEBFDCAJKPODLAIKKNCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FEBKAPFCKEDMABNJBPACMDJCALDBBLII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CNFLMEKELEPIHFEKJNGECBAKONDFBNHD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HGOFCLJJKCHGNCJJNOHMIDFAPEEOCKOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HPDIBJBJJFHDOJDACGKLPNOOHAMMHHLG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OIKCDBCIPDPGHJDEJGEBBAHIHGICCMGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JHPCHPCALGOBHLJCGHDCJDLMHGDFPEMJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DEENIMDNOBAEJICFFFMFFPONOHPIOABI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KBJHCEJHCELPMBFJNEMGJLHECJJMPEEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JCHENKGJLICLDMILCDLPHCHDNFBEOLGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LBKGGAEHABMPMFGPJOAPOEHIKPINFEPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IOKCBKMAGNMGGJNMCGIAFJEBAGELLOLL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EDICJOBBFONDJDCFHFPDDLOFIJMFKIJA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LPMONLGHNADLIIDFBLDHIACKMKBOMDFL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EKPOOOMCAPFBBIKLCNNGDNPPGBMKGFDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FODAHKOLFBHDHHMMLBMGGBNAGCMHJHMP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PJDGCLJJINMOLOGHLKFMFMLKANNEMLJFFH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EGHDFLNCEAEBIPCILBBPFKDFMNEODMDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MALCENPBOCDDEIIAEEDLPKKLKHCLFOKK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EHDEDMPBGNBGNIGLJBFGHMANNLBGBAKE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PHEGIEKNEFKLFLOPFHJOODMAFMDANIIADJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BABFAKHMLAHLOHFDFOALMODDODJMBEOB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KCLBPOEDMACMEEHKLAJAHABPFIKBOLFF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ADEPCCNKCKFMAHLPBJBEBAHKPJJBHAACHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JHALFLNJLLILFJIINCJKOAOKDMHDHCIN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IAFONDNDIHLHLCILPNLCBFBPIJPPOKHC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	POCNKPEFKGABIMMOAHCBBFMEMONKFDCP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	POAPGCHENDMOJFLKGGODMLMOADHKFIKC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LFNHENMEOJAOAICAMOIPAOAPIAHCBPFF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KKMCOBMCFONKMHFCBCEKOIMHLBEOMPBH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LHMINIINKHFINLFMDAIMKEOCJGKKCIFGJA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FDBOOKHNICALKKKFLBOFFPLBEKEDPPII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DDOLFDMKIGLNPGLKFDBBONBGFNICMFCN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LOGCMDCFBAAJCILIJDGDLMODKLIKKKJN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IINBBHJJDMJEGBAJCPKKBKPNOIFFDMBN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GMHGBBHNMNAOCIFHLHFIKKKDBMLEOLCH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HMCPKKEDKIFMDANLLCOHNLFBDBEKFINDEC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LACNOODGAHCMPFDKPGECNDFLGFCDKMLO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BFBMMPNHEOCKPMFDNFCLNIMLLPKPDMOH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KFLDCKJEKKAIGIBONKAOGGBDDJBIJGHE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CNIFIMIHLHHFJFCMONLAMJCNDMICMGOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CPNAEIOEGJEDPBDILNODKNBHEIIAOGKA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EFFAMNEABCNBIOMLHFNDHDJEEIKKLKNM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FBKKOFHBKHOCINMHDGDJBGBIFMAHEPENHF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MCIBGHIDKJBGFNDDDPODPMBLOENALDJG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KEEICPJFBLMPOIIMFCBMGEOILPGGLGEH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OOMHBOFEICDOFCIAFDBGEKHJKBMCIDGN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KIDEIEJJCLIKPHNLAONHGDLMFONOPNKP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MHOGIBHADNMHDIDCBMMNLMPGOONFIFIO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JBENJIAMFLOEHMOPFMDAAPECGIKFHHBEHL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JBOCBLDKFHBPJPGHDOJGDGCCHNIICDMG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NPNANPEIMNAIMLABGEOJGPCGFDNONPJP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HDGILJIDJDLLFNENFKDPJEKHBCLHMONM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NBLMKMKPJFACJLIJPLEHFKMNMNCJMBIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DIAGEAMAPGCIDKHPNILGGCDBMCFLEIHK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	IKMJCDJPLAPCFGEKIANHNNMOOCBOJCDD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AMHKCFFFGLBOFKEGBDBBALFEOEICLNNG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GPPMBFKCBAJANMPGPBLONHKHDOBBDBHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HPEAOMGJKDEPOLHFCCEKFOCBINDENECI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	APLAPPILIMODAIGBDFNEJEICBJAGJNBN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	FDPPMJHDGMEPLMENJABOEGPONCFNCIJG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AOIIGJLJDBBKNGBOMONIIKIAGMIFKKDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BINMCGEFNJMJAGMGJMDJBGLJCCODHFDH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ODABPNOCLOIFNMMHLFPOBHGMKFOPDLMG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	OKDPOMGBCGLBNAPJMELMPMDHMOPOMKPK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PBDIMEAOCCMHJJIHAEDDLBLPIAELPEPH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PFJJFBDMBBODDCDLIGDMGDLEFMAHJEKEDI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	LFHCDFANNDKGKONAIELNOOGFNLFMDADHOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	PDALJOMPFBLPHGFFCDNGMGDJKFNPEOPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GAOBBKIIBHJJCAFIHCIJPBNOAIFIGJKN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GFPCPCPEICIKKIGCNEKNGABBMHFOMCGK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	NNFLDEDECLOIMBGFGMEHCAEKFKDJCJKG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HFCBKMEGACEDJPKEEAJHDGMLODMMNOMA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	DHJNMBLGGPENHNPMPLABHGKOGAINCNOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	ECBFFAIAMMLCHKAEOGEGAGGJAKDEMLMM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HFPDIEIFFMAHLDFFGIOKGGOJGPAEJNMOHJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	MFJHPAJOIOJGLJIFDJEKNPEAMKNIFPDO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EBHPADEIEBELCDDOEGBLDEGEJHICIACP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BHCFKGEHLCHDFFHHBJJFPLEENOMALONK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JMHOBCPFGEPDDNJFINPMAJIJNPIOBJCM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	EPIANNNJGBHCIFDCCHADLOCGBPMANOPG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JPACMLIAMGHNJJGPNAKJOCJDMIKHDHLH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	GKBNEKPCBDDANMMMNLJPMFGMBKOGDOAE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HNGCMMJLDKFLNDHBGAJJLEDNNMPMGMIM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	POOFKJIAHHIJOPLGFMAHBDLMCAHIJPKGKJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KMGGDEEBLIKJDPDBAJFCOPOGCMHLPDOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HHEPJPKAJPGAAHMOMNILCALLJJIPLALB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	HCDKNCALCPLMCCFJNKNKNBODCNOCFFEB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KNBCOKJHJDJOKLGCKMIFICMHEDJBMHIP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	CKBEBAMKGFAOGDHLNMNOIDJAMMCMMAID:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AHKLAJPFMOKMLALLADGAIMOIEHOPAGCI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KCMENMLBKAGDMGJDFMDAGBCBALMECDCLJO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BKCCJJFHLLKHFFNHNEEIAMEBLBHNGEFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	JBEIKAOINCKGMBNIIFNJMFMNPIHEFLEI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	BADPBNPCOEELHOICELOJFCINKFPELPNE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	AKKKNJDEAJCLLJFNAJGLICPCHGIEKDBI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

	KLPHOAHMMNICABDGFDOBECPEELHCPGMM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1576102823/
	f8:
	f9: Go!

	f10:

